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In this note, we shall briefly discuss how to modify the dynamic programming
methods to copy with three scoring schemes that are frequently used in biological
sequence analysis.

1 Hirschberg’s approach

Straightforward implementation of the dynamic-programming algorithms utilizes
quadratic space to produce an optimal global or local alignment. For analysis
of long DNA sequences, this space restriction is more crucial than the time con-
straint. Because of this, different methods have been proposed to reduce the space
used for aligning globally or locally two sequences.

We first describe a space-saving strategy proposed by Hirschberg in 1975. It
uses only “linear space,”i.e., space proportional to the sum of the sequences’
lengths. The original formulation was for the longest common subsequence prob-
lem. But the basic idea is quite robust and works readily for aligning globally
two sequences with affine gap costs as shown by Myers and Miller in 1988. Re-
markably, this space-saving strategy has the same time complexity as the original
dynamic-programming method.

To introduce Hirschberg’s approach, let us first review the original algorithm
for aligning two sequences of lengthsmandn. It is apparent that the scores in row
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Figure 1: Entry locations ofS− just before the entry value is evaluated at(i, j).

i of dynamic programming matrixSare calculated from those in rowi−1. Thus,
after the scores in rowi of S are calculated, the entries in rowi−1 of S will no
longer be used and hence the space used for storing these entries can be recycled
to calculate and store the entries in rowi +1. In other words, we can get by with
space for two rows, since all that we ultimately want is the single entryS[m,n] in
the rightmost cell of the last row.

In fact, a single arrayS− of sizen, together with two extra variables, is ade-
quate.S−[ j] holds the most recently computed value for each1≤ j ≤ n, so that as
soon as the value of thejth entry ofS− is computed, the old value at the entry is
overwrited. There is a slight conflict in this strategy since we need the old value of
an entry to compute a new value of the entry. To avoid this conflict, two additional
variables, says andc, are introduced to hold the new and old values of the entry,
respectively. Figure 1 shows the locations of the scores kept inS− and in variables
s andc. WhenS−[ j] is updated,S−[ j ′] holds the score in the entry(i, j ′) in row i
for eachj ′ < j, and it holds the score in the entry(i−1, j ′) for any j ′≥ j. Figure 2
gives the pseudo-code for computing the score of an optimal global alignment in
linear space.

In the dynamic programming matrixS of aligning sequencesA = a1a2 . . .am

and B = b1b2 . . .bn, S[i, j] denotes the optimal score of aligninga1a2 . . .ai and
b1b2 . . .b j or, equivalently, the maximum score of a path from(0,0) to the cell
(i, j) in the alignment graph. By symmetry, the optimal score of aligningai+1ai+2 . . .am

andb j+1b j+2 . . .bn or the maximum score of a path from(i, j) to (m,n) in the
alignment graph can be calculated in linear space in a backward manner. Figure 3
gives the pseudo-code for computing the score of an optimal global alignment in
a backward manner in linear space.
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Algorithm FORWARD SCORE(A = a1a2 . . .am, B = b1b2 . . .bn)
begin

S−[0]← 0
for j ← 1 to n do S−[ j]← S−[ j−1]−β
for i ← 1 to m do

s← S−[0]
c← S−[0]−β
S−[0]← c
for j ← 1 to n do

c←max





S−[ j]−β
c−β
s+σ(ai ,b j)

s← S−[ j]
S−[ j]← c

OutputS−[n] as the score of an optimal alignment.
end

Figure 2: Computation of the optimal score of aligning sequences of lengthsm
andn in linear spaceO(n).

In what follows, we useS−[i, j] andS+[i, j] to denote the maximum score of
a path from(0,0) to (i, j) and that from(i, j) to (m,n) in the alignment graph,
respectively. Without loss of generality, we assume thatm is a power of 2. Ob-
viously, for eachj, S−[m/2, j]+S+[m/2, j] is the maximum score of a path from
(0,0) to (m,n) through(m/2, j) in the alignment graph. Choosejmid such that

S−[m/2, jmid]+S+[m/2, jmid] = max
1≤ j≤n

S−[m/2, j]+S+[m/2, j].

Then,S−[m/2, jmid]+S+[m/2, jmid] is the optimal alignment score ofA andB and
there is a path having such a score from(0,0) to (m,n) through(m/2, jmid) in the
alignment graph.

Hirschberg’s linear-space approach is first to computeS−[m/2, j] for 1≤ j ≤ n
by a forward pass, stopping at rowm/2 and to computeS+[m/2, j] for 1≤ j ≤ n
by a backward pass and then to findjmid. After jmid is found, recursively compute
an optimal path from(0,0) to (m/2, jmid) and an optimal path from(m/2, jmid) to
(m,n).
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As the problem is partitioned further, there is a need to have an algorithm that
is capable of delivering an optimal path for any specified two ends. In Figure 4, al-
gorithmL INEAR ALIGN is a recursive procedure that delivers a maximum-scoring
path from(i1, j1) to (i2, j2). To deliver the whole optimal alignment, the two ends
are initially specified as(0,0) and(m,n).

Now let us analyze the time and space taken by Hirschberg’s approach. Using
the algorithms given in Figures 2 and 3, both the forward and backward pass take
O(nm/2)-time andO(n)-spaces. Hence, it takesO(mn)-time andO(n)-spaces to
find jmid. SetT = mnand call it the size of the problem of aligningA andB. At
each recursive step, a problem is divided into two subproblems. However, regard-
less of where the optimal path crosses the middle rowm/2, the total size of the
two resulting subproblems is exactly half the size of the problem that we have at
the recursive step (see Figure 5). It follows that the total size of all problems, at
all levels of recursion, is at mostT + T/2+ T/4+ · · · = 2T. Because computa-
tion time is directly proportional to the problem size, Hirschberg’s approach will
deliver an optimal alignment usingO(2T) = O(T) time. In other words, it yields
anO(mn)-time,O(n)-space global alignment algorithm.

Hirschberg’s original method, and the above discussion, apply to the case
where the penalty for a gap is merely proportional to the gap’s length, i.e.,k×β
for a k-symbol gap. For applications in molecular biology, one wants penalties
of the formα +k×β , i.e., each gap is assessed an additional “gap-open” penalty
α. Actually, one can be slightly more general and substitute residue-dependent
penalties forβ . In our previous note, we have shown that the relevant alignment
graph is more complicated. Now at each grid point(i, j) there are three nodes,
denoted(i, j)S, (i, j)D, and(i, j)I , and generally seven entering edges. The align-
ment problem is to compute a highest-score path from(0,0)S to (m,n)S. Fortu-
nately, Hirschberg’s strategy extends readily to this more general class of align-
ment scores. In essence, the main additional complication is that for each defining
corner of a subproblem, we need to specify one of the grid point’s three nodes.

Another issue is how to deliver an optimallocal alignment in linear space.
Recall that in the local alignment problem, one seeks a highest-scoring alignment
where the end nodes can be arbitrary,i.e., they are not restricted to(0,0)S and
(m,n)S. In fact, it can be reduced to a global alignment problem by performing
a linear-space score-only pass over the dynamic-programming matrix to locate
the first and last nodes of an optimal local alignment, then delivering a global
alignment between these two nodes by applying Hirschberg’s approach.
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Algorithm BACKWARD SCORE(A = a1a2 . . .am, B = b1b2 . . .bn)
begin

S+[n]← 0
for j ← n−1 down to 0 do S+[ j]← S+[ j +1]−β
for i ←m−1 down to 0 do

s← S+[n]
c← S+[n]−β
S+[n]← c
for j ← n−1 down to 0 do

c←max





S+[ j]−β
c−β
s+σ(ai+1,b j+1)

s← S+[ j]
S+[ j]← c

OutputS+[0] as the score of an optimal alignment.
end

Figure 3: Backward computation of the score of an optimal global alignment in
linear space.

2 Constrained Sequence Alignment

Rigorous sequence alignment algorithms compare each residue of one sequence
to every residue of the other. This requires computational time proportional to
the product of the lengths of the given sequences. Biologically relevant sequence
alignments, however, usually extend from the beginning of both sequences to the
end of both sequences, and thus the rigorous approach is unnecessarily time con-
suming; significant sequence similarities are rarely found by aligning the end of
one sequence with the beginning of the other.

As a result of the biological constraint, it is frequently possible to calculate an
optimal alignment between two sequences by considering only those residues that
are within a diagonal band in which each row has onlyw cells. With sequences
A = a1a2 . . .am and B = b1b2 . . .bn, one can specify constants` ≤ u such that
aligningai with b j is permitted only if̀ ≤ j− i ≤ u. For example, it rarely takes a
dozen insertions or deletions to align any two members of the globin superfamily;
thus, an optimal alignment of two globin sequences can be calculated inO(nw)
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time that is identical to the rigorous alignment that requiresO(nm) time.
Alignment within a band is used in the final stage of the FASTA program

for rapid searching of protein and DNA sequence databases (Pearson and Lip-
man, 1988; Pearson, 1990). For optimization in a band, the requirement to “start
at the beginning, end at the end” is reflected in the` ≤ min{0,n−m} andu≥
max{0,n−m} constraints. “Local” sequence alignments do not require that the
beginning and end of the alignment correspond to the beginning and end of the
sequence,i.e., the aligned sequences can be arbitrary substrings of the given se-
quences,A andB; they simply require that the alignment have the highest simi-
larity score. For a “local” alignment in a band, it is natural to relax the require-
ment to` ≤ u. Algorithms for computing an optimal local alignment can utilize
a global alignment procedure to perform subcomputations: once locally optimal
substringsA′ of A andB′ of B are found, which can be done by any of several
available methods, a global alignment procedure is called to alignA′ andB′. Ap-
propriate values of̀′ andu′ for the global problem are inferred from the` andu
of the local problems. In other situations, a method to find unconstrained local
alignments,i.e., without band limits, might determine appropriate values of` and
u before invoking a global alignment procedure within a band.

Although the application of rigorous alignment algorithms to long sequences
can be quite time-consuming, it is often the space requirement that is limiting in
practice. Hirschberg’s approach can be easily modified to find a solution locating
in a band. Unfortunately, the resulting time required to produce the alignment
can exceed that of the score-only calculation by a substantial factor. IfT denotes
the number of entries in the band of the dynamic programming matrix, thenT =
O(nw). Producing an alignment involves computing as many asT× log2n entries
(including recomputations of entries evaluated at earlier steps). Thus, the time to
deliver an alignment exceeds that for computing its score in a band by a log factor.

To avoid the log factor, we need a new way to subdivide the problem that
limits the subproblems to some fraction,α < 1, of the band. Figure 6 illustrates
the idea. The score-only backward pass is augmented so that at each point it com-
putes the next place where an optimal path crosses the mid-diagonal,i.e., diagonal
(`+ u)/2. Using only linear space, we can save this information at every point
on the “current row” or on the mid-diagonal. When this pass is completed, we
can use the retained information to find the sequence of points where an optimal
solution crosses the mid-diagonal, which splits the problem into some number of
subproblems. The total area of these subproblems is no more than half of the orig-
inal area for a narrow band with widely spaced crossing points; in other cases it is
even less.
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It should be noted that this band-aligning algorithm could be considered as
a generalization of Hirschberg’s approach by rotating the matrix partition line.
The idea of partition line rotation has been exploited in devising parallel sequence
comparison algorithms. Nevertheless, the dividing technique proposed in this sec-
tion, which produces more than two subproblems, reveals a new paradigm for
space-saving strategies.

Another extension is to consider the situations where theith entry of the first
sequence can be aligned to thejth entry of the second sequence only ifL[i]≤ j ≤
U [i], for given left and right boundsL andU . As in the band alignment problem,
we can apply the idea of defining a midpointpartition line that bisects the region
into two nearly equal parts. Here we introduce a more general approach that can
be easily utilized by other relevant problems.

Given a narrow regionR with two boundary linesL andU , we can proceed
as follows. We assume thatL andU are non-decreasing since if, e.g.,L[i] were
larger thanL[i + 1], we could setL[i + 1] to equalL[i] without affecting the set
of constrained alignments. Enclose as many rows as possible from the top of the
region in an upright rectangle, subject to the condition that the rectangle’s area at
most doubles the area of its intersection withR. Then starting with the first row of
Rnot in the rectangle, we cover additional rows ofRwith a second such rectangle,
and so on.

A score-only backward pass is made overR, computingS+. Values ofS+ are
retained for the top line in every rectangle (the top rectangle can be skipped). It
can be shown that the total length of these pieces cannot exceed three times the
total number of columns, as required for a linear space bound. Next, perform a
score-only forward pass, stopping at the last row in the first rectangle. A sweep
along the boundary between the first and second rectangles locates a crossing edge
on an optimal path throughR. That is, we can find a pointp on the last row of the
first rectangle and a pointq on the first row of the second rectangle such that there
is a vertical or diagonal edgee from p to q, ande is on an optimal path. Such an
optimal path can be found by applying Hirschberg’s strategy toR’s intersection
with the first rectangle (omitting columns followingp) and recursively computing
a path fromq through the remainder ofR. This process inspects a grid point at
most once during the backward pass, once in a forward pass computingp andq,
and an average of four times for applying Hirschberg’s method toR’s intersection
with a rectangle.
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3 Suboptimal Alignment

Molecular biology is rapidly becoming a data-rich science with extensive compu-
tational needs. More and more computer scientists are working together on devel-
oping efficient software tools for molecular biologists. One major area of potential
interaction between computer scientists and molecular biologists arises from the
need for analyzing biological information. In particular, optimal alignments men-
tioned in previous sections have been used to reveal similarities among biological
sequences, to study gene regulation, and even to infer evolutionary trees.

However, biologically significant alignments are not necessarily mathemati-
cally optimized. It has been shown that sometimes the neighborhood of an opti-
mal alignment reveals additional interesting biological features. Besides, the most
strongly conserved regions can be effectively located by inspecting the range of
variation of suboptimal alignments. Although rigorous statistical analysis for the
mean and variance of optimal global alignment scores is not yet available, subop-
timal alignments have been successfully used to informally estimate the signifi-
cance of an optimal alignment.

For most applications, it is impractical to enumerate all suboptimal alignments
since the number could be enormous. Therefore, a more compact representation
of all suboptimal alignments is indispensable. A 0-1 matrix can be used to indi-
cate if a pair of positions is in some suboptimal alignment or not. However, this
approach misses some connectivity information among those pairs of positions.
An alternative is to use a set of “canonical” suboptimal alignments to represent
all suboptimal alignments. The kernel of that representation is a minimal directed
acyclic graph (DAG) containing all suboptimal alignments.

Suppose we are given a threshold score that does not exceed the optimal align-
ment score. An alignment is suboptimal if its score is at least as large as the thresh-
old score. Here we briefly describe a linear-space method that finds all edges that
are contained in at least one path whose score exceeds a given thresholdτ. Again,
a recursive subproblem will consist of applying the alignment algorithm over a
rectangular portion of the original dynamic-programming matrix, but now it is
necessary that we continue to work with valuesS− andS+ that are defined rel-
ative to the original problem. To accomplish this, each problem to be solved is
defined by specifying values ofS− for nodes on the upper and left borders of the
defining rectangle, and values ofS+ for the lower and right borders.

To divide a problem of this form, a forward pass propagates values ofS− to
nodes in the middle row and the middle column, and a backward pass propagates
valuesS+ to those nodes. This information allows us to determine all edges start-
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ing in the middle row or middle column that are contained in a path of score at
leastτ. The data determining any one of the four subproblems,i.e., the arrays of
Svalues on its borders, is then at most half the size of the set of data defining the
parent problem. The maximum total space requirement is realized when recursion
reaches a directly solvable problem where there is only the leftmost cell of the first
row of the original grid left; at that time there are essentially2(m+ n) S-values
saved for borders of the original problem,m+ n values on the middle row and
column of the original problem,(m+ n)/2 values for the upper left subproblem,
(m+ n)/4 values for the upper-left-most subsubproblem, etc., giving a total of
about4(m+n) retainedS-values.

4 Robustness Measurement

The utility of information about the reliability of different regions within an align-
ment is widely appreciated. One approach to obtaining such information is to
determine suboptimal alignments,i.e., some or all alignments that come within
a specified tolerance of the optimum score, as discussed in Section 3. However,
the number of suboptimal alignments, or even alternative optimal alignments, can
easily be so large as to preclude an exhaustive enumeration.

Sequence conservation has proved to be a reliable indicator of at least one
class of regulatory elements. Specifically, regions of six or more consecutive
nucleotides that identical across a range of mammalian sequences, called “phy-
logenetic footprints,” frequently correspond to binding sits for sequence-specific
nuclear proteins. It is also interesting to look for longer, imperfectly conserved
(but stronger matching) regions, which may indicate other sorts of regulatory el-
ements, such as a region that binds to a nuclear matrix or assumes some altered
chromatin structure.

In the following, we briefly describe some interesting measurements of the ro-
bustness of each aligned pair of a pairwise alignment. The first method computes,
for each positioni of the first sequence, the lower and upper limits of the positions
in the second sequence to which it can be aligned and still come within a speci-
fied tolerance of the optimum alignment score. Delimiting suboptimal alignments
this way, rather than enumerating all of them, allows the computation to run in
only a small constant factor more time than the computation of a single optimal
alignment.

Another method determines, for each aligned pair of an optimal alignment, the
amount by which the optimum score must be lowered before reaching an align-
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ment not containing that pair. In other words, if the optimum alignment score is
s and the aligned pair is assigned the robustness-measuring numberr, then any
alignment scoring strictly greater thans− r aligns those two sequence positions,
whereas some alignment of scores− r does not align them. As a special case, this
value tells whether the pair is in all optimal alignments (namely, the pair is in all
optimal alignments if and only if its associated value is non-zero). These com-
putations are performed using dynamic-programming methods that require only
space proportional to the sum of the two sequence lengths. It has also been shown
on how to efficiently handle the case where alignments are constrained so that
each position, say positioni, of the first sequence can be aligned only to positions
on a certain range of the second sequence.

To deliver an optimal alignment, Hirschberg’s approach applies forward and
backward passes in the first nondegenerate rectangle along the optimal path being
generated. Within a subproblem (i.e., rectangle) the scores of paths can be taken
relative to the “start node” at the rectangle’s upper left and the “end node” at
the rightmost cell of the last row. This means that a subproblem is completely
specified by giving the coordinates of those two nodes. In contrast, methods for
the robustness measurement must maintain more information about each pending
subproblem. Fortunately, it can be done in linear space by observing that the
total number of the boundary entries of all pending subproblems of Hirschberg’s
approach is bounded byO(m+n) (see Figure 7).
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Algorithm L INEAR ALIGN (A = a1a2 . . .am, B = b1b2 . . .bn, i1, j1, i2, j2)
begin

if i1 +1≥ i2 or j1 +1≥ j2 then
Output the aligned pairs for the maximum-score path from(i1, j1) to (i2, j2)

else
imid← b(i1 + i2)/2c
// Find the maximum scores from(i1, j1)
S−[ j1]← 0
for j ← j1 +1 to j2 do S−[ j]← S−[ j−1]−β
for i ← i1 +1 to imid do

s← S−[ j1]
c← S−[ j1]−β
S−[ j1]← c
for j ← j1 +1 to j2 do

c←max





S−[ j]−β
c−β
s+σ(ai ,b j)

s← S−[ j]
S−[ j]← c

// Find the maximum scores to(i2, j2)
S+[ j2]← 0
for j ← j2−1 down to j1 do S+[ j]← S+[ j +1]−β
for i ← i2−1 down to imid do

s← S+[ j2]
c← S+[ j2]−β
S+[ j2]← c
for j ← j2−1 down to j1 do

c←max





S+[ j]−β
c−β
s+σ(ai+1,b j+1)

s← S+[ j]
S+[ j]← c

// Find where maximum-score path crosses rowimid

jmid← value j ∈ [ j1, j2] that maximizesS−[ j]+S+[ j]
L INEAR ALIGN (A,B, i1, j1, imid, jmid)
L INEAR ALIGN (A,B, imid, jmid, i2, j2)

end

Figure 4: Computation of an optimal global alignment in linear space.
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Figure 5: Hirschberg’s linear-space approach.

Figure 6: Dividing a band by its middle diagonal.
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Figure 7: The total number of the boundary entries in the active subproblems is
O(m+n).
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