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1 Further improvement

Let S be a minimal δ-separator of T̂ . The strategy of algorithms shown
in our previous note on 3/2-approximation is to “guess” the structure of S
and to construct a general star with the guessed structure as the core. If
T ∈star(S), by the lemmas in the previous note,

C(T ) ≤ 2n
∑

v∈V (G)

dG(v, S) + (n2/2)w(S),

and
C(T̂ ) ≥ 2(1− δ)n

∑

v∈V

d
T̂
(v, S) + 2δ(1− δ)n2w(S).

The approximation ratio, by comparing the two inequalities, is

max{ 1
1− δ

,
1

4δ(1− δ)
}.

The ratio achieves its minimum when the two terms coincide, i.e., δ = 1/4,
and the minimum ratio is 4/3. In fact, by using a general star and a (1/4)-
separator, it is possible to approximate an MRCT with ratio (4/3) + ε for
any constant ε > 0 in polynomial time. The additional error ε is due to the
difference between the guessed and the true separators.

By this strategy, the approximation ratio is limited even if S was known
exactly. The limit of the approximation ratio may be mostly due to that
we consider only general stars. In a general star, the vertices are always
connected to their closest vertices of the core. In extreme cases, roughly
half of the vertices connected are to both sides of a costly edge. This results
in the cost (n2/2)w(S) in the upper bound of a general star. To make a
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breakthrough, the restriction that each vertex is connected to the closest
vertex of the core needs to be relaxed.

A metric graph is a complete graph with triangle inequality, i.e., each
edge is a shortest path of its two endpoints. If the input graph is a metric
graph, the core will be a two-edge path, and each vertex is adjacent to
one of the “critical vertices”— a centroid and the two endpoints of a path
separator. Define k-stars to be the trees with at most k internal vertices. The
constructed approximation solution is a 3-star. More importantly, k-stars
have no such restriction like general stars and can be used to approximate
an MRCT more precisely. Later in this chapter we shall see how it works.

However, k-stars work only for metric graphs. The class of metric graphs
is an important subclass of graphs. Solving the MRCT problem on metric
graphs is itself meaningful. Before considering the approximation problem
on metric graphs, two questions come to our minds:

• What is the computational complexity of the MRCT problem on met-
ric graphs, NP-hard or polynomial-time solvable?

• If it is NP-hard, does its approximability differ from that of the general
problem?

We shall answer the questions in the next section.

2 A Reduction to the Metric Case

In this section, we shall show that the MRCT problem on general inputs
can be reduced to the same problem with metric inputs. The reduction is
done by a transformation algorithm.

Definition 1: The metric closure of a graph G = (V,E,w) is the complete
graph Ḡ = (V, V × V, w̄) in which w̄(u, v) = dG(u, v) for all u, v ∈ V .

Let G = (V, E,w) and Ḡ = (V, V × V, w̄) be its metric closure. Any
edge (a, b) in Ḡ is called a bad edge if (a, b) /∈ E or w(a, b) > w̄(a, b).
For any bad edge e = (a, b), there must exist a path P = SPG(a, b) 6= e
such that w(P ) = w̄(a, b). Given any spanning tree T of Ḡ, the algorithm
can construct another spanning tree Y without any bad edge such that
C(Y ) ≤ C(T ). Since Y has no bad edge, w̄(e) = w(e) for all e ∈ E(Y ), and
Y can be thought of as a spanning tree of G with the same routing cost.
The algorithm is listed in the following.
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Algorithm: Remove bad
Input: A spanning tree T of Ḡ.
Output: A spanning tree Y of G such that C(Y ) ≤ C(T ).

Compute all-pairs shortest paths of G.
(I) while there exists a bad edge in T

Pick a bad edge (a, b). Root T at a.
/* assume SPG(a, b) = (a, x, ..., b) and y is the parent of x */
if b is not an ancestor of x then

Y ∗ ← T ∪ (x, b)− (a, b);Y ∗∗ ← Y ∗ ∪ {(a, x)} − {(x, y)};
else

Y ∗ ← T ∪ (a, x)− (a, b);Y ∗∗ ← Y ∗ ∪ {(b, x)} − {(x, y)};
if C(Y ∗) < C(Y ∗∗) then Y ← Y ∗ else Y ← Y ∗∗

(II) T ← Y

The algorithm computes Y by iteratively replacing the bad edges until
there is no bad edge. It will be shown that the cost is never increased at
each iteration and it takes no more than O(n2) iterations. We assume that
the shortest paths obtained in the first step have the following property: If
SPG(a, b) = (a, x, . . . , b), then SPG(a, b) = (a, x)∪ SPG(x, b). This assump-
tion is not strong since almost all popular algorithms for all-pairs shortest
paths output such a solution.

Proposition 1: The while loop in Algorithm Remove bad is executed at
most O(n2) times.

Proof: For each bad edge e = (a, b), let h(e) be the number of edges in
SPG(a, b) and f(T ) =

∑
bad e h(e). Since h(e) ≤ n− 1, f(T ) < n2 initially.

Since (a, x) is not a bad edge, it is easy to check that f(T ) decreases by at
least 1 at each iteration.

Proposition 2: Before instruction (II) is executed, C(Y ) ≤ C(T ).

Proof: For any node v, let Sv = V (Tv). As shown in Figure 1, there are
two cases. Case 2 is identical to Case 1 if the tree is re-rooted at b and the
roles of a and b are exchanged. Therefore, only the inequality for Case 1
needs to be proved, i.e., x ∈ Sa − Sb.

If C(Y ∗) ≤ C(T ), the result follows. Otherwise, let U1 = Sa − Sb and
U2 = Sa − Sb − Sx. Since the distance does not change for any two vertices

3



a

b

y

x

a

b

y

x

Figure 1: Remove bad edge (a, b). Case 1 (left) and Case 2 (right).

both in U1 (or both in Sb), we have

C(T ) < C(Y ∗)
⇒

∑

u∈U1

∑

v∈Sb

dT (u, v) <
∑

u∈U1

∑

v∈Sb

dY ∗(u, v).

Since for all u ∈ U1 and v ∈ Sb, dT (u, v) = dT (u, a) + w̄(a, b) + dT (b, v)
and dY ∗(u, v) = dT (u, x) + w̄(x, b) + dT (b, v),

∑

u∈U1

∑

v∈Sb

(dT (u, a) + w̄(a, b) + dT (b, v))

<
∑

u∈U1

∑

v∈Sb

(dT (u, x) + w̄(x, b) + dT (b, v))

⇒ |Sb|
∑

u∈U1

dT (u, a) + |U1||Sb|w̄(a, b)

< |Sb|
∑

u∈U1

dT (u, x) + |U1||Sb|w̄(x, b)

⇒
∑

u∈U1

dT (u, a) + |U1|w̄(a, b) <
∑

u∈U1

dT (u, x) + |U1|w̄(x, b).

Note that Sb 6= ∅ since the inequality holds. By the definition of the metric
closure, w̄(a, b) = w̄(a, x) + w̄(x, b), and then

∑

u∈U1

(dT (u, a)− dT (u, x)) < −|U1|w̄(a, x). (1)

4



Now consider the cost of Y ∗∗.

(C(Y ∗∗)− C(T )) /2 =
∑

u∈U2

∑

v∈Sx

(dY ∗∗(u, v)− dT (u, v))

+
∑

u∈U1

∑

v∈Sb

(dY ∗∗(u, v)− dT (u, v)) .

Since dY ∗∗(u, v) ≤ dT (u, v) for u ∈ U1 and v ∈ Sb, the second term is not
positive. By observing that dT (u, v) = dT (u, x) + dT (x, v) and dY ∗∗(u, v) =
dT (u, a) + w̄(a, x) + dT (x, v) for any u ∈ U2 and v ∈ Sx, we obtain

(C(Y ∗∗)− C(T )) /2
≤

∑

u∈U2

∑

v∈Sx

(dT (u, a) + w̄(a, x)− dT (u, x))

= |Sx|
∑

u∈U2

(dT (u, a) + w̄(a, x)− dT (u, x))

= |Sx|
∑

u∈U2

(dT (u, a)− dT (u, x)) + |U2||Sx|w̄(a, x)

≤ |Sx|
∑

u∈U1

(dT (u, a)− dT (u, x)) + |U2||Sx|w̄(a, x) (2)

< −|U1||Sx|w̄(a, x) + |U2||Sx|w̄(a, x) (3)
≤ 0.

(2) is obtained by observing that U1 − U2 = Sx and dT (u, a) > dT (u, x) for
any u ∈ Sx. (3) is derived by applying (1). Therefore, C(Y ∗∗) < C(T ) and
the result follows.

The next lemma follows Propositions 1 and 2, and that each iteration
can be done in O(n) time.

Lemma 1: For any spanning tree T̄ of Ḡ, it can be transformed into a
spanning tree T of G in O(n3) time and C(T ) ≤ C(T̄ ).

The above lemma implies that C(mrct(G))≤ C(mrct(Ḡ)). It is easy
to see that C(mrct(G))≥ C(mrct(Ḡ)). Therefore, we have the following
corollary.

Corollary 2: C(mrct(G))=C(mrct(Ḡ)).

Let ∆MRCT denote the MRCT problem with metric inputs. We have
the next theorem.
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Theorem 3: If there is a (1+ε)-approximation algorithm for ∆MRCT with
time complexity O(f(n)), then there is a (1 + ε)-approximation algorithm
for MRCT with time complexity O(f(n) + n3).

Proof: Let G be the input graph for the MRCT problem. The metric
closure Ḡ can be constructed in time O(n2 log n+mn). If there is a (1+ ε)-
approximation algorithm for the ∆MRCT problem, a spanning tree T of Ḡ
can be computed in time O(f(n)) such that C(T ) ≤ (1 + ε)C(mrct(Ḡ)).
Using Algorithm Remove bad, a spanning tree Y of G can be constructed
such that C(Y ) ≤ C(T ) ≤ (1 + ε)C(mrct(Ḡ))= (1 + ε)C(mrct(G)). The
overall time complexity is then O(f(n) + n3).

Corollary 4: The ∆MRCT problem is NP-hard.

3 A Polynomial Time Approximation Scheme

3.1 Overview

We sketch a Polynomial Time Approximation Scheme (PTAS) for the MRCT
problem in this section.

As described previously, the fact that the costs w may not obey the
triangle inequality is irrelevant, since we can simply replace these costs by
their metric closure. Therefore, in this section we may assume that G =
(V, E,w) is a metric graph.

We use k-stars, i.e., trees with no more than k internal nodes, as a basis
of our approximation scheme. In Section ?? we show that for any constant
k, a minimum routing cost k-star can be determined in polynomial time. In
order to show that a k-star achieves a (1 + ε) approximation, we show that,
for any tree T and constant δ ≤ 1/2:

1. It is possible to determine a δ-separator, and the separator can be cut
into several δ-paths such that the total number of cut nodes and leaves
of the separator is at most d2

δ e − 3. (Lemma ??)

2. Using the separator, T can be converted into a (d2
δ e−3)-star X, whose

internal nodes are just those cut nodes and leaves. The routing cost
of X satisfies C(X) ≤ (1 + δ

1−δ )C(T ). (Lemma ??)

By using T = T̂ =mrct(G), δ = ε
1+ε and finding the best (d2

δ e − 3)-star
K, we obtain the desired approximation

C(K) ≤ (1 +
δ

1− δ
)C(T̂ ) = (1 + ε)C(T̂ ).
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Before going into the details of the general case, take a look at how to
find a 3/2-approximation of an MRCT and its performance analysis.

Recall that a centroid of a tree is the vertex whose removal cuts the
tree into components of no more than n/2 vertices. Let T̂ be an MRCT
of a metric graph G. Root T̂ at its centroid r. For an edge (u, v) with
parent v, the routing load of the edge is 2x(n−x), in which x is the number
of descendants of u. (For convenience, we assume that a vertex is also a
descendant of itself.) For a desired positive δ ≤ 1/2, removing all vertices
with number of descendants no more than δn, we may obtain a connected
subgraph S of T . The subgraph S is a minimal δ-separator. In the case that
δ = 0.5, S contains only the centroid. If the δ-separator S of the MRCT is
given and, for each vertex not in S, its lowest ancestor in S is also known, we
may easily construct a 1/(1− δ)-approximation Y of the MRCT as follows:

• S ⊂ Y .

• For each vertex u not in S, connect it to its lowest ancestor v in S by
adding edge (u, v).

The approximation ratio of Y can be shown by the following two obser-
vations.

• For each edge in S, the routing load in Y is the same as that in T̂ .

• For each edge (u, v) not in S, the routing load in Y is 2(n−1). However,
there is a path from u to v in T̂ of which each edge has routing load
no less than 2(1− δ)n, and the length of the path is at least the same
as the edge (u, v).

For example, consider the simplest case that δ = 1/2. A 1/2-separator
contains only one vertex. Assume that r be such a vertex on an MRCT
T̂ . For every other vertex, the ancestor in the separator is r. Connecting
all other nodes to r, we obtain a star Y . The routing cost of Y is the sum
of all edges (v, r) multiplied by its routing load 2(n − 1). For each vertex
v, there is a path from v to r in T̂ . Since r is a 1/2-separator of T̂ , the
routing load of the path is at least n and the path is no shorter than the
edge (v, r) by the triangle inequality. Consequently Y is a 2-approximation
of the MRCT T̂ . Since the separator contains only one vertex, we may try
all possible vertices and it leads to an O(n2) time 2-approximation of the
MRCT problem on metric graphs.

But when δ < 1/2, the separator may contain as many as Ω(n) vertices,
and it is too costly to enumerate all possible separators. However, instead of
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Figure 2: An MRCT and the four 3-stars.

the entire separator, we may achieve the same ratio by knowing only some
critical vertices of the separator. In the following, we shall take δ = 1/3 as
an example to show that we only need to know three critical vertices of the
separator to construct a 3/2-approximation.

Root the MRCT T̂ at its centroid r. There are at most two subtrees
which contain more than n/3 nodes. Let a and b be the lowest vertices with
at least n/3 descendants. We ignore the cases where r = a or r = b. For
such cases, the ratio can be shown similarly. Let P be the path from a to
b. Obviously the path contains r and is a minimal 1/3-separator. We shall
transform T into a 3-star with internal nodes a, b, and r such that its routing
cost is no more than 3/2 of that of T̂ . As shown in Figure 2, let us partition
all the vertices into Va, Vb, Vr, Var, and Vbr. The sets Va, Vb, and Vr contain
the vertices whose lowest ancestor on P is a, b, and r, respectively. The set
Var (and Vbr) consists of the vertices whose lowest ancestor on P is between
a and r (and between b and r, respectively).

First replace P with edges (a, r) and (b, r). For each vertex v in Va (or
Vb, Vr), edge (v, a) (or (v, b), (v, r) respectively) is added. For the vertices
in Var, we consider two cases. Either all of them are connected to a or all of
them are connected to r. The vertices in Vbr are connected similarly. The
four possible 3-stars are illustrated in Figure 2.

Now consider the routing cost of T̂ . For each vertex v, the routing load
of the path from v to P is no less than 4n/3 since P is a 1/3-separator. For
each edge e of P , since there are at least n/3 nodes on either side of it, the
routing load is no less than 2(n/3)(2n/3) = 4n2/9. Therefore we have the
following lower bound of the routing cost of the MRCT:

C(T̂ ) ≥ (4n/3)
∑
v

d
T̂
(v, P ) + (4/9)n2w(P ).
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In either of the 3-stars constructed above, for each vertex v in Va∪Vr∪Vb,
the routing load of the edge incident to v is 2(n− 1), and the edge length is
at most the same as the path from v to P on T . For each node v in Var, by
the triangle inequality, we have

(w(v, a) + w(v, r))/2 ≤ d
T̂
(v, P ) + d

T̂
(a, r)/2.

Note that there are no more than n/6 nodes in Var. For edge (a, r), the
routing load is no more than 2(n/2)(n/2) = n2/2. (Note: For this simple
case that δ = 1/3, this bound is enough. However, a more precise analysis
of the incremental routing load is required for smaller δ.)

For the nodes in Vbr, we may obtain a similar result. In summary, the
minimum routing cost of the constructed 3-stars is no more than

2(n− 1)
∑
v

d
T̂
(v, P ) + (n2/6)(d

T̂
(a, r) + d

T̂
(b, r)) + (1/2)n2w(P )

≤ 2n
∑
v

d
T̂
(v, P ) + (2/3)n2w(P ).

The approximation ratio, by comparing with the lower bound of the
optimal, is 3/2.

The method can be extended to any δ ≤ 0.5. Let S be a δ-separator of T .
The critical vertex set, defined as the cut and leaf set in the next section, to
construct a 1/(1−δ)-approximation k-star consists of the following vertices.

• The leaves of S as a and b in the above example.

• The vertices with more than two neighbors on S.

• Some additional vertices such that all the critical vertices cut the sepa-
rator into edge-disjoint paths and the number of vertices whose lowest
ancestors on S belong to the same path is no more than δn/2. Such a
path is defined as a δ-path in the next section. In the above example,
r is such a vertex. The vertices a, b and r cut the separator into two
paths, and the number of vertices in either Var or Vbr is no more than
n/6.

We shall show that the number of the necessary critical vertices is at
most 2/δ − 3 for any δ ≤ 0.5. Consequently there exists a (2/δ − 3)-star
which is an approximation of an MRCT with ratio 1/(1− δ). The PTAS is
to construct the (2/δ − 3)-star of minimum routing cost.

The core of a tree is the subgraph obtained by removing all its leaves.
The core of a k-star contains no more than k vertices and therefore the
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number of all possible cores is polynomial to k. For each possible core, the
algorithm finds the best way to connect the leaves to one of the vertices of
the core. A k-component integer vector (n1, n2, . . . , nk) is used to indicate
how many leaves will be connected to each of the k vertices of the core, in
which

∑
i ni = n − k. There are O(nk−1) such vectors. For each core and

each vector, the routing load on each core edge is fixed since the number of
vertices on both sides of the edge are specified by the core and the vector.
Therefore the best leaf connection is determined by the leaf edges subject
to the numbers of leaves to be connected to the vertices of the core. Such
a problem can be solved by solving an assignment problem in O(n3) time.
Consequently the minimum routing cost k-star can be constructed in time
polynomial to k and n.

Consider an example for k = 3. For a 3-star, the core is a 3-vertex
path. There are O(n3) possible cores. For each possible core (a, b, c), use a
three-component integer vector (x, y, z) to indicate how many leaves will be
connected to a, b, and c, in which x+y+z = n−3 and x, y, z are nonnegative
integers. There are O(n2) such vectors. For a specified core and a specified
vector, the routing load on each core edge is also fixed. That is, the routing
load on (a, b) is 2(x + 1)(n − x − 1) and on (b, c) is 2(z + 1)(n − z − 1).
Therefore the best leaf connection is determined by the leaf edges subject
to the numbers of leaves to be connected to a, b, c. Such a problem can
be solved by solving an assignment problem in O(n3) time. The total time
complexity is O(n2k+2), which is polynomial for constant k. In fact we need
not solve the individual assignment problem for the best leaf connection of
each vector. The best leaf connection of one vector can be found from that
of another vector by solving a shortest path problem if the two vectors are
adjacent. Two vectors are adjacent if one can be obtained from the other
by increasing a component by one and decreasing a component by one, e.g.,
(5, 4, 2) and (5, 3, 3). With this result, the time complexity is reduced to
O(n2k).
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