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Let G = (V,E,w) be a graph and U ⊂ V . By DG(v, U), we denote the maximum distance
from vertex v to any vertex in U . For a vertex v, the eccentricity of v is the maximum of the
distance to any vertex in the graph, i.e., maxu∈V {dG(v, u)} or DG(v, V ). The diameter of a graph
is the maximum of the eccentricity of any vertex in the graph. (The term “diameter” is overloaded.
It is defined as the maximum eccentricity and also as the path of length equal to the maximum
eccentricity.) In other words, the diameter is the longest distance between any two vertices in the
graph. Recall that the distance between two vertices is the length of their shortest path in the
graph. It should not be confused with the longest path in the graph.

The radius of a graph is the minimum eccentricity among all vertices in the graph, and a center
of a graph is a vertex with eccentricity equal to the radius. For a general graph, there may be several
centers and a center is not necessarily on a diameter. For example, in Figure 1(a), the shortest
path between v1 and v4 is a diameter of length 6. Meanwhile v2 and v3 are endpoints of another
diameter. The four vertices represented by white circles are centers of the graph, and the radius is
4. Note that the centers are not on any diameter. The diameter, radius and center of a graph can
be found by computing the distances between all pairs of vertices. It takes O(|V ||E|+ |V |2 log |V |)
time for a general graph.

Any pair of vertices has a unique simple path in a tree. For this reason, the diameter, radius
and centers of a tree are more related. For an unweighted tree T = (V,E), it can be easily verified
that

2× radius− 1 ≤ diameter ≤ 2× radius. (1)

For positive weighted tree T = (V, E, w), we can also have

2× radius−max
e
{w(e)} ≤ diameter ≤ 2× radius. (2)
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Figure 1: Diameters, centers and radii of (a) an unweighted graph; and (b) a weighted tree.
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Figure 1(b) illustrates an example of the diameter, radius, and center of a tree. The two vertices
represented by white circles are the centers of the tree. There are four diameters of length 16 in
the tree. Vertices x and y are the endpoints of a diameter. The radius is 9, and the centers are on
the diameters.

More efficient algorithms for computing diameter, radius, and centers are available if the graph
is a tree. Let T = (V, E, w) be a rooted tree. By Tr, we denote the subtree rooted at vertex r ∈ V ,
which is the subgraph induced on vertex r and all its descendants. Let child(r) denote the set of
children of v. The eccentricity of the root of a tree can be computed by the following recurrence
relation.

DTr(r, V (Tr)) = max
s∈child(r)

{DTs(s, V (Ts)) + w(r, s)}. (3)

By a recursive algorithm or an algorithm visiting the vertices in postorder, the eccentricity can be
computed in linear time since each vertex is visited once. To make it clear, we give a recursive
algorithm in the following.

Algorithm: Eccent(Tr)
Input: A tree Tr = (V, E,w) rooted at r.
Output: The eccentricity of r in Tr.
1: if r is a leaf then

return 0;
2: for each child s of r do

compute Eccent(Ts) recursively;
3: return maxs∈child(r){Eccent(s) + w(r, s)}.

To find the eccentricity of a vertex in an unrooted tree, we can root the tree at the vertex and
employ the Eccent algorithm. Therefore, we have the next lemma.

Lemma 1: The eccentricity of a vertex in a tree can be computed in linear time.

Let x, y and z be three vertices in a tree T . It can be easily verified that the three paths
SPT (x, y), SPT (x, z) and SPT (y, z) intersect at a vertex. Define c(x, y, z) to be the intersection
vertex. We have

dT (x, c(x, y, z)) =
1
2

(dT (x, y) + dT (x, z)− dT (y, z)) , (4)

or equivalently

dT (x, c(x, y, z)) =
1
2

(dT (x, y) + dT (x, z) + dT (y, z))− dT (y, z). (5)

We now derive some properties to help us find the diameter of a tree.

Fact 1: Suppose that SPT (v1, v2) is a diameter of T and r is a vertex on the diameter. For any
vertex x, dT (x, r) ≤ max{dT (r, v1), dT (r, v2)}.
Proof: Otherwise SPT (x, v1) or SPT (x, v2) is a path longer than the diameter.

The property can be easily extended to the case where r is not on the diameter. Let u =
c(r, v1, v2). Without loss of generality, let dT (u, v1) ≥ dT (u, v2). For any vertex x, we have
dT (x, u) ≤ dT (v1, u) by Fact 1. Then

dT (x, r) ≤ dT (x, u) + dT (u, r) ≤ dT (v1, u) + dT (u, r) = dT (v1, r),
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which implies that v1 is the farthest vertex to r. We can conclude that, for any vertex, one of the
endpoints of a diameter must be the farthest vertex. Furthermore the converse of the property is
also true.

Let r be any vertex in a tree and v3 be the vertex farthest to r. We shall show that v3 must be
an endpoint of a diameter. Suppose that SPT (v1, v2) is a diameter. By the above property, one of
the endpoints, say v1, is the farthest vertex to r, i.e.,

dT (r, v1) = dT (r, v3) ≥ dT (r, v2).

Let u1 = c(r, v1, v2) and u2 = c(r, v1, v3). Then u2 must be on the path SPT (v1, u1), for otherwise

dT (v1, v3) = dT (v1, u2) + dT (u2, v3)
= 2dT (v1, u2) > 2dT (v1, u1)
> dT (v1, v2),

a contradiction. As a result, dT (v3, v2) = dT (v1, v2) and SPT (v3, v2) is also a diameter. We have
the next lemma.

Lemma 2: Let r be any vertex in a tree T . If v is the farthest vertex to r, the eccentricity of v
is the diameter of T .

The following algorithm uses the property to find the diameter of a tree.

Algorithm: TreeDiameter
Input: A tree T = (V,E, w).
Output: The diameter of T .
1: Root T at an arbitrary vertex r.
2: Use Eccent to find the farthest vertex v to r.
3: Root T at v.
4: Use Eccent to find the eccentricity of v.
5: Output the eccentricity of v as the diameter of T .

It is obvious that the algorithm runs in linear time. The radius and the center can be obtained
from a diameter. Suppose that P = SPT (v1, v2) is a diameter. Starting at v1 and traveling along
the path P , we compute the distance dT (u, v1) for each vertex u on the path. Let u1 be the last
encountered vertex such that dT (v1, u1) ≤ 1

2w(P ) and u2 be the next vertex to u1 (Figure 2(a)).
By the definition of u1, u2 is the first encountered vertex such that dT (v1, u2) > 1

2w(P ). We claim
that u1 or u2 is a center of the tree. Let P1 = SPT (v1, u1) and P2 = SPT (u2, v2). First, by Fact 1,
the eccentricities of u1 and u2 must be dT (u1, v2) and dT (u2, v1) respectively. Otherwise P cannot
be a diameter. For any vertex x connected to P at a vertex in P1, we have dT (x, v2) > dT (u1, v2).
Similarly, for any vertex x connected to P at a vertex in P2, we have dT (x, v1) > dT (u2, v1).
Consequently the eccentricity of any vertex is at least min{dT (u1, v2), dT (u2, v1)}, and u1 or u2

must be a center. Therefore the center as well as the radius of a tree can be computed in linear
time since the diameter can be found in linear time.

Theorem 3: The diameter, radius, and center of a tree can be computed in linear time.

Let us examine some more properties of the diameters of a tree. We assume that all edge lengths
are positive.
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Figure 2: (a) Finding a center on a diameter. (b) Two diameters cannot be disjoint.

Fact 2: Two diameters of a tree cannot be disjoint.

Proof: Suppose that SPT (v1, v2) and SPT (v3, v4) are two disjoint diameters of a tree T . Let
u1 = c(v3, v1, v2) and u2 = c(v1, v3, v4) (Figure 2(b)). We have

dT (v1, v3) + dT (v2, v4) = dT (v1, v2) + dT (v3, v4) + 2dT (u1, u2)
> 2dT (v1, v2)

since dT (v1, v2) = dT (v3, v4) is the diameter and dT (u1, u2) > 0. It implies that the path from v1

to v3 or the path from v2 to v4 is longer than the diameter, a contradiction.
Let P be a set of more than two paths of a tree and the paths intersect each other. One can

easily verify that all the paths in P share a common vertex. Otherwise there exists a cycle, which
contradicts the definition of a tree. Therefore we can have the next property.

Fact 3: All diameters of a tree share at least one common vertex.
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