
A Class Note on Basic Algorithmic
Techniques

Kun-Mao Chao1,2,3

1Graduate Institute of Biomedical Electronics and Bioinformatics
2Department of Computer Science and Information Engineering

3Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

September 24, 2008

An algorithmis a step-by-step procedure for solving a problem by a computer.
Although the act of designing an algorithm is considered as an art and can never
be automated, its general strategies are learnable. Here we introduce a few frame-
works of computer algorithms including greedy algorithms, divide-and-conquer
strategies, and dynamic programming.

This note starts with the definition of algorithms and their complexity in Sec-
tion 1. We introduce the asymptoticO-notation used in the analysis of the run-
ning time and space of an algorithm. Two tables are used to demonstrate that
the asymptotic complexity of an algorithm will ultimately determine the size of
problems that can be solved by the algorithm.

Then, we introduce greedy algorithms in Section 2. For some optimization
problems, greedy algorithms are more efficient. A greedy algorithm pursues the
best choice at the moment in the hope that it will lead to the best solution in the
end. It works quite well for a wide range of problems. Huffman’s algorithm is
used as an example of a greedy algorithm.

Section 3 describes another common algorithmic technique, called divide-
and-conquer. This strategy divides the problem into smaller parts, conquers each
part individually, and then combines them to form a solution for the whole. We
use the mergesort algorithm to illustrate the divide-and-conquer algorithm design

1

paradigm.
Following its introduction by Needleman and Wunsch, dynamic programming

has become a major algorithmic strategy for many optimization problems in se-
quence comparison. The development of a dynamic-programming algorithm has
three basic components: the recurrence relation for defining the value of an opti-
mal solution, the tabular computation for computing the value of an optimal so-
lution, and the backtracking procedure for delivering an optimal solution. In Sec-
tion 4, we introduce these basic ideas by developing dynamic-programming solu-
tions for problems from different application areas, including the maximum-sum
segment problem, the longest increasing subsequence problem, and the longest
common subsequence problem.

1 Algorithms and Their Complexity

An algorithm is a step-by-step procedure for solving a problem by a computer.
When an algorithm is executed by a computer, the central processing unit (CPU)
performs the operations and the memory stores the program and data.

Let n be the size of the input, the output, or their sum. The time or space com-
plexity of an algorithm is usually denoted as a functionf (n). Table 1 calculates
the time needed if the function stands for the number of operations required by
an algorithm, and we assume that the CPU performs one million operations per
second.

Exponential algorithms grow pretty fast and become impractical even when
n is small. For those quadratic and cubic functions, they grow faster than the
linear functions. The constant and log factor matter, but are mostly acceptable
in practice. As a rule of thumb, algorithms with a quadratic time complexity or
higher are often impractical for large data sets.

Table 2 further shows the growth of the input size solvable by polynomial and
exponential time algorithms with improved computers. Even with a million-times
faster computer, the10n algorithm only adds 6 to the input size, which makes it
hopeless for handling a moderate-size input.

These observations lead to the definition of theO-notation, which is very use-
ful for the analysis of algorithms. We sayf (n) = O(g(n)) if and only if there exist
two positive constantsc andn0 such that0≤ f (n)≤ cg(n) for all n≥ n0. In other
words, for sufficiently largen, f (n) can be bounded byg(n) times a constant. In
this kind of asymptotic analysis, the most crucial part is the order of the function,
not the constant. For example, iff (n) = 3n2 + 5n, we can sayf (n) = O(n2) by

2

Table 1: The time needed by the functions where we assume one million opera-
tions per second.

f (n) n = 10 n = 100 n = 100000

30n 0.0003 sec-
ond

0.003 second 3 seconds

100nlog10n 0.001 sec-
ond

0.02 second 50 seconds

3n2 0.0003 sec-
ond

0.03 second 8.33 hours

n3 0.001 sec-
ond

1 second 31.71 years

10n 2.78 hours 3.17× 1084 cen-
turies

3.17×1099984centuries

lettingc= 4 andn0 = 10. By definition, it is also correct to sayn2 = O(n3), but we
always prefer to choose a tighter order if possible. On the other hand,10n 6= O(nx)
for any integerx. That is, an exponential function cannot be bounded above by
any polynomial function.

Table 2: The growth of the input size solvable in an hour as the computer runs
faster.

f (n) Present
speed

1000-times faster 106-times faster

n x1 1000x1 106x1

n2 x2 31.62x2 103x2

n3 x3 10x3 102x3

10n x4 x4 +3 x4 +6

2 Greedy Algorithms

A greedy method works in stages. It always makes a locally optimal (greedy)
choice at each stage. Once a choice has been made, it cannot be withdrawn, even
if later we realize that it is a poor decision. In other words, this greedy choice may

3

or may not lead to a globally optimal solution, depending on the characteristics of
the problem.

It is a very straightforward algorithmic technique and has been used to solve a
variety of problems. In some situations, it is used to solve the problem exactly. In
others, it has been proved to be effective in approximation.

What kind of problems are suitable for a greedy solution? There are two
ingredients for an optimization problem to be exactly solved by a greedy approach.
One is that it has the so-called greedy-choice property, meaning that a locally
optimal choice can reach a globally optimal solution. The other is that it satisfies
the principle of optimality,i.e., each solution substructure is optimal. We use
Huffman coding, a frequency-dependent coding scheme, to illustrate the greedy
approach.

2.1 Huffman Codes

Suppose we are given a very long DNA sequence where the occurrence proba-
bilities of nucleotides A (adenine), C (cytosine), G (guanine), T (thymine) are
0.1, 0.1, 0.3, and 0.5, respectively. In order to store it in a computer, we need to
transform it into a binary sequence, using only 0’s and 1’s. A trivial solution is
to encode A, C, G, and T by “00,” “01,” “10,” and “11,” respectively. This rep-
resentation requires two bits per nucleotide. The question is “Can we store the
sequence in a more compressed way?” Fortunately, by assigning longer codes for
frequent nucleotides G and T, and shorter codes for rare nucleotides A and C, it
can be shown that it requires less than two bits per nucleotide on average.

In 1952, Huffman proposed a greedy algorithm for building up an optimal way
of representing each letter as a binary string. It works in two phases. In phase one,
we build a binary tree based on the occurrence probabilities of the letters. To do
so, we first write down all the letters, together with their associated probabilities.
They are initially the unmarked terminal nodes of the binary tree that we will build
up as the algorithm proceeds. As long as there is more than one unmarked node
left, we repeatedly find the two unmarked nodes with the smallest probabilities,
mark them, create a new unmarked internal node with an edge to each of the nodes
just marked, and set its probability as the sum of the probabilities of the two nodes.

The tree building process is depicted in Figure 1. Initially, there are four un-
marked nodes with probabilities 0.1, 0.1, 0.3, and 0.5. The two smallest ones are
with probabilities 0.1 and 0.1. Thus we mark these two nodes and create a new
node with probability 0.2 and connect it to the two nodes just marked. Now we
have three unmarked nodes with probabilities 0.2, 0.3, and 0.5. The two smallest

4

ones are with probabilities 0.2 and 0.3. They are marked and a new node connect-
ing them with probabilities 0.5 is created. The final iteration connects the only two
unmarked nodes with probabilities 0.5 and 0.5. Since there is only one unmarked
node left,i.e., the root of the tree, we are done with the binary tree construction.

A0.1 0.2 C0.1 G0.3 T0.5
0.5 1.0

Figure 1: Building a binary tree based on the occurrence probabilities of the let-
ters.

After the binary tree is built in phase one, the second phase is to assign the
binary strings to the letters. Starting from the root, we recursively assign the value
“zero” to the left edge and “one” to the right edge. Then for each leaf,i.e., the let-
ter, we concatenate the 0’s and 1’s from the root to it to form its binary string repre-
sentation. For example, in Figure 2 the resulting codewords for A, C, G, and T are
“000,” “000,” “01,” and “1,” respectively. By this coding scheme, a 20-nucleotide
DNA sequence “GTTGTTATCGTTTATGTGGC” will be represented as a 34-bit
binary sequence “0111011100010010111100010110101001.” In general, since
3×0.1+3×0.1+2×0.3+1×0.5 = 1.7, we conclude that, by Huffman coding
techniques, each nucleotide requires 1.7 bits on average, which is superior to 2 bits
by a trivial solution. Notice that in a Huffman code, no codeword is also a prefix of
any other codeword. Therefore we can decode a binary sequence without any am-
biguity. For example, if we are given “0111011100010010111100010110101001,”
we decode the binary sequence as “01” (G), “1” (T), “1” (T), “01” (G), and so
forth.

The correctness of Huffman’s algorithm lies in two properties: (1) greedy-
choice property and (2) optimal-substructure property. It can be shown that there
exists an optimal binary code in which the codewords for the two smallest-probability

5

A0.1 0.2 C0.1 G0.3 T0.5
0.5 1.0000 1 1 1000 001 01 1

Figure 2: Huffman code assignment.

nodes have the same length and differ only in the last bit. That’s the reason why
we can contract them greedily without missing the path to the optimal solution.
Besides, after contraction, the optimal-substructure property allows us to consider
only those unmarked nodes.

Let n be the number of letters under consideration. For DNA,n is 4 and for
English,n is 26. Since a heap can be used to maintain the minimum dynamically
in O(logn) time for each insertion or deletion, the time complexity of Huffman’s
algorithm isO(nlogn).

3 Divide-and-Conquer Strategies

The divide-and-conquer strategydivides the problem into a number of smaller
subproblems. If the subproblem is small enough, itconquersit directly. Other-
wise, itconquersthe subproblem recursively. Once the solution to each subprob-
lem has been done, it combines them together to form a solution to the original
problem.

One of the well-known applications of the divide-and-conquer strategy is the
design of sorting algorithms. We use mergesort to illustrate the divide-and-conquer
algorithm design paradigm.

6

3.1 Mergesort

Given a sequence ofn numbers〈a1,a2, . . . ,an〉, the sorting problem is to sort these
numbers into a nondecreasing sequence. For example, if the given sequence is
〈65,16,25,85,12,8,36,77〉, then its sorted sequence is〈8,12,16,25,36,65,77,85〉.

To sort a given sequence, mergesort splits the sequence into half, sorts each
of them recursively, then combines the resulting two sorted sequences into one
sorted sequence. Figure 3 illustrates the dividing process. The original input se-
quence consists of eight numbers. We first divide it into two smaller sequences,
each consisting of four numbers. Then we divide each four-number sequence into
two smaller sequences, each consisting of two numbers. Here we can sort the
two numbers by comparing them directly, or divide it further into two smaller se-
quences, each consisting of only one number. Either way we’ll reach the boundary
cases where sorting is trivial. Notice that a sequential recursive process won’t ex-
pand the subproblems simultaneously, but instead it solves the subproblems at the
same recursion depth one by one.65 16 7736812852565 16 7736812852565 16 8525 812 773665 16 77368128525

Figure 3: The top-down dividing process of mergesort.

How to combine the solutions to the two smaller subproblems to form a solu-
tion to the original problem? Let us consider the process of merging two sorted
sequences into a sorted output sequence. For each merging sequence, we maintain
a cursor pointing to the smallest element not yet included in the output sequence.

7

At each iteration, the smaller of these two smallest elements is removed from the
merging sequence and added to the end of the output sequence. Once one merg-
ing sequence has been exhausted, the other sequence is appended to the end of the
output sequence. Figure 4 depicts the merging process. The merging sequences
are〈16,25,65,85〉 and〈8,12,36,77〉. The smallest elements of the two merging
sequences are 16 and 8. Since 8 is a smaller one, we remove it from the merging
sequence and add it to the output sequence. Now the smallest elements of the two
merging sequences are 16 and 12. We remove 12 from the merging sequence and
append it to the output sequence. Then 16 and 36 are the smallest elements of the
two merging sequences, thus 16 is appended to the output list. Finally, the result-
ing output sequence is〈8,12,16,25,36,65,77,85〉. Let N andM be the lengths
of the two merging sequences. Since the merging process scans the two merging
sequences linearly, its running time is thereforeO(N+M) in total.8 12 85776536251616 25 7736128 8565

Figure 4: The merging process of mergesort.

After the top-down dividing process, mergesort accumulates the solutions in
a bottom-up fashion by combining two smaller sorted sequences into a larger
sorted sequence as illustrated in Figure 5. In this example, the recursion depth
is dlog28e = 3. At recursion depth 3, every single element is itself a sorted se-
quence. They are merged to form sorted sequences at recursion depth 2:〈16,65〉,
〈25,85〉, 〈8,12〉, and〈36,77〉. At recursion depth 1, they are further merged into
two sorted sequences:〈16,25,65,85〉 and〈8,12,36,77〉. Finally, we merge these
two sequences into one sorted sequence:〈8,12,16,25,36,65,77,85〉.

It can be easily shown that the recursion depth of mergesort isdlog2ne for
sortingn numbers, and the total time spent for each recursion depth isO(n). Thus,
we conclude that mergesort sortsn numbers inO(nlogn) time.

8

8 12 85776536251616 25 7736128856516 65 8525 128 773665 16 77368128525
Figure 5: Accumulating the solutions in a bottom-up manner.

4 Dynamic Programming

Dynamic programming is a class of solution methods for solving sequential deci-
sion problems with a compositional cost structure. It is one of the major paradigms
of algorithm design in computer science. Like the usage inlinear programming,
the word “programming” refers tofinding an optimal planof action, rather than
writing programs. The word “dynamic” in this context conveys the idea that
choices may depend on the current state, rather than being decided ahead of time.

Typically, dynamic programming is applied to optimization problems. In such
problems, there exist many possible solutions. Each solution has a value, and
we wish to find a solution with the optimum value. There are two ingredients
for an optimization problem to be suitable for a dynamic-programming approach.
One is that it satisfies the principle of optimality,i.e., each solution substructure
is optimal. Greedy algorithms require this very same ingredient, too. The other
ingredient is that it has overlapping subproblems, which has the implication that it
can be solved more efficiently if the solutions to the subproblems are recorded. If
the subproblems are not overlapping, a divide-and-conquer approach is the choice.

The development of a dynamic-programming algorithm has three basic com-
ponents: the recurrence relation for defining the value of an optimal solution, the
tabular computation for computing the value of an optimal solution, and the back-

9

tracking procedure for delivering an optimal solution. Here we introduce these
basic ideas by developing dynamic-programming solutions for problems from dif-
ferent application areas.

First of all, the Fibonacci numbers are used to demonstrate how a tabular com-
putation can avoid recomputation. Then we use three classic problems, namely,
the maximum-sum segment problem, the longest increasing subsequence prob-
lem, and the longest common subsequence problem, to explain how dynamic-
programming approaches can be used to solve the sequence-related problems.

4.1 Fibonacci Numbers

The Fibonacci numbers were first created by Leonardo Fibonacci in 1202. It is a
simple series, but its applications are nearly everywhere in nature. It has fascinated
mathematicians for more than 800 years. TheFibonacci numbersare defined by
the following recurrence:





F0 = 0,
F1 = 1,
Fi = Fi−1 +Fi−2 for i ≥ 2.

By definition, the sequence goes like this: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368,
75025, 121393, and so forth. Given a positive integern, how would you compute
Fn? You might say that it can be easily solved by a straightforward divide-and-
conquer method based on the recurrence. That’s right. But is it efficient? Take the
computation ofF10 for example (see Figure 6). By definition,F10 is derived by
adding upF9 andF8. What about the values ofF9 andF8? Again,F9 is derived by
adding upF8 andF7; F8 is derived by adding upF7 andF6. Working toward this
direction, we’ll finally reach the values ofF1 andF0, i.e., the end of the recursive
calls. By adding them up backwards, we have the value ofF10. It can be shown
that the number of recursive calls we have to make for computingFn is exponential
in n.

Those who are ignorant of history are doomed to repeat it. A major draw-
back of this divide-and-conquer approach is to solve many of the subproblems
repeatedly. A tabular method solves every subproblem just once and then saves
its answer in a table, thereby avoiding the work of recomputing the answer every
time the subproblem is encountered. Figure 7 explains thatFn can be computed in
O(n) steps by a tabular computation. It should be noted thatFn can be computed
in just O(logn) steps by applying matrix computation.

10

Figure 6: ComputingF10 by divide-and-conquer.0 11 3432 215 8 13 55
Figure 7: ComputingF10 by a tabular computation.

4.2 The Maximum-Sum Segment Problem

Given a sequence of numbersA = 〈a1,a2, . . . ,an〉, the maximum-sum segment
problem is to find, inA, a consecutive subsequence,i.e., a substring or segment,
with the maximum sum. For each positioni, we can compute the maximum-sum
segment ending at that position inO(i) time. Therefore, a naive algorithm runs in
∑n

i=1O(i) = O(n2) time.
Now let us describe a more efficient dynamic-programming algorithm for this

problem. DefineS[i] to be the maximum sum of segments ending at positioni of
A. The valueS[i] can be computed by the following recurrence:

S[i] =
{

ai +max{S[i−1],0} if i > 1,
a1 if i = 1.

If S[i−1] < 0, concatenatingai with its previous elements will give a smaller

11

sum thanai itself. In this case, the maximum-sum segment ending at positioni is
ai itself.

By a tabular computation, eachS[i] can be computed in constant time fori
from 1 to n, therefore allSvalues can be computed inO(n) time. During the com-
putation, we record the largestSentry computed so far in order to report where the
maximum-sum segment ends. We also record the traceback information for each
position i so that we can trace back from the end position of the maximum-sum
segment to its start position. IfS[i−1] > 0, we need to concatenate with previous
elements for a larger sum, therefore the traceback symbol for positioni is “←.”
Otherwise, “↑” is recorded. Once we have computed allS values, the traceback
information is used to construct the maximum-sum segment by starting from the
largestS entry and following the arrows until a “↑” is reached. For example, in
Figure 8,A = 〈3, 2, -6, 5, 2, -3, 6,-4, 2〉. By computing fromi = 1 to i = n, we
haveS= 〈3, 5, -1, 5, 7, 4, 10,6, 8〉. The maximumSentry isS[7] whose value is
10. By backtracking fromS[7], we conclude that the maximum-sum segment ofA
is 〈5, 2, -3, 6〉, whose sum is10.21 987654323 2-46-325-653 8610475-1

Figure 8: Finding a maximum-sum segment.

Let prefix sumP[i] = ∑i
j=1a j be the sum of the firsti elements. It can be

easily seen that∑ j
k=i ak = P[j]−P[i−1]. Therefore, if we wish to compute for

a given position the maximum-sum segment ending at it, we could just look for
a minimum prefix sum ahead of this position. This yields another linear-time
algorithm for the maximum-sum segment problem.

4.3 Longest Increasing Subsequences

Given a sequence of numbersA = 〈a1,a2, . . . ,an〉, the longest increasing subse-
quence problem is to find an increasing subsequence inA whose length is maxi-
mum. Without loss of generality, we assume that these numbers are distinct. For-
mally speaking, given a sequence of distinct real numbersA= 〈a1,a2, . . . ,an〉, se-

12

quenceB= 〈b1,b2, . . . ,bk〉 is said to be a subsequence ofA if there exists a strictly
increasing sequence〈i1, i2, . . . , ik〉 of indices ofA such that for allj = 1,2, . . . ,k,
we haveai j = b j . In other words,B is obtained by deleting zero or more elements
from A. We say that the subsequenceB is increasing ifb1 < b2 < .. . < bk. The
longest increasing subsequence problem is to find a maximum-length increasing
subsequence ofA.

For example, supposeA = 〈4, 8, 2, 7, 3, 6, 9, 1, 10, 5〉, both 〈2,3,6〉 and
〈2,7,9,10〉 are increasing subsequences ofA, whereas〈8,7,9〉 (not increasing)
and〈2,3,5,7〉 (not a subsequence) are not.

Note that we may have more than one longest increasing subsequence, so we
use “a longest increasing subsequence” instead of “the longest increasing sub-
sequence.” LetL[i] be the length of a longest increasing subsequence ending at
positioni. They can be computed by the following recurrence:

L[i] =
{

1+maxj=0,...,i−1{L[j] | a j < ai} if i > 0,
0 if i = 0.

Here we assume thata0 is a dummy element and smaller than any element in
A, andL[0] is equal to 0. By tabular computation for everyi from 1 to n, each
L[i] can be computed inO(i) steps. Therefore, they require in total∑n

i=1O(i) =
O(n2) steps. For each positioni, we use an arrayP to record the index of the
best previous element for the current element to concatenate with. By tracing
back from the element with the largestL value, we derive a longest increasing
subsequence.

Figure 9 illustrates the process of finding a longest increasing subsequence of
A = 〈4, 8, 2, 7, 3, 6, 9, 1, 10, 5〉. Take i = 4 for instance, wherea4 = 7. Its
previous smaller elements area1 anda3, both with L value equaling1. There-
fore, we haveL[4] = L[1]+1 = 2, meaning that the length of a longest increasing
subsequence ending at position4 is of length 2. Indeed, both〈a1,a4〉 and〈a3,a4〉
are an increasing subsequence ending at position4. In order to trace back the
solution, we use arrayP to record which entry contributes the maximum to the
currentL value. Thus,P[4] can be1 (standing fora1) or 3 (standing fora3).
Once we have computed allL andP values, the maximumL value is the length
of a longest increasing subsequence ofA. In this example,L[9] = 5 is the maxi-
mum. Tracing back fromP[9], we have found a longest increasing subsequence
〈a3,a5,a6,a7,a9〉, i.e., 〈2,3,6,9,10〉.

In the following, we briefly describe a more efficient dynamic-programming
algorithm for delivering a longest increasing subsequence. A crucial observation
is that it suffices to store only those smallest ending elements for all possible

13

105814721 9765384 21 5143221 310 7065310 59 10632
Figure 9: AnO(n2)-time algorithm for finding a longest increasing subsequence.

lengths of the increasing subsequences. For example, in Figure 9, there are three
entries whoseL value is 2, namelya2 = 8, a4 = 7, anda5 = 3, wherea5 is the
smallest. Any element after position5 that is larger thana2 or a4 is also larger
thana5. Therefore,a5 can replace the roles ofa2 anda4 after position5.

Let SmallestEnd[k] denote the smallest ending element of all possible increas-
ing subsequences of lengthk ending before the current positioni. The algorithm
proceeds fori from 1 to n. How do we updateSmallestEnd[k] when we consider
ai? By definition, it is easy to see that the elements inSmallestEndare in in-
creasing order. In fact,ai will affect only one entry inSmallestEnd. If ai is larger
than all the elements inSmallestEnd, then we can concatenateai to the longest
increasing subsequence computed so far. That is, one more entry is added to the
end ofSmallestEnd. A backtracking pointer is recorded by pointing to the previ-
ous last element ofSmallestEnd. Otherwise, letSmallestEnd[k′] be the smallest
element that is larger thanai . We replaceSmallestEnd[k′] by ai because now we
have a smaller ending element of an increasing subsequence of lengthk′.

SinceSmallestEndis a sorted array, the above process can be done by a binary
search. A binary search algorithm compares the query element with the middle
element of the sorted array, if the query element is larger, then it searches the
larger half recursively. Otherwise, it searches the smaller half recursively. Either
way the size of the search space is shrunk by a factor of two. At positioni, the size
of SmallestEndis at mosti. Therefore, for each positioni, it takesO(logi) time
to determine the appropriate entry to be updated byai . Therefore, in total we have
anO(nlogn)-time algorithm for the longest increasing subsequence problem.

Figure 10 illustrates the process of finding a longest increasing subsequence
of A = 〈4, 8, 2, 7, 3, 6, 9, 1, 10, 5〉. When i = 1, there is only one increas-
ing subsequence,i.e., 〈4〉. We haveSmallestEnd[1] = 4. Sincea2 = 8 is larger
thanSmallestEnd[1], we create a new entrySmallestEnd[2] = 8 and set the back-

14

tracking pointerP[2] = 1, meaning thata2 can be concatenated witha1 to form
an increasing subsequence〈4,8〉. Whena3 = 2 is encountered, its nearest larger
element inSmallestEndis SmallestEnd[1] = 4. We know that we now have an
increasing subsequence〈2〉 of length 1. SoSmallestEnd[1] is changed from4
to a3 = 2 andP[3] = 0. When i = 4, we haveSmallestEnd[1] = 2 < a4 = 7 <
SmallestEnd[2] = 8. By concatenatinga4 with Smallest[1], we have a new in-
creasing subsequence〈2,7〉 of length 2 whose ending element is smaller than 8.
Thus,SmallestEnd[2] is changed from8 to a4 = 7 andP[4] = 3. Continue this
way until we reacha10. Whena10 is encountered, we haveSmallestEnd[2] = 3<
a10 = 5 < SmallestEnd[3] = 6. We setSmallestEnd[3] = a10 = 5 andP[10] = 5.
Now the largest element inSmallestEndis SmallestEnd[5] = a9 = 10. We can
trace back froma9 by the backtracking pointersP and deliver a longest increasing
subsequence〈a3,a5,a6,a7,a9〉, i.e., 〈2,3,6,9,10〉.21 5143221 310 7065330 5105814721 9765384 9 106324 48 28 27 23 236 2369 1369 136910 135910
Figure 10: AnO(nlogn)-time algorithm for finding a longest increasing subse-
quence.

15

4.4 Longest Common Subsequences

A subsequence of a sequenceS is obtained by deleting zero or more elements
from S. For example,〈P,R,E,D〉, 〈S,D,N〉, and〈P,R,E,D,E,N,T〉 are all subse-
quences of〈P,R,E,S, I ,D,E,N,T〉, whereas〈S,N,D〉 and〈P,E,F〉 are not.

Recall that, given two sequences, the longest common subsequence (LCS)
problem is to find a subsequence that is common to both sequences and its length
is maximized. For example, given two sequences

〈P,R,E,S, I ,D,E,N,T〉

and
〈P,R,O,V, I ,D,E,N,C,E〉,

〈P,R,D,N〉 is a common subsequence of them, whereas〈P,R,V〉 is not. Their
LCS is〈P,R, I ,D,E,N〉.

Now let us formulate the recurrence for computing the length of an LCS
of two sequences. We are given two sequencesA = 〈a1,a2, . . . ,am〉, andB =
〈b1,b2, . . . ,bn〉. Let len[i, j] denote the length of an LCS between〈a1,a2, . . . ,ai〉
(a prefix ofA) and〈b1,b2, . . . ,b j〉 (a prefix ofB). They can be computed by the
following recurrence:

len[i, j] =





0 if i = 0 or j = 0,
len[i−1, j−1]+1 if i, j > 0 andai = b j ,
max{len[i, j−1], len[i−1, j]} otherwise.

In other words, if one of the sequences is empty, the length of their LCS is just
zero. Ifai andb j are the same, an LCS between〈a1,a2, . . . ,ai〉, and〈b1,b2, . . . ,b j〉
is the concatenation of an LCS of〈a1,a2, . . . ,ai−1〉 and〈b1,b2, . . . ,b j−1〉 andai .
Therefore,len[i, j] = len[i− 1, j − 1] + 1 in this case. Ifai andb j are different,
their LCS is equal to either an LCS of〈a1,a2, . . . ,ai〉, and〈b1,b2, . . . ,b j−1〉, or
that of 〈a1,a2, . . . ,ai−1〉, and〈b1,b2, . . . ,b j〉. Its length is thus the maximum of
len[i, j−1] andlen[i−1, j].

Figure 11 gives the pseudo-code for computinglen[i, j]. For each entry(i, j),
we retain the backtracking information inprev[i, j]. If len[i−1, j−1] contributes
the maximum value tolen[i, j], then we setprev[i, j] =“↖.” Otherwiseprev[i, j]
is set to be “↑” or “←” depending on which one oflen[i−1, j] and len[i, j −1]
contributes the maximum value tolen[i, j]. Whenever there is a tie, any one of
them will work. These arrows will guide the backtracking process upon reaching

16

Algorithm LCS LENGTH(A = 〈a1,a2, . . . ,am〉, B = 〈b1,b2, . . . ,bn〉)
begin

for i ← 0 to m do len[i,0]← 0
for j ← 1 to n do len[0, j]← 0
for i ← 1 to m do

for j ← 1 to n do
if ai = b j then

len[i, j]← len[i−1, j−1]+1
prev[i, j]←“↖”

else if len[i−1, j]≥ len[i, j−1] then
len[i, j]← len[i−1, j]
prev[i, j]←“↑”

else
len[i, j]← len[i, j−1]
prev[i, j]←“←”

return lenandprev
end

Figure 11: Computation of the length of an LCS of two sequences.

the terminal entry(m,n). Since the time spent for each entry isO(1), the total
running time of algorithmLCS LENGTH is O(mn).

Figure 12 illustrates the tabular computation. The length of an LCS of

〈A,L,G,O,R, I ,T,H,M〉

and
〈A,L, I ,G,N,M,E,N,T〉

is 4.
Besides computing the length of an LCS of the whole sequences, Figure 12

in fact computes the length of an LCS between each pair of prefixes of the two
sequences. For example, by this table, we can also tell the length of an LCS
between〈A,L,G,O,R〉 and〈A,L, I ,G〉 is 3.

Once algorithmLCS LENGTH reaches(m,n), the backtracking information
retained in arrayprev allows us to find out which common subsequence con-
tributes len[m,n], the maximum length of an LCS of sequencesA andB. Fig-

17

A NEMNGIL T
MHTIRO
GLA 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0
 0

 1 2 3 3 4 4
 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 1 2 2 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 4 4 4

Figure 12: Tabular computation of the length of an LCS of
〈A,L,G,O,R, I ,T,H,M〉 and〈A,L, I ,G,N,M,E,N,T〉.

ure 13 lists the pseudo-code for delivering an LCS. We trace back the dynamic-
programming matrix from the entry(m,n) recursively following the direction of
the arrow. Whenever a diagonal arrow “↖” is encountered, we append the current
matched letter to the end of the LCS under construction. AlgorithmLCS OUTPUT

takesO(m+n) time in total since each recursive call reduces the indicesi and/or
j by one.

Figure 14 backtracks the dynamic-programming matrix computed in Figure 12.
It outputs〈A,L,G,T〉 (the shaded entries) as an LCS of

〈A,L,G,O,R, I ,T,H,M〉

and
〈A,L, I ,G,N,M,E,N,T〉.

18

Algorithm LCS OUTPUT(A = 〈a1,a2, . . . ,am〉, prev, i, j)
begin

if i = 0 or j = 0 then return
if prev[i, j] =“↖” then

LCS OUTPUT(A, prev, i−1, j−1)
print ai

else if prev[i, j] =“↑” then LCS OUTPUT(A, prev, i−1, j)
elseLCS OUTPUT(A, prev, i, j−1)

end

Figure 13: Delivering an LCS.

A NEMNGIL T
MHTIRO
GLA 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0
 0

 1 2 3 3 4 4
 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 1 2 2 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4

Figure 14: Backtracking process for finding an LCS of〈A,L,G,O,R, I ,T,H,M〉
and〈A,L, I ,G,N,M,E,N,T〉.

19

