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In this note, we shall briefly discuss how to modify the dynamic programming
methods to copy with three scoring schemes that are frequently used in biological
sequence analysis.

1 Affine Gap Penalties

For aligning DNA and protein sequences, affine gap penalties are considered more
appropriate than the simple scoring scheme discussed in the previous sections.
“Affine” means that a gap of lengtkis penalizedx +k x 3, wherea andf are

both nonnegative constants. In other words, it coste open up a gap plug

for each symbol in the gap. Figure 1 computes the score of a global alignment
of the two sequenceSTACATGTCRBNdGTACGTCGGder affine gap penalties,
where a match is given a bonus score 8, a mismatch is penalized by a-dg,ore

and the penalty for a gap of lengths —4 — k x 3.

In order to determine if a gap is newly opened, two more matrices are used to
distinguish gap extensions from gap openings. D@t j) denote the score of an
optimal alignment betweema,...a andb;b,...bj ending with a deletion. Let
I(i, j) denote the score of an optimal alignment betwagn ... a andbibs...b;
ending with an insertion. Le¥(i, j) denote the score of an optimal alignment
betweermyay...a andbib;...bj.
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Figure 1. The score of a global alignment of the two sequeAG&SCATGTCT
andGTACGTCG@der affine gap penalties.

By definition,D(i, j) can be derived as follows.

D(i,j) = max {Si",j)—a—(i—i)xp}

0<i'<i—1
= max{_max {Si"j)—a—(~i)xBLSi-Lj)—a—p)
= max{_ max {Si.))—a—((—1)~¥)xB—p},Si-1])~a—p)

= maX{D(i_1aj)_B7S(i_17j)_a_B}'

This recurrence can be explained in an alternative way. RecalDttiat) de-
notes the score of an optimal alignment betwae ... a; andb,b,...b; ending
with a deletion. If such an alignment is an extension of the alignment ending at
(i—1, ) with a deletion, then it costs onl§y for such a gap extension. Thus, in
this caseP(i,j) = D(i —1, j) — B. Otherwise, it is a new deletion gap and an ad-
ditional gap-opening penalty is imposed. We havB(i, j) =S(i—1,j) —a — B.

In a similar way, we derivé(i, j) as follows.

- . .y
WD) = max {807 —a = (=) x B}

= max{ max {Si,j)—a—(j—j)xB},Si,j—1)—a—-pB}

0<j’<j-2

= max{l(i,j—1)—B,i,j—1)—a—pB}.

Therefore, with proper initialization®(i, j), I1(i, j) and (i, j) can be com-
puted by the following recurrences:



o) =max{ o 1) E

I(i,j)=max{ G E

{ D(i, j),
Si.j)=max{ 1(i.j).
Si—1,j—1)+0(a,b).

2 Constant Gap Penalties

Now let us consider the constant gap penalties where each gap, regardless of its
length, is charged with a nonnegative constant permalty

Let D(i, j) denote the score of an optimal alignment betwaem ...a and
biby...bj ending with a deletion. Ldf(i, j) denote the score of an optimal align-
ment betweeaya, ... a andb;b, ... b; ending with an insertion. Le&(i, j) denote
the score of an optimal alignment betwem®@, . .. a andb;b,...bj. With proper
initializations,D(i, j), I (i, j) andS(i, j) can be computed by the following recur-
rences. In fact, these recurrences can be easily derived from those for the affine
gap penalties by setting to zero. A gap penalty is imposed when the gap is just
opened, and the extension is free of charge.

1, §) = max{ g(‘i;",:%’_ o

{ D, j),
S(i, j) =maxg (i, ]),



Figure 2: There are seven ways entering the three grid points of an(erjtry

3 Restricted Affine Gap Penalties

Another interesting scoring scheme is called the restricted affine gap penalties, in
which a gap of lengttk is penalized bya + f(k) x 3, wherea andf3 are both
nonnegative constants, amck) = min{k, ¢} for a given positive integef.

In order to deal with the free long gaps, two more matriogs, j) and!’(i, j)
are used to record the long gap penalties in advance. With proper initializations,
D(i,j), D'(i, ), 1(,j), I'(i,j), andS(i, j) can be computed by the following re-
currences:

. D/(i-1,),
D(|,j):max{ Si—1j)—a—¢xp;

I(i,j):max{ G

o (i, - 1),
'("J):ma"{ Si,j—1)—a—{xp;
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