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1 Further improvement

Let S be a minimal §-separator of T. The strategy of algorithms shown in our previous note on
3/2-approximation is to “guess” the structure of S and to construct a general star with the guessed
structure as the core. If 7' €star(S), by the lemmas in the previous note,

C(T)<2n > dg(v,8)+ (n*/2)w(S),
veV(Q)

and
C(T) > 2(1=0)n Y _ da(v,S) +25(1 — §)n*w(S).
veV
The approximation ratio, by comparing the two inequalities, is
1 1
1—6"46(1 —5)}'

The ratio achieves its minimum when the two terms coincide, i.e., 6 = 1/4, and the minimum ratio
is 4/3. In fact, by using a general star and a (1/4)-separator, it is possible to approximate an
MRCT with ratio (4/3) + ¢ for any constant € > 0 in polynomial time. The additional error ¢ is
due to the difference between the guessed and the true separators.

By this strategy, the approximation ratio is limited even if S was known exactly. The limit of
the approximation ratio may be mostly due to that we consider only general stars. In a general star,
the vertices are always connected to their closest vertices of the core. In extreme cases, roughly
half of the vertices connected are to both sides of a costly edge. This results in the cost (n?/2)w(S)
in the upper bound of a general star. To make a breakthrough, the restriction that each vertex is
connected to the closest vertex of the core needs to be relaxed.

A metric graph is a complete graph with triangle inequality, i.e., each edge is a shortest path
of its two endpoints. If the input graph is a metric graph, the core will be a two-edge path, and
each vertex is adjacent to one of the “critical vertices”— a centroid and the two endpoints of a
path separator. Define k-stars to be the trees with at most £ internal vertices. The constructed
approximation solution is a 3-star. More importantly, k-stars have no such restriction like general
stars and can be used to approximate an MRCT more precisely. Later in this chapter we shall see
how it works.

However, k-stars work only for metric graphs. The class of metric graphs is an important
subclass of graphs. Solving the MRCT problem on metric graphs is itself meaningful. Before
considering the approximation problem on metric graphs, two questions come to our minds:

max{
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e What is the computational complexity of the MRCT problem on metric graphs, NP-hard or
polynomial-time solvable?

e If it is NP-hard, does its approximability differ from that of the general problem?

We shall answer the questions in the next section.

2 A Reduction to the Metric Case

In this section, we shall show that the MRCT problem on general inputs can be reduced to the
same problem with metric inputs. The reduction is done by a transformation algorithm.

Definition 1: The metric closure of a graph G = (V, E, w) is the complete graph G = (V, V x V, w)
in which w(u,v) = dg(u,v) for all u,v € V.

Let G = (V,E,w) and G = (V,V x V, %) be its metric closure. Any edge (a,b) in G is called
a bad edge if (a,b) ¢ E or w(a,b) > w(a,b). For any bad edge e = (a,b), there must exist a path
P = SPg(a,b) # e such that w(P) = w(a,b). Given any spanning tree T’ of G, the algorithm can
construct another spanning tree Y without any bad edge such that C'(Y) < C(T'). Since Y has no
bad edge, w(e) = w(e) for all e € E(Y'), and Y can be thought of as a spanning tree of G with the
same routing cost. The algorithm is listed in the following.

Algorithm: REMOVE_BAD
Input: A spanning tree T of G.
Output: A spanning tree Y of G such that C(Y) < C(T).
Compute all-pairs shortest paths of G.
(I while there exists a bad edge in T’
Pick a bad edge (a,b). Root T at a.
/* assume SPg(a,b) = (a,z,...,b) and y is the parent of x */
if b is not an ancestor of x then
Y* o TU (3,b) — (a, b)Y — V* U {(a,2)} — {(2,0)}:
else
Y* o TU (0,2) - (@,b)Y™ — Y* U{(b,2)} — {(&.0)}
if C(Y*) <C(Y*™)thenY «— Y* else Y «— Y**
(IT) T—Y

The algorithm computes Y by iteratively replacing the bad edges until there is no bad edge. It
will be shown that the cost is never increased at each iteration and it takes no more than O(n?)
iterations. We assume that the shortest paths obtained in the first step have the following property:
If SPs(a,b) = (a,x,...,b), then SPg(a,b) = (a,x)USPg(x,b). This assumption is not strong since
almost all popular algorithms for all-pairs shortest paths output such a solution.

Proposition 1: The while loop in Algorithm REMOVE_BAD is executed at most O(n?) times.
Proof:  For each bad edge e = (a,b), let h(e) be the number of edges in SPg(a,b) and f(T) =

> bad ¢ P(€). Since h(e) < n —1, f(T) < n? initially. Since (a, ) is not a bad edge, it is easy to
check that f(T') decreases by at least 1 at each iteration. U



Figure 1: Remove bad edge (a,b). Case 1 (left) and Case 2 (right).

Proposition 2: Before instruction (II) is executed, C(Y) < C(T).

Proof:  For any node v, let S, = V(T,). As shown in Figure 1, there are two cases. Case 2 is
identical to Case 1 if the tree is re-rooted at b and the roles of a and b are exchanged. Therefore,
only the inequality for Case 1 needs to be proved, i.e., z € S, — Sp.

If C(Y*) < C(T), the result follows. Otherwise, let U = S, — Sp and Uy = S, — Sp — S;. Since
the distance does not change for any two vertices both in U; (or both in Sp), we have

o) < C(¥*)

= Z ZdT(u,v) Z Z dy«(u,v).

uelU; veSy uclUy vES)

A

Since for all w € Uy and v € Sy, dr(u,v) = dr(u,a) + w(a,b) + dr(b,v) and dy-(u,v) =
dr(u,z) + w(z,b) + dr(b,v),

> (dr(u,a) + @(a,b) + dr(b,v))

uclUy vES)
<Y (dr(u,z) + @(x,b) + dr(b,v))
uclUy vES)
= 1S5 S dru,a) + U |Syli(a, b)
uely
<185 S dp(u,) + |U]|Sy (e, B)
ucUy
= Z dr(u,a) + |Up|w(a,b) < Z dr(u, z) + |Ui|w(z,b).
ueli ueli

Note that S, # ) since the inequality holds. By the definition of the metric closure, w(a,b) =
w(a,x) + w(x,b), and then

S (dr(u,a) — dr(u, 7)) < —|Ur]a(a, 2). (1)
uelU;
Now consider the cost of Y**.

Cy™)-om)/2 = Y > (dy=(u,v) - dr(u,v))

u€Us vESy
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+ 303 (dye (u,0) — dr(u,v)) .

ueclU; vESy

Since dy«(u,v) < dp(u,v) for u € U; and v € Sy, the second term is not positive. By observing
that dr(u,v) = dr(u,z) + dp(x,v) and dy«(u,v) = dr(u,a) + w(a,z) + dp(z,v) for any u € Us
and v € S, we obtain

(CY™) - C(1) /2

< X ) +n(e.n) ~dr(u)

- rszf guﬂu, a) + w(a,z) — dr(u, )

- s 2; (A, @) — dr(u,2)) + VallSulo(a, 2

€ 150 'S" (drtuna) - dr(une) + [Gal1Safolan ) )
< RIS lE(er )+ [ Sula(a, 2 ®)
< 0.

(2) is obtained by observing that Uy — Uy = S, and dp(u,a) > dp(u,z) for any u € S,. (3) is
derived by applying (1). Therefore, C(Y**) < C(T) and the result follows. U

The next lemma follows Propositions 1 and 2, and that each iteration can be done in O(n) time.

Lemma 1: For any spanning tree T of G, it can be transformed into a spanning tree T' of G in
O(n?) time and C(T) < C(T).

The above lemma implies that C(mrct(G))< C(mret(G)). It is easy to see that C(mrct(G))>

C(mrct(G)). Therefore, we have the following corollary.
Corollary 2: C(mrct(G))=C(mrct(Q)).
Let AMRCT denote the MRCT problem with metric inputs. We have the next theorem.

Theorem 3: If there is a (1 + ¢)-approximation algorithm for AMRCT with time complexity
O(f(n)), then there is a (14 ¢)-approximation algorithm for MRCT with time complexity O(f(n)+
n?).

Proof: Let G be the input graph for the MRCT problem. The metric closure G' can be
constructed in time O(n?logn + mn). If there is a (1 + ¢)-approximation algorithm for the
AMRCT problem, a spanning tree T of G can be computed in time O(f(n)) such that C(T") <

(1 +¢)C(mret(G)). Using Algorithm REMOVE_BAD, a spanning tree Y of G can be constructed

such that C(Y) < C(T) < (14 ¢)C(mrct(G))= (1 +¢)C(mrct(G)). The overall time complexity is
then O(f(n) +n3). U

Corollary 4: The AMRCT problem is NP-hard.



3 A Polynomial Time Approximation Scheme

3.1 Overview

We sketch a Polynomial Time Approzimation Scheme (PTAS) for the MRCT problem in this
section.

As described previously, the fact that the costs w may not obey the triangle inequality is
irrelevant, since we can simply replace these costs by their metric closure. Therefore, in this section
we may assume that G = (V, E, w) is a metric graph.

We use k-stars, i.e., trees with no more than k£ internal nodes, as a basis of our approximation
scheme. In Section 77 we show that for any constant k, a minimum routing cost k-star can be
determined in polynomial time. In order to show that a k-star achieves a (1 + &) approximation,
we show that, for any tree T and constant 6 < 1/2:

1. It is possible to determine a J-separator, and the separator can be cut into several d-paths
such that the total number of cut nodes and leaves of the separator is at most [%1 - 3.

(Lemma ?7?)

2. Using the separator, T can be converted into a ([2] — 3)-star X, whose internal nodes are
just those cut nodes and leaves. The routing cost of X satisfies C(X) < (1 4+ %)C(T).
(Lemma ?7)

By using T = T =mrct(G), § = 77z and finding the best ([2]—3)-star K, we obtain the desired
approximation

C(K) < (1+ %5)0(?) = (1 +¢)C(T).

Before going into the details of the general case, take a look at how to find a 3/2-approximation
of an MRCT and its performance analysis.

Recall that a centroid of a tree is the vertex whose removal cuts the tree into components of
no more than n/2 vertices. Let T be an MRCT of a metric graph G. Root T at its centroid
r. For an edge (u,v) with parent v, the routing load of the edge is 2z(n — x), in which z is the
number of descendants of u. (For convenience, we assume that a vertex is also a descendant of
itself.) For a desired positive § < 1/2, removing all vertices with number of descendants no more
than dn, we may obtain a connected subgraph S of T'. The subgraph S is a minimal J-separator.
In the case that 6 = 0.5, S contains only the centroid. If the §-separator S of the MRCT is given
and, for each vertex not in S, its lowest ancestor in S is also known, we may easily construct a
1/(1 — d)-approximation Y of the MRCT as follows:

e SCY.

e For each vertex u not in S, connect it to its lowest ancestor v in S by adding edge (u,v).
The approximation ratio of Y can be shown by the following two observations.

e For each edge in S, the routing load in Y is the same as that in T.

e For each edge (u,v) not in S, the routing load in Y is 2(n —1). However, there is a path from
u to v in T of which each edge has routing load no less than 2(1 — d)n, and the length of the
path is at least the same as the edge (u,v).



V V, vV V,

ar br ar br

a r b a r b
Var Vbr Var Vbr

Figure 2: An MRCT and the four 3-stars.

For example, consider the simplest case that § = 1/2. A 1/2-separator contains only one
vertex. Assume that r be such a vertex on an MRCT T'. For every other vertex, the ancestor in
the separator is r. Connecting all other nodes to r, we obtain a star Y. The routing cost of Y
is the sum of all edges (v,r) multiplied by its routing load 2(n — 1). For each vertex v, there is
a path from v to r in T. Since r is a 1/2-separator of 7', the routing load of the path is at least
n and the path is no shorter than the edge (v,r) by the triangle inequality. Consequently Y is a
2-approximation of the MRCT T'. Since the separator contains only one vertex, we may try all
possible vertices and it leads to an O(n?) time 2-approximation of the MRCT problem on metric
graphs.

But when § < 1/2, the separator may contain as many as €2(n) vertices, and it is too costly
to enumerate all possible separators. However, instead of the entire separator, we may achieve the
same ratio by knowing only some critical vertices of the separator. In the following, we shall take
d = 1/3 as an example to show that we only need to know three critical vertices of the separator
to construct a 3/2-approximation.

Root the MRCT T at its centroid r. There are at most two subtrees which contain more than
n/3 nodes. Let a and b be the lowest vertices with at least n/3 descendants. We ignore the cases
where r = a or r = b. For such cases, the ratio can be shown similarly. Let P be the path from a
to b. Obviously the path contains 7 and is a minimal 1/3-separator. We shall transform 7" into a
3-star with internal nodes a, b, and r such that its routing cost is no more than 3/2 of that of T.
As shown in Figure 2, let us partition all the vertices into V,, V;, Vi, Vg, and V4,.. The sets V,,
Wy, and V,. contain the vertices whose lowest ancestor on P is a, b, and r, respectively. The set V.
(and V4,.) consists of the vertices whose lowest ancestor on P is between a and r (and between b
and 7, respectively).

First replace P with edges (a,r) and (b,r). For each vertex v in V, (or Vj, V), edge (v,a) (or
(v,b), (v,r) respectively) is added. For the vertices in Vg, we consider two cases. Either all of them
are connected to a or all of them are connected to . The vertices in V};, are connected similarly.
The four possible 3-stars are illustrated in Figure 2.

Now consider the routing cost of T. For each vertex v, the routing load of the path from v to
P is no less than 4n/3 since P is a 1/3-separator. For each edge e of P, since there are at least
n/3 nodes on either side of it, the routing load is no less than 2(n/3)(2n/3) = 4n?/9. Therefore we
have the following lower bound of the routing cost of the MRCT:

C(T) > (4n/3) > dg(v, P) + (4/9)n*w(P).

In either of the 3-stars constructed above, for each vertex v in V, UV, U V4, the routing load of
the edge incident to v is 2(n — 1), and the edge length is at most the same as the path from v to



P on T'. For each node v in V,., by the triangle inequality, we have
(w(v,a) +w(v,r))/2 < da(v, P) + dz(a,r)/2.

Note that there are no more than n/6 nodes in V,,.. For edge (a, ), the routing load is no more than
2(n/2)(n/2) = n?/2. (Note: For this simple case that § = 1/3, this bound is enough. However, a
more precise analysis of the incremental routing load is required for smaller §.)

For the nodes in Vj,., we may obtain a similar result. In summary, the minimum routing cost
of the constructed 3-stars is no more than

2(n— 1)) da(v, P) + (n*/6)(dz(a, ) + da(b, 7)) + (1/2)n’w(P)

< 2nZdT(v, P) + (2/3)n*w(P).

The approximation ratio, by comparing with the lower bound of the optimal, is 3/2.

The method can be extended to any 6 < 0.5. Let S be a d-separator of T. The critical vertex
set, defined as the cut and leaf set in the next section, to construct a 1/(1—d)-approximation k-star
consists of the following vertices.

e The leaves of S as a and b in the above example.
e The vertices with more than two neighbors on S.

e Some additional vertices such that all the critical vertices cut the separator into edge-disjoint
paths and the number of vertices whose lowest ancestors on S belong to the same path is no
more than dn/2. Such a path is defined as a d-path in the next section. In the above example,
r is such a vertex. The vertices a, b and r cut the separator into two paths, and the number
of vertices in either V,, or Vj, is no more than n/6.

We shall show that the number of the necessary critical vertices is at most 2/§ — 3 for any
d < 0.5. Consequently there exists a (2/6 — 3)-star which is an approximation of an MRCT with
ratio 1/(1 — §). The PTAS is to construct the (2/J — 3)-star of minimum routing cost.

The core of a tree is the subgraph obtained by removing all its leaves. The core of a k-star
contains no more than k vertices and therefore the number of all possible cores is polynomial to k.
For each possible core, the algorithm finds the best way to connect the leaves to one of the vertices
of the core. A k-component integer vector (ny,ng,...,ng) is used to indicate how many leaves will
be connected to each of the k vertices of the core, in which ) ; n; = n — k. There are O(n*~1) such
vectors. For each core and each vector, the routing load on each core edge is fixed since the number
of vertices on both sides of the edge are specified by the core and the vector. Therefore the best
leaf connection is determined by the leaf edges subject to the numbers of leaves to be connected to
the vertices of the core. Such a problem can be solved by solving an assignment problem in O(n?)
time. Consequently the minimum routing cost k-star can be constructed in time polynomial to k
and n.

Consider an example for k& = 3. For a 3-star, the core is a 3-vertex path. There are O(n?)
possible cores. For each possible core (a,b,c), use a three-component integer vector (z,y,z) to
indicate how many leaves will be connected to a, b, and ¢, in which z+y+ 2z =n—3 and x,y, z are
nonnegative integers. There are O(n?) such vectors. For a specified core and a specified vector, the
routing load on each core edge is also fixed. That is, the routing load on (a,b) is 2(x+1)(n—x —1)
and on (b,c) is 2(z + 1)(n — z — 1). Therefore the best leaf connection is determined by the leaf



edges subject to the numbers of leaves to be connected to a,b,c. Such a problem can be solved
by solving an assignment problem in O(n3) time. The total time complexity is O(n?**2), which is
polynomial for constant k. In fact we need not solve the individual assignment problem for the best
leaf connection of each vector. The best leaf connection of one vector can be found from that of
another vector by solving a shortest path problem if the two vectors are adjacent. Two vectors are
adjacent if one can be obtained from the other by increasing a component by one and decreasing a
component by one, e.g., (5,4,2) and (5,3,3). With this result, the time complexity is reduced to
O(n?).

Bibliographic Notes and Further Reading

Te Chiang Hu [5] formulated a general version of the routing cost spanning tree problem that
he called optimum communication spanning trees (OCT), cf. [ND7] in [3]. In this problem, in
addition to the costs on edges, a requirement value A;; is specified for every pair of vertices i, j.
The communication cost between a pair in a spanning tree is the cost of the path between them
in the tree multiplied by their requirement A;;. Thus the routing cost is a special case of the
communication cost when all the requirement values are one. He used the term “optimum distance
spanning trees” to denote trees with a minimum routing cost and derived a weak condition under
which the optimum routing cost tree is a star.

David S. Johnson et al. [6] showed that the MRCT problem on a general graph is NP-hard in the
strong sense. Robert Dionne et al. [1] studied the exact and the heuristic algorithms. The MRCT
problem is also known by the name shortest total path length spanning tree problem, cf. [ND3] in [3].
R. Wong [7] showed that there exists a shortest-paths tree which is a 2-approximation of an MRCT
and gave a worst-case analysis of the approximation algorithm. Bang Ye Wu, Kun-Mao Chao, and
Chuan Yi Tang [8] made a breakthrough on the approximation ratio by using the general stars and
giving a lower bound with the solution decomposition technique. They showed that it is possible
to approximate an MRCT with ratio (4/3) + ¢ for any positive constant ¢ in polynomial time. The
idea was soon generalized to the PTAS by Bang Ye Wu et al. [9]. The term “MRCT” first appeared
in the paper. Matteo Fischetti et al. [2] studied the techniques for finding the exact solution while
avoiding an exhaustive search.

Several extensions of the MRCT problem will be discussed in the next chapter, including the
OCT problem, the sum-requirement OCT problem and the product-requirement OCT problem.
Some variants where not all vertices are sources are also included.

More details of the multiple sequence alignment as well as other problems in computational
biology can be found in [4].
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