Spanning Trees and Optimization Problems (Excerpt)

_

$$
I_{I}
$$

Chapter 1

Counting Spanning Trees

A spanning tree for a graph G is a subgraph of G that is a tree and contains all the vertices of G.

How many trees are there spanning all the vertices in Figure 1.1?

FIGURE 1.1: A four-vertex complete graph K_{4}.

Figure 1.2 gives all 16 spanning trees of the four-vertex complete graph in Figure 1.1.

DEFINITION 1.1 A Prüfer sequence of length $n-2$, for $n \geq 2$, is any sequence of integers between 1 and n, with repetitions allowed.

LEMMA 1.1

There are n^{n-2} Prüfer sequences of length $n-2$.

Example 1.1

The set of Prüfer sequences of length 2 is $\{(1,1),(1,2),(1,3),(1,4),(2,1)$, $(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}$. In total, there are $4^{4-2}=16$ Prüfer sequences of length 2 .

Algorithm: Prüfer Encoding
Input: A labeled tree with vertices labeled by $1,2,3, \ldots, n$.
Output: A Prüfer sequence.
Repeat $n-2$ times

FIGURE 1.2: All 16 spanning trees of K_{4}.
$v \leftarrow$ the leaf with the lowest label
Put the label of v 's unique neighbor in the output sequence.
Remove v from the tree.
Now consider a more complicated tree in Figure 1.3. What is its corresponding Prüfer sequence?

Figure 1.4 illustrates the encoding process step by step.

Algorithm: Prüfer Decoding

Input: A Prüfer sequence $P=\left(p_{1}, p_{2}, \ldots, p_{n-2}\right)$.
Output: A labeled tree with vertices labeled by $1,2,3, \ldots, n$.
$P \leftarrow$ the input Prüfer sequence
$n \leftarrow|P|+2$

FIGURE 1.3: An eight-vertex spanning tree.

FIGURE 1.4: Generating a Prüfer sequence from a spanning tree.

```
V}\leftarrow{1,2,\ldots,n
Start with n isolated vertices labeled 1, 2,\ldots,n
for }i=1\mathrm{ to }n-2\mathrm{ do
    v}\leftarrow\mathrm{ the smallest element of the set V that does not occur in P
```

Connect vertex v to vertex p_{i}
Remove v from the set V
Remove the element p_{i} from the sequence P
$/ *$ Now $P=\left(p_{i+1}, p_{i+2}, \ldots, p_{n-2}\right) * /$
Connect the vertices corresponding to the two numbers in V.

Figure 1.5 illustrates the decoding process step by step.

FIGURE 1.5: Recovering a spanning tree from a Prüfer sequence.

THEOREM 1.1

The number of spanning trees in K_{n} is n^{n-2}.
Let $G-e$ denote the graph obtained by removing edge e from G. Let $G \backslash e$ denote the resulting graph after contracting e in G. In other words, $G \backslash e$ is the graph obtained by deleting e, and merging its ends. Let $\tau(G)$ denote the number of spanning trees of G. The following recursive formula computes the number of spanning trees in a graph.

THEOREM 1.2

$\tau(G)=\tau(G-e)+\tau(G \backslash e)$

