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In many applications, a global (i.e., end-to-end) alignment of the two given
sequences is inappropriate; instead, a local alignment (i.e., involving only a part
of each sequence) is desired. In other words, one seeks a high-scoring local path
that need not terminate at the corners of the dynamic-programming matrix.

Let S[i, j] denote the score of the highest-scoring local path ending at(i, j)
betweena1a2 . . .ai , andb1b2 . . .b j . S[i, j] can be computed as follows.

S[i, j] = max





0,
S[i−1, j]−β ,
S[i, j−1]−β ,
S[i−1, j−1]+σ(ai ,b j).

The recurrence is quite similar to that for global alignment except the first
entry “zero.” For local alignment, we are not required to start from the source
(0,0). Therefore, if the scores of all possible paths ending at the current position
are all negative, they are reset to zero. The largest value ofS[i, j] is the score of
the best local alignment between sequencesA andB.

Figure 1 gives the pseudo-code for computing the score of an optimal local
alignment. Whenever there is a tie, any one of them will work. Since there are
O(mn) entries and the time spent for each entry isO(1), the total running time of
algorithmLOCAL ALIGNMENT SCOREis O(mn).
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Algorithm LOCAL ALIGNMENT SCORE(A = a1a2 . . .am, B = b1b2 . . .bn)
begin

S[0,0]← 0
Best← 0
Endi ← 0
Endj ← 0
for j ← 1 to n do S[0, j]← 0
for i ← 1 to m do

S[i,0]← 0
for j ← 1 to n do

S[i, j]←max





0
S[i−1, j]−β
S[i, j−1]−β
S[i−1, j−1]+σ(ai ,b j)

if S[i, j] > Bestthen
Best← S[i, j]
Endi ← i
Endj ← j

OutputBestas the score of an optimal local alignment.
end

Figure 1: Computation of the score of an optimal local alignment.

Now let us use an example to illustrate the tabular computation. Figure 2 com-
putes the score of an optimal local alignment of the two sequencesATACATGTCT
andGTACGTCGG, where a match is given a bonus score 8, a mismatch is penal-
ized by a score−5, and the gap penalty for each gap symbol is−3. The first row
and column of the table are initialized with zero’s. Other entries are computed in
order. Take the entry(5,5) for example. Upon computing the value of this entry,
the following values are ready:S[4,4] = 24, S[4,5] = 21, andS[5,4] = 21. Since
the edge weight of(4,4)→ (5,5) is −5 (a mismatch), the maximum score from
(4,4) to (5,5) is 24−5= 19. The maximum score from(4,5) is 21−3= 18, and
the maximum score from(5,4) is 21−3 = 18. Taking the maximum of them, we
haveS[5,5] = 19. Once the table has been computed, the maximum value,i.e.,
S[9,7] = 42, is the score of an optimal local alignment.
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Figure 2: Computation of the score of an optimal local alignment of the sequences
ATACATGTCTandGTACGTCGG.

Figure 3 lists the pseudo-code for delivering an optimal local alignment, where
an initial call LOCAL ALIGNMENT OUTPUT(A, B, S, Endi , Endj ) is made to
deliver an optimal local alignment. Specifically, we trace back the dynamic-
programming matrix from the maximum-score entry(Endi ,Endj) recursively ac-
cording to the following rules. Let(i, j) be the entry under consideration. If
S[i, j] = 0, we have reached the beginning of the optimal local alignment. Oth-
erwise, consider the following three cases. IfS[i, j] = S[i−1, j −1] + σ(ai ,b j),

we make a diagonal move and output a substitution pair

(
ai

b j

)
. If S[i, j] = S[i−

1, j]−β , then we make a vertical move and output a deletion pair

(
ai

−
)

. Other-

wise, it must be the case whereS[i, j] = S[i, j−1]−β . We simply make a horizon-

tal move and output an insertion pair

( −
b j

)
. AlgorithmLOCAL ALIGNMENT OUTPUT

takesO(m+ n) time in total since each recursive call reducesi and/or j by one.
The space complexity isO(mn) since the size of the dynamic-programming matrix
is O(mn). Later we shall show that an optimal local alignment can be recovered
even if we don’t save the whole matrix.
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Algorithm LOCAL ALIGNMENT OUTPUT(A = a1a2 . . .am, B = b1b2 . . .bn, S, i, j)
begin

if S[i, j] = 0 then return
if S[i, j] = S[i−1, j−1]+σ(ai ,b j) then

LOCAL ALIGNMENT OUTPUT(A, B, S, i−1, j−1)

print
(

ai

b j

)

else ifS[i, j] = S[i−1, j]−β then
LOCAL ALIGNMENT OUTPUT(A, B, S, i−1, j)

print
(

ai

−
)

else
LOCAL ALIGNMENT OUTPUT(A, B, S, i, j−1)

print
( −

b j

)

end

Figure 3: Computation of an optimal local alignment.

Figure 4 delivers an optimal local alignment by backtracking from the maxi-
mum scoring entry of the dynamic-programming matrix computed in Figure??.
We start from the entry(9,7) whereS[9,7] = 42. SinceS[8,6]+8= 34+8= 42=
S[9,7], we make a diagonal move back to the entry(8,6). Continue this process
until an entry with zero value is reached. The shaded area depicts the backtracking
path whose corresponding alignment is given on the right-hand side of the figure.

Further complications arise when one seeksk best alignments, wherek > 1.
For computing an arbitrary number of non-intersecting and high-scoring local
alignments, Waterman and Eggert developed a very time-efficient method in 1987.
It records those high-scoring candidate regions of the dynamic-programming ma-
trix in the first pass. Each time a best alignment is reported, it recomputes only
those entries in the affected area rather than recompute the whole matrix. Its
linear-space implementation was developed by Huang and Miller in 1991.

On the other hand, to attain greater speed, the strategy of building alignments
from alignment fragments is often used. For example, one could specify some
fragment lengthw and work with fragments consisting of a segment of length at
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leastw that occurs exactly or approximately in both sequences. In general, al-
gorithms that optimize the score over alignments constructed from fragments can
run faster than algorithms that optimize over all possible alignments. Moreover,
alignments constructed from fragments have been very successful in initial fil-
tering criteria within programs that search a sequence database for matches to a
query sequence. Database sequences whose alignment score with the query se-
quence falls below a threshold are ignored, and the remaining sequences are sub-
jected to a slower but higher-resolution alignment process. The high-resolution
process can be made more efficient by restricting the search to a “neighborhood”
of the alignment-from-fragments. Later we will introduce four such homology
search programs: FASTA, BLAST, BLAT, and PatternHunter.G T A C G T C G GATACATGTC
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Figure 4: Computation of an optimal local alignment of the two sequences
ATACATGTCTandGTACGTCGG.
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