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Introduction

Many network optimization problems entail finding an optimal tree
with respect to a specific objective function. Such problem are
often computationally hard, and in recent years, many researchers
have deployed genetic algorithms in an attempt to determine
high-quality solutions.
It is well-established that the performance of any GA depends
critically on the representation that is adopted and the operators
applied to this representation. Unfortunately, there are so many
ways to represent trees within a GA that there is little consensus as
to which representation is “best”.



Suggested Properties

Palmer and Kershenbaum suggest that an effective tree
representation must satisfy five properties:

1. Capable of representing all possible trees.(full coverage)

2. Same number of encodings (zero biased).

3. Representing only trees. (perfect feasibility)

4. Easy to go back and forth between the encoding
representation and tree representation. (efficiency)

5. Locality.



Key Definitions

1. Cn denotes the set of strings consisting of exactly (n-2)
integers from [1,n]=1,2,. . . ,n. The strings Cn will be termed
Cayley strings.

2. Tn denotes the set of labeled trees on the vertex set [1,n].

3. |Tn| = nn−2, the enumeration is known as Cayley’s
formula.

4. |Tn| = |Cn|, ∀n ≥ 2.

5. Cayley Code will be termed to refer to any one-to-one
mapping between Tn and Cn.
⇒ (nn−2)! Cayley Codes.



Using Cayley Codes to Represent Trees in GAs

1. Cayley Codes satisfies full coverage, zero bias, and perfect
feasibility.

2. Mutating and crossing-over two Cayley strings will always
produce valid Cayley strings.

3. Any Cayley code could be used as a tree representation within
a GA.

4. Unfortunately, for the vast majority of the (nn−2)! possible
Cayley codes, the correspondence between trees and strings is
highly disordered. Researchers have identified several Cayley
codes that possess significant structure, and that may
regarded as viable GA representations.



Prüfer-like Cayley Codes

1. Devised in 1918 by Heinz Prüfer.

2. The string corresponding to a tree is generated by sequentially
deleting the tree’s leaves and recording the neighbors of these
leaves.

3. Prüfer-like Cayley codes also possess efficiency (Prop. 4), but
almost always perfom poorly as genetic representations, as
they have low locality.



High-Locality Cayley Codes

1. Picciotto set out the mathematical foundations for three
Cayley codes: the Blob Code, the Happy Code, and Dandelion
Code.

2. Picciotto thought that “the codes themselves may not be
useful for much yet”.

3. In 2001, Julstrom deployed the Blob Code as genetic
representation. He showed that the code possesses high
locality.

4. Thompson showed that the Dandelion Code has even higher
locality.



Notation and Terminology

1. Picciotto’s Dandelion Code is identical to the θn bijection
between Tn and Cn devised in 1986 by Eğecioğlu and Remmel.

2. The (n-2) elements of any string from Cn will be indexed from
2 to (n-1), rather than from 1 to (n-2).



Decoding Algorithm

1. Define the function φD : [2, n − 1]→ [1, n] such that
φD(i) = di for each i ∈ [2, n − 1].

2. Let the cycles associated with the function φD be
Z1,Z2, . . . ,Zt and let bi be the minimum element in cycle Zi .
WLOG, assume that the cycles are recorded such that bi is
the rightmost element of Zi , and that bi < bj whenever i < j .

3. From a single list π of the elements in Z1,Z2, . . . ,Zt in the
order they occur in this cycle list, from the list element of Z1

throught to the last element of Zt .

4. To construct the tree T ∈ Tt corresponding to D, take a set
of n isolated vertices (labled with the integers form 1 to n),
create a path from vertex 1 to vertex n by following the list π
from left to right, and then create the edge (i , di ) for every
i ∈ [2, n − 1] that does not occur in the list π.



Encoding Algorithm

1. Find the unique path from 1 to n in T, and let π be the
ordered list of intermediate vertices.

2. Recover the cycles Zi by writing π in a left-to-right list, and
closing a cycle immediately to the right of each right-to-left
minimum(i.e., each element that is smaller than all elements
to its right).

3. The Dandelion string corresponding to T is the unique string
D = (d2, d3, . . . , dn−1) such that:

I the cycles of the function φD(i) = di are precisely Zi

I for each i ∈ [2, n − 1] that does not occur in π, the first vertex
on the path from vertex i to vertex n in the tree T is di (i.e.,
di = succ(i), where vertex n is regarded as the root of T ).



Example(Decoding)

The Dendelion string D =
(19, 7, 1, 3, 18, 3, 23, 19, 10, 1, 2, 25, 4, 4, 18, 7, 9, 8, 6, 8, 5, 9, 6) ∈
C25 will be docoded into the corresponding tree T ∈ T25.

Step1, cosider the function φD that maps i into di :

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

19 7 1 3 18 3 23 19 10 1 2 25 4 4 18 7 9 8 6 8 5 9 6

Step2, three distinct cycles:

I two-cycle (3,7) (= Z1)

I four-cycle (8,23,9,19) (= Z2)

I one-cycle (10) (= Z3)



Example(Decoding)

Step3, the list π is found to be (7, 3, 23, 9, 19, 8, 10).
Step4, the tree T corresponding to the Dandelion string D is the
unique T ∈ T25 that contains the path 1-7-3-23-9-19-8-10-25 and
the 16 undirected edges {(i , di ) : i ∈ [2, 24]\π}



Result



Example(Encoding)

Step1, determine the unique path from vertex 1 to vertex n in T .
The simplest way to do this is to temporarily regard the tree T as
being rooted at vertex 25, and determine the successor succ(i) of
every vertex i ∈ [2, 24].

i succ(i) i succ(i) i succ(i) i succ(i)

1 7 7 3 13 25 19 8
2 19 8 10 14 4 20 6
3 23 9 19 15 4 21 8
4 1 10 25 16 18 22 5
5 3 11 1 17 7 23 9
6 18 12 2 18 9 24 6

Once this table has been constructed, it is easy to see that
π = (7, 3, 23, 9, 19, 8, 10)



Example(Encoding)

Step2 recovers the cycles Zi from the path π.
|7, 3, 23, 9, 19, 8, 10|

Place a vertical bar to the immediate right-to-left minimum in the

list.(i.e., each element that is smaller than every element to its
right), excluding the rightmost element.

| 7, 3 | 23, 9, 19, 8 | 10 |



Example(Encoding)

Step3 determines the Dandelion string D corresponding to T by
constructing the mapping diagram for φD .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

7 3 23 19 10 8 9

Then fill in the empty spaces in the mapping diagram by writing succ(i)
underneath i for each i ∈ [2, n − 1]\π.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

19 7 1 3 18 3 23 19 10 1 2 25 4 4 18 7 9 8 6 8 5 9 6

Thus, the Dandelion string is constructed.



Visual formulation of the Decoding Algorithm

Consider the functional digraph GD of the function φD associated
with D.
The functional digraph GD consists of (c + 2) connected
components for some integer c ∈ [0, n− 2]: a tree rooted at vertex
1, a tree rooted at vertex n, and c other components.

I Label the cycles within GD as Z1,Z2, . . . ,Zc in such a way
that the relation b1 < b2 < . . . < bc is satisfied, where bi

denotes the minimum element in cycle Zi .

I ai : the vertex pointed to by the unique edge leaving bi in the
digraph, so that ai = φD(bi ).

I The c edges in GD of the form (bi → ai ) will be referred to as
the back edges of GD

I Delete back edges and add the following (c+1) bridge edges:
(1→ a1), (b1 → a2), . . . , (bc−1 → ac), (bc → n)



Example



Linear Implementation of the Decoding Algorithm

1. Let Visited(i) = 0 and IsMin(i) =0 for each i ∈ [2, n− 1]. Let
orbit=1, let u = 2, and let v = 2.

2. Set Visited(v) = orbit.

3. Let the new value of v be φD(v).

4. If Visited(v) = orbit, go to stage 5. If v = 1, or v = n, or
0 < Visited(v) < orbit, go to stage 6. Otherwise, go to stage
2.

5. Determine the minimum element min within the cycle
(v , φD(v), φd(φD(v)), . . . , v), and set IsMin(min) = 1.

6. Repeatedly increment u until Visited(u)=0 or u = n

7. If u = n, then terminate. If u < n, then increment orbit by
one, set v = u and go to stage 2.



Linear-Time Implementation of the Encoding Algorithm

1. Let pos=1

2. Let v be the element in position pos of the queue.

3. Let Preq(v) denote the set of predecessors of v (i.e., all
neighbors of v except succ(v), where succ(n) is null).

4. Set succ(w)=v for each vertex w in Pred(v).

5. Append all the vertices in Preq(v) to the end of the queue.

6. If pos=n, then terminate. Otherwise, increment pos by one
and go to stage 2.





Definition: 
Locality means that small changes to the 
genotype should always  lead to small 
changes in the corresponding phenotype.
Genotype V.S. Phenotype

Genotype is the space of Cayley String
Phenotype is the space of trees

Why do we need locality?
Because an effective GA representation must 
possess locality.



In the space of Cayley strings, the distance 
between two strings is the number of position in 
which they differ. (i.e. Hamming distance)
In the space of trees, the distance between two 
trees T1 and T2 is the number of edges that 
belong to T1 but not T2. (the number of edge 
swaps required to transform T1 into T2)****
Therefore, the distance between two distinct 
strings (trees) is in the range [1, n-2] ([1, n-1]).



Previous research shows that if two 
Dandelion strings are adjacent (i.e. the 
distance between them in the string space 
is one), then the distance between the 
trees corresponding to these strings is 
never more than five, for any value of n.



Dandelion code has asymptotically optimal 
locality and asymptotically optimal 
expected locality.
No Cayley code can have optimal locality. 
Namely, the Dandelion code s locality 
bound of five is the tightest locality bound 
of any Cayley code.





Given n 3, there are n(n-2)(n-1)(n-2) possible 
mutation events associated with the Dandelion 
code (that is, n(n-2) choices for the original 
Dandelion string D Cn , (n-2) choices for the 
component of D to undergo mutation, and (n-1) 
choices for the new value in that component.)
For each of these possible mutation events, the 
tree corresponding to the original string and the 
tree corresponding to the mutated string are 
separated in the tree space by some distance 

[1, n-1]







In the two tables, we can observe that for 
larger values of n, it is computationally 
costly to examine the space of mutation 
events exhaustively. However, it is 
possible to estimate the distribution of by 
generating a large number of random 
mutation events.







Let D Cn be a Dandelion string, and let D* Cn
be the Dandelion string obtained from D when 
d is changed into d* [1, n] for some [2, 
n-1], where d* d . 
Let T Tn denote the tree corresponding to the 
original string D, and let T * Tn denote the tree 
corresponding to the mutated string D* (under 
the Dandelion Code). 
In this section, we prove that the tree distance 
between T and T* never exceeds five i.e., T
and T* always have at least (n-6) common edges.



Let GD be the functional digraph corresponding 
to the original Dandelion string D. 
Clearly, GD consists of (c+2) connected 
components for some integer c [0, n-2]: 

a tree rooted at vertex 1 (now referred to as 
component C0), a tree rooted at vertex n (now 
referred to as component Cc+1), and c other 
components, each consisting of a directed cycle with 
a tree (possibly the empty tree) attached to each 
cycle vertex, with all the edges of these trees directed 
toward the cycle.



As before, the cycles GD within are labeled as Z1, 
Z2, , ZC in such a way that the relation b1 b2

bC is satisfied, where bi denotes the 
minimum element in Zi cycle. 
The component of GD containing Zi is then 
labeled Ci , so that the (c+2) components of GD
are C0, C1, ,CC+1. As before, for each i [1, c], 
let ai be the vertex pointed to by the unique edge 
leaving bi in the digraph GD, so that D (bi) = ai .



Let Xi denote the set of noncyclic vertices 
in component Ci for each i [1, c], and 
define X0 = C0 and XC+1 = CC+1. 
For each noncyclic vertex , let T
denote the subtree of GD , rooted at vertex 

(i.e., the subtree containing all the 
ancestors of , along with itself). Thus, 
the vertex belongs to T if and only if 

lies on the unique path from to n in T.



We are now ready to analyze the 
relationship between the tree T and the 
tree T*. Note that the mutation d d*

causes precisely one change in the 
functional digraph GD : 

the edge ( d ) is deleted, and replaced 
by the edge ( d* ). Therefore, GD and 
GD* differ in only one edge, but T and T*  may 
differ from each other in a more complex way.



The analysis divides naturally into four 
mutually exclusive and exhaustive cases.
Case 1: XS for some s, and d* ! T .
Case 2: XS for some s, and d* T .
Case 3: ZS for some s, and d* Cj , 

where j s.
Case 4: ZS for some s, and d* CS .



Case 1: XS for some s, and d* ! T .
In this case, the vertex is a noncyclic 
vertex in component CS, and the vertex d*

is not an ancestor of . Thus, the 
functional digraphs CD and CD* have the 
same cycles. It follows immediately that T
and T* differ only in one edge: E(T*)\E(T ) = 
{( , d* )} and E(T)\E(T *) = {( , d )}. 



Case 2: XS for some s, and d* T .
In this case, the vertex is a noncyclic 
vertex in component CS, and the vertex 
d* is an ancestor of . 
Replacing ( d ) with ( d* ) 
creates another component in the 
functional digraph GD*, and this component 
contains a cycle . 



Let be the minimum element of the 
cycle , and define = D* ( ). Define t 

[0, c] such that bt bt+1, where b0 
= 1 and bC+1 = n. When the cycles of GD*
are ordered by minimum element, the 
cycle will appear between Zt and Zt+1. 
Thus, in the worst case, E(T*)\E(T ) = {( ,
d* ), (bt, ), ( , at+1)} and E(T)\E(T *) = 
{( , d ), (bt, at+1), ( , )}.



Case 3: ZS for some s, and d* Cj, 
where j s.
In this case, the vertex is a cyclic vertex 
in component Cs, and the vertex d*

belongs to a different component, Cj. 



Replacing ( d ) with ( d* ) splits 
the cycle ZS to form a path leading into 
component Cj (and eventually, into cycle 
Zj). Thus, component Cs is not present in 
GD*, and the cycle ZS disappears from the 
canonical cycle ordering. Thus, in the 
worst case, E(T*)\E(T ) = {( , d* ), (bs-1,
as+1), (bs, as)} and E(T)\E(T *) = {( , d ), 
(bs-1, as), (bs, as+1)}.



Case 4: ZS for some s, and d* CS.
In this case, the vertex is a cyclic vertex 
in component CS, and the vertex d*

belongs to the same component. 
When ( d ) is replaced with (
d* ), the component CS still contains 
precisely the same vertices, but the cycle 
it contains is no longer ZS, but some new 
cycle, . 



Let be the minimum element of the cycle , 
and define = D* ( ). Define t [0, c] such 
that bt bt+1, where b0 = 1 and bC+1 = n. 
When the cycles of GD* are ordered by minimum 
element, the cycle ZS will no longer appear, and 
the cycle will appear between Zt and Zt+1. 
Thus, in the worst case, E(T*)\E(T ) = {( , d* ), 
(bs-1, as+1), (bt, ), ( , at+1),(bs, as)} and 
E(T)\E(T *) = {( , d ), (bs-1, as), (bs, as+1), (bt, 
at+1),( , )}





The functional digraph GD of the function D associated 
with the original Dandelion string D = (6, 3, 6, 4, 5)

1 3 45 76

2

C0 C1 C3C2



The functional digraph GD of the function D associated 
with the original Dandelion string D = (6, 3, 6, 4, 5)

1 3 45 76

2

C0 C1 C3C2



The functional digraph GD of the function D associated 
with the original Dandelion string D = (6, 3, 6, 4, 5)

1 3 45 76

2

C0 C1 C3C2



The tree T T7 corresponding to the original Dandelion 
String D = (6, 3, 6, 4, 5)

1 3 45 76

2

C0 C1 C3C2



The functional digraph GD of the function D associated 
with the original Dandelion string D = (6, 3, 6, 2, 5)

1 325 76

4

C0 C1 C3C2



The functional digraph GD of the function D associated 
with the original Dandelion string D = (6, 3, 6, 2, 5)

1 325 76

4

C0 C1 C3C2



The functional digraph GD of the function D associated 
with the original Dandelion string D = (6, 3, 6, 2, 5)

1 325 76

4

C0 C1 C3C2



The functional digraph GD of the function D associated 
with the original Dandelion string D = (6, 3, 6, 2, 5)

1 325 76

4

C0 C1 C3C2



D. The Dandelion Code Has 
Asymptotically Optimal Locality and 

Asymptotically Optimal Expected Locality



As mentioned before, the probability that a 
random single-element mutation to a random 
Dandelion string is a perfect mutation (i.e., 
causes a single edge change in the underlying 
tree) is close to one. 
Moreover, the expected number of edge 
changes caused by such a mutation is also 
close to one. 
In fact, it is possible to show that the Dandelion 
Code has asymptotically optimal locality.



the following asymptotic results are quoted 
for a random mapping from [1, n] to [1, n], 
selected uniformly at random from nn the 
possible mappings: 
1) the total number of cyclic elements (i.e., 
elements belonging to some cycle) is 
O(n(1/2)); 
2) the expected number of ancestors of a 
random element is O(n(1/2)). 



Since a random Dandelion string D
corresponds to a random mapping D

from [2, n-1] to [1, n], its functional digraph 
GD follows these asymptotics. Thus, as n 
tends to infinity, the proportion of 
mutations in which is noncyclic and d*

is not an ancestor of tends to one.



Since this situation corresponds to Case 1) 
of the proof presented in Section V-B, it 
follows that the probability of perfect  
mutation tends to one as n tends to infinity. 
Thus, the Dandelion Code has 
asymptotically optimal locality.



Since is restricted to the interval [1, 5], this 
result also implies that the Dandelion Code has 
asymptotically optimal expected locality (i.e., the 
expected number of edge changes caused by a 
random single-element mutation to a random 
Dandelion string tends to one as tends to infinity).
To see why this is so, observe that 1 E( ) 
p + 5(1-p) = 5 4p, where p equals P( =1). 
Thus, as tends to infinity, tends to one (from 
below), and E( ) tends to one (from above).



Therefore, we conclude that the Dandelion 
Code s locality actually increases as the size of 
problem instance goes up. 
As n increases, not only does the fixed locality 
bound of five become increasingly negligible 
relative to the size of the search space, but the 
probability that a random string mutation is not a 
perfect mutation becomes vanishingly small, and 
the expected number of edge changes caused 
by a random string mutation rapidly approaches 
one.





The Dandelion Code has high locality 
because the correspondence that it sets 
up between trees and strings has a natural 
structure. In particular, the occurrence of a 
certain value at a certain position within a 
Dandelion string almost always has a 
consistent meaning.



Specifically, if a Dandelion string D = (d2, d3, , 
dn-1) is decoded into the corresponding tree 
under the Dandelion Code, then (i, di) will be an 
edge in T for every that is not a cycle minimum 
in the functional digraph GD. 
In fact, the Dandelion Code s decoding algorithm 
maximizes the number of values of i for which 
this property is true, since in the creation of the 
tree T, only one edge is removed from each 
cycle in GD. 



Moreover, the decoding algorithm specifies that 
the bridge edges which replace the back edges 
are arranged so as to bridge the broken cycles 
in increasing order of minimum element. 
Thus, changing a single element of a Dandelion 
string has only a small impact on the 
corresponding tree, even if the mutation alters a 
cycle of the functional digraph.





For any n 5, consider the Prufer string (3, 4, , n-1, n).
The tree T Tn corresponding to P (under the Prufer 
Code bijection) contains the edges (i, i+2) for each i [1, 
n-2], along with the edge (n-1, n). 
However, if the last element of P is mutated from the 
value n to the value 1, to create the mutated string P* = 
(3, 4, , n-1, 1), then the tree T* Tn corresponding to 
P*  contains the edges (i, i+1) for i [2, n-2], along with 
the edges (1, n-1) and (1, n). Clearly, T and T* have no 
common edges; therefore, the Prufer Code possesses 
no fixed locality bound.



1 25 43

With Prufer string (3, 4, 5)

2 54 13

With Prufer string (3, 4, 1)





The authors conjecture that no other 
Cayley code possesses a tighter bound 
(for all values of n). (Of course, even if a 
Cayley code with a smaller locality bound 
was shown to exist, it would only be a 
useful GA representation if it possessed 
sufficient structure to allow an efficient 
transition between trees and strings.)



It is known, however, that no optimal-
locality Cayley code (i.e., a Cayley code 
such that adjacent strings always 
correspond to adjacent trees) can exist for 
any n 4. 
The easiest proof of this result is by 
contradiction. 



Suppose that an optimal-locality Cayley code 
does indeed exist. Observe that for any n 4, 
there exist trees T1, T2 Tn with no edges in 
common. 
By definition, T1 and T2 are separated by a 
distance of (n-1) in the tree space. However, if 
Q1 and Q2 are the Cayley strings corresponding 
to T1 and T2 under the optimal-locality Cayley
code, then Q1 can be transformed into Q2 with 
(n-2) mutations in the string space. 



Since the Cayley code under 
consideration has optimal locality, this 
means that the trees T1 and T2 can differ in 
no more than (n-2) edges in other words, 
they must have at least one common edge. 
This establishes the required contradiction, 
as T1 and T2 have no common edges.



Real-world network doesn t take the form of
a complete graph.

Many extensions of Prufer code perform 
poorly, as they inherit low locality.



Complete graph Kk1,k2 consists of two layers
of vertices V1,V2 containing k1 and k2 vertices

A spanning tree touches every vertex in
[1, k1 + k2], and use only the edge of Kk1,k2

will be termed Bipartite Trees

|Tk1,k2| = k2 
k1-1 k1

k2-1



Dk1,k2 be the set of strings D = (d2,d3 ,dk1+k2-1)
such that 

di in V2=[k1+1,k1+k2] for each i in [2,k1]

di in V1=[1,k1] for each i in [k1+1,k1+k2-1]

|Dk1,k2| = |Tk1,k2| = k2 
k1-1 k1

k2-1



D = (11,13,12,14,10,15,12,12,5,2,9,5,6)
V1 = [1,9]  k1 = 9 and V2 = [10,15] k2 = 6

2    3    4    5    6    7    8    9  10  11  12  13  14

11  13  12  14  10  15  12  12 5    2    9    5    6

Z1=(11,2), Z2=(14,6,10,5), Z3=(12,9)



= (11,2,14,6,10,5,12,9)
T contains path 1-11-2-14-6-10-5-12-9-15

1      2      3      4      5      6      7      8      9

10       11      12       13       14       15



= (11,2,14,6,10,5,12,9)
T contains path 1-11-2-14-6-10-5-12-9-15
(3,13) (4,12) (7,15) (8,12) and (13,5)

1      2      3      4      5      6      7      8      9

10       11      12       13       14       15



Find path 1-11-2-14-6-10-5-12-9-15

= (11,2,14,6,10,5,12,9)

Split into (11,2), (14,6,10,5), (12,9)

For each i not lying in , set di equal to the 
first vertex of the path from i to 15.



Every cycle must have even length.

Each cycle s rightmost belong to V1

leftmost belong to V2

Tk1,k2 is obtained when (i,di) corresponding to 
noncyclic element are added



Choose a mutation position u from [2,k1+k2-1]

Reset du with an integer from the set V*

V* = V2 if u in [2,k1]
= V1 if u in [k1+1,k1+k2-1]

Uniform crossover and one-point crossover



n = k1+k2 in {150,600,2400}

MAX( ) <= 5

n ~ infinity => P( =1) and E( ) ~ 1

Locality of Tk1>k2 is higher than Tk2>k1







New representation for transportation 
problems

Random network generation

High locality and linear complexity



Complete Layered Graph  L3,6,6,5,4



Each of the (k1-1) element of substring R1 = 
(r2,r3, ,rk1) belongs to the set V2

Each of the (kl-1) element of substring Rl = 
(rql-1+1,rql-1+2, ,rn-1) belongs to the set Vl-1

i in [2,l-1], one element satisfied ri = i
other element of Ri belongs to Vl-1 U Vl+1



Denote cycles by Z1, Z2, Zt and 
bi (rightmost) be the minimum element of Zi

(bi < bj whenever i < j)
Define the color of cycle Zi, i in [1,l ]
Shift each one-cycle within the cycle ordering
Relabel cycles as Y1,Y2, Yt in new order
Form 
Construct T corresponding to R



Suppose l3,6,6,5,4 so that l = 5 , n = 24
R = (4,7,2,15,1,14,12,9,6,20,5,16,14,8,13,

17,21,24,11,18,20,20)

Z1=(4,2), Z2=(15,8,12,5), Z3=(9),Z4=(20,11)
Z5=(16,13), Z6=(14), Z7=(17), Z8=(21,18)

Color ( 1, 2, , 8) = (1,2,2,3,3,3,4,4)



Shift and relabel
Y1=(4,2),
Y2=(9), Y3=(15,8,12,5)
Y4=(14), Y5=(20,11), Y6=(16,13)
Y7=(17), Y8=(21,18)

= (4,2,9,15,8,12,5,14,20,11,16,13,17,21,18)
Add other 7 edges (3,7), (6,1), (7,14), (10,6), 
(19,24), (22,20), (23,20)



Find the unique path from 1 to n ( in fact)
Recover cycles {Yi} by two step

Close a cycle after each right-to-left minimum in 
For each i in [2,l-1], split the leftmost cycle of color 

i after its first element to form two separate cycles.

The cycles in are precisely
For each i in [2,n-1] not lying in ,the first 
vertex on the path from i to n is ri. 



= (4,2,9,15,8,12,5,14,20,11,16,13,17,21,18)
Get (4,2) (9,15,8,12,5) (14,20,11) (16,13)

(17) (21,18) at first
(9,15,8,12,5)=> (9) & (15,8,12,5)
(14,20,11)=> (14) & (20,11)

R = (4,7,2,15,1,14,12,9,6,20,5,16,14,8,13,
17,21,24,11,18,20,20) finally.



Choose a mutation position u in [2,n-1]
define j such that ru in the set of Vj

If ru is not a fixed point choose new value from Aj

If ru is a fixed point then make two mutation
(choose v, let ru = rv , rv = v)

Mask Crossover



Perfect Feasibility, Full Converge, Zero Bias
Provides a bijection between trees and strings.

Linear Complexity
Linear-time procedure require minor alterations.

High Locality



Dandelion code and its extensions satisfy all 
five of the desirable properties identified by 
Palmer and Kershenbaum.

Dandelion code and its extension should be 
used in preference to other Cayley codes,
particularly the widely used Prufer code.
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