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Chapter 2

Minimum Spanning Trees

What is a minimum spanning tree for the weighted graph in Figure 2.1?
Notice that a minimum spanning tree is not necessarily unique.
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FIGURE 2.1: A weighted graph.

Figure 2.2 gives four minimum spanning trees, where each of them is of
total weight 14.

Let G + e denote the graph obtained by inserting edge e into G.

LEMMA 2.1

Any two vertices in a tree are connected by a unique path.

LEMMA 2.2

Let T be a spanning tree of a graph G, and let e be an edge of G not in T .
Then T + e contains a unique cycle.

THEOREM 2.1

Let F1, F2, . . . , Fk be a spanning forest of G, and let (u, v) be the smallest of
all edges with only one endpoint u ∈ V (F1). Then there is an optimal one
containing (u, v) among all spanning trees containing all edges in ∪k

i=1E(Fi).

iii



iv Spanning Trees and Optimization Problems (Excerpt)

� �

�

�
�

�

�

� � �

�

� 	


 �

� �

�

�

�

�

� � �

�

� 	


 �

�

� �

�

�

�

�

� � �

�

� 	


 �

�

� �

�

�

� �

�

� � �

�

� 	


 �

FIGURE 2.2: Some minimum spanning trees.

Algorithm: Bor̊uvka
Input: A weighted, undirected graph G = (V, E, w).
Output: A minimum spanning tree T

T ← ∅
while |T | < n− 1 do

F ← a forest consisting of the smallest edge incident to
each vertex in G

G ← G\F
T ← T ∪ F

Figure 2.3 illustrates the execution of the Bor̊uvka algorithm on the graph
from Figure 2.1.

Algorithm: Prim
Input: A weighted, undirected graph G = (V, E, w).
Output: A minimum spanning tree T .

T ← ∅
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FIGURE 2.3: The execution of the Bor̊uvka algorithm on the graph from
Figure 2.1.

Let r be an arbitrarily chosen vertex from V .
U ← {r}
while |U | < n do

Find u ∈ U and v ∈ V − U such that the edge (u, v) is a smallest
edge between U and V − U .

T ← T ∪ {(u, v)}
U ← U ∪ {v}

Figure 2.4 illustrates the execution of the Prim algorithm.

Algorithm: Kruskal
Input: A weighted, undirected graph G = (V, E, w).
Output: A minimum spanning tree T .

Sort the edges in E in nondecreasing order by weight.
T ← ∅
Create one set for each vertex.
for each edge (u, v) in sorted order do

x ← Find(u)
y ← Find(v)
if x 6= y then

T ← T ∪ {(u, v)}
Union(x, y)
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FIGURE 2.4: The execution of the Prim algorithm on the graph from
Figure 2.1.
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Figure 2.5 illustrates the execution of the Kruskal algorithm.

Bibliographic Notes and Further Reading

The history of the minimum spanning tree (MST) problem is long and rich.
An excellent survey paper by Ronald Graham and Pavol Hell [9] describes
the history of the problem up to 1985. The earliest known MST algorithm
was proposed by Otakar Bor̊uvka [1], a great Czech mathematician, in 1926.
At that time, he was considering an efficient electrical coverage of Bohemia,
which occupies the western and middle thirds of today’s Czech Republic. In
the mid-1950s when the computer age just began, the MST problem was
attacked again by several researchers. Among them, Joseph Kruskal [14] and
Robert Prim [16] gave two commonly used textbook algorithms. Both of them
mentioned Bor̊uvka’s paper. In fact, Prim’s algorithm was a rediscovery of
the algorithm by the prominent number theoretician Vojtěch Jarńık [10].

Textbook algorithms run in O(m log n) time. Andrew Chi-Chih Yao [19],
and David Cheriton and Robert Tarjan [4] independently made improvements
to O(m log log n). By the invention of Fibonacci heaps, Michael Fredman and
Robert Tarjan [7] reduced the complexity to O(mβ(m,n)), where β(m,n) =
min{i| logi n ≤ m/n}. In the worst case, m = O(n) and the running time
is O(m log∗m). The complexity was further lowered to O(m log β(m, n)) by
Harold N. Gabow, Zvi Galil, Thomas H. Spencer, and Robert Tarjan [8].

On the other hand, David Karger, Philip Klein, and Robert Tarjan [11] gave
a randomized linear-time algorithm to find a minimum spanning tree in the
restricted random-access model. If the edge costs are integer and the models
allow bucketing and bit manipulation, Michael Fredman and Dan Willard [6]
gave a deterministic linear-time algorithm.

Given a spanning tree, how fast can we verify that it is minimum? Robert
Tarjan [18] gave an almost linear-time algorithm by using path compression.
János Komlós [13] showed that a minimum spanning tree can be verified in
linear number of comparisons, but with nonlinear overhead to decide which
comparisons to make. Brandon Dixon, Monika Rauch, and Robert Tarjan [5]
gave the first linear-time verification algorithm. Valerie King [12] proposed
a simpler linear-time verification algorithm. All these methods use the fact
that a spanning tree is a minimum spanning tree if and only if the weight of
each nontree edge (u, v) is at least the weight of the heaviest edge in the path
in the tree between u and v.

It remains an open problem whether a linear-time algorithm exists for find-
ing a minimum spanning tree. Bernard Chazelle [2] took a significant step
towards a solution and charted out a new line of attack. His algorithm runs
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FIGURE 2.5: The execution of the Kruskal algorithm on the graph from
Figure 2.1.
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in O(mα(m,n)) time, where α is the functional inverse of Ackermann’s func-
tion defined in [17]. The key idea is to compute suboptimal independent sets
in a nongreedy fashion, and then progressively improve upon them until an
optimal solution is reached. An approximate priority queue, called a soft
heap [3], is used to construct a suboptimal spanning tree, whose quality is
progressively refined until a minimum spanning tree is finally produced.

Seth Pettie and Vijaya Ramachandran [15] established that the algorithmic
complexity of the minimum spanning tree problem is equal to its decision-tree
complexity. They gave a deterministic, comparison-based MST algorithm that
runs in O(T ∗(m,n)), where T ∗(m,n) is the number of edge-weight compar-
isons needed to determine the MST. Because of the nature of their algorithm,
its exact running time is unknown. The source of their algorithm’s mysterious
running time, and its optimality, is the use of precomputed “MST decision
trees” whose exact depth is unknown but nonetheless provably optimal. A
trivial lower bound is Ω(m); and the best upper bound is O(mα(m,n)) [2].
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