
A Class Note on Homology Search Tools

Kun-Mao Chao1,2,3

1Graduate Institute of Biomedical Electronics and Bioinformatics
2Department of Computer Science and Information Engineering

3Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

November 3, 2008

The alignment methods introduced in previous notes are good for comparing
two sequences accurately. However, they are not adequate for homology search
against a large biological database such as GenBank. As of February 2008, there
are approximately 85,759,586,764 bases in 82,853,685 sequence records in the
traditional GenBank divisions. To search such kind of huge databases, faster
methods are required for identifying the homology between the query sequence
and the database sequence in a timely manner.

One common feature of homology search programs is the filtration idea, which
uses exact matches or approximate matches between the query sequence and the
database sequence as a basis to judge if the homology between the two sequences
passes the desired threshold.

This note is divided into five sections. Section 1 describes how to implement
the filtration idea for finding exact word matches between two sequences by using
efficient data structures such as hash tables, suffix trees, and suffix arrays.

FASTA was the first popular homology search tool, and its file format is still
widely used. Section 2 briefly describes a multi-step approach used by FASTA for
finding local alignments.

BLAST is the most popular homology search tool now. Section 3 reviews the
first version of BLAST,Ungapped BLAST, which generates ungapped alignments.
It then reviews two major products of BLAST 2.0: Gapped BLAST and Position-
Specific Iterated BLAST (PSI-BLAST). Gapped BLAST produces gapped align-

1

ments, yet it is able to run faster than the original one. PSI-BLAST can be used
to find distant relatives of a protein based on the profiles derived from the multi-
ple alignments of the highest scoring database sequence segments with the query
segment in iterative Gapped BLAST searches.

Section 4 describes BLAT, short for “BLAST-like alignment tool.” It is often
used to search for the database sequences that are closely related to the query
sequences such as producing mRNA/DNA alignments and comparing vertebrate
sequences.

PatternHunter, introduced in Section 5, is more sensitive than BLAST when a
hit contains the same number of matches. A novel idea in PatternHunter is the use
of an optimized spaced seed. Furthermore, it has been demonstrated that using
optimized multiple spaced seed will speed up the computation even more.

1 Finding Exact Word Matches

An exact word match is a run of identities between two sequences. In the follow-
ing, we discuss how to find all short exact word matches, sometimes referred to
ashits, between two sequences using efficient data structures such as hash tables,
suffix trees, and suffix arrays.

Given two sequencesA = a1a2 . . .am, andB = b1b2 . . .bn, and a positive in-
tegerk, the exact word matchproblem is to find all occurrences of exact word
matches of lengthk, referred to ask-mers betweenA andB. This is a classic al-
gorithmic problem that has been investigated for decades. Here we describe three
approaches for this problem.

1.1 Hash Tables

A hash table associates keys with numbers. It uses a hash function to transform
a given key into a number, called hash, which is used as an index to look up or
store the corresponding data. A method that uses a hash table for finding all exact
word matches of lengthw between two DNA sequencesA andB is described as
follows.

Since a DNA sequence is a sequence of four lettersA, C, G, andT, there are
4w possible DNAw-mers. The following encoding scheme maps a DNAw-mer to
an integer between0 and4w−1. Let C = c1c2 . . .cw be aw-mer. The hash value
of C is writtenV(C) and its value is

V(C) = x1×4w−1 +x2×4w−2 + · · ·+xw×40,

2

wherexi = 0,1,2,3 if ci = A, C, G, T, respectively. For example, ifC=GTCAT,
then

V(C) = 2×44 +3×43 +1×42 +0×41 +3×40 = 732.

In fact, we can use two bits to represent each nucleotide:A(00), C(01), G(10),
andT(11). In this way, a DNA segment is transformed into a binary string by
compressing four nucleotides into one byte. ForC=GTCATgiven above, we have

V(C) = 732= 10110100112.

Initially, a hash tableH of size4w is created. To find all exact word matches
of lengthw between two sequencesA andB, the following steps are executed.
The first step is to hash sequenceA into a table. All possiblew-mers inA are
calculated by sliding a window of sizew from position1 to positionm−w+ 1.
For each wordC, we computeV(C) and insertC to the entryH[V(C)]. If there is
more than one window word having the same hash value, a linked list or an array
can be used to store them. Figure 1 depicts the process of constructing a hash
table of word size 3 forGATCCATCTT.

Once a hash table for sequenceA has been built, we can now scan sequenceB
by sliding a window of sizew from position1 to positionn−w+1. For each scan
S, we computeV(S) and find its corresponding exact word matches, if any, inA
by looking up the entryH[V[S]] in the hash tableH. All the exact word matches
can be found in an order of their occurrences.

A hash table works well in practice for a moderate word size, say 12. How-
ever, it should be noted that for some larger word sizes, this approach might not
be feasible. Suppose an exact word match of interest has 40 nucleotides. There
are440 possible combinations. If we use an array to store all possible keys, then
we would need440 entries to assign a different index to each combination, which
would be far beyond the capacity of any modern computers. A more succinct in-
dexing technique, such as suffix trees or suffix arrays, is required for this particular
application.

1.2 Suffix Trees

A sequenceA = a1a2 . . .am hasm suffixes, namely,a1 . . .am, a2 . . .am, a3 . . .am,
. . . , andam. A suffix tree for sequenceA is a rooted tree such that every suffix of
A corresponds uniquely to a path from the root to a tree node. Furthermore, each
edge of the suffix tree is labeled with a nonempty substring ofA, and all internal
nodes except the root must have at lease two children.

3

user
刪劃線

user
插入號
723

… …… …… …… …… …… …
AG TTCTACCT 1021 9876543 CATCCACTTTCCTCGTCTTTTGAT010011 (19)010100 (20)011111 (31)100011 (35)110101 (53)110111 (55)110110 (54)111111 (63)

AAA000000 (0) ATC001101 (13) 12345
6

78
Figure 1: A 3-mer hash table forGATCCATCTT.

Figure 2 constructs a suffix tree forGATCCATCTT. The number of a node
specifies the starting position of its corresponding suffix. Take the number “5” for
example. If we concatenate the labels along the path from the root to the node
with the number “5,” we getCATCTT, which is a suffix starting at position 5.
Notice that some internal node might associate with a number,e.g., the node with
number “10” in this figure. The reason is thatT is suffix starting at position 10,
yet it is also a prefix of another three suffixesTCCATCTT, TCTT, andTT.

For convenience, one may require that all suffixes correspond to paths from
the root to theleaves. In fact, if sequenceA is padded with a terminal symbol, say
$, that does not appear inA, then every suffix would correspond to a path from the
root to a leaf node in the suffix tree because a suffix with “$” will not be a prefix of
any other suffix. Figure 3 constructs a suffix tree forGATCCATCTT$. Now every
suffix corresponds to a path from the root to a leaf, including the suffix starting at
position 10.

4

10 362 845 19AG TTCTACCT 1021 9876543ATCCATCTT TT GATCCATCTTCCATCTTTTATCTT TCATCTT TTT7C
Figure 2: A suffix tree forGATCCATCTT.

For a constant-size alphabet, the construction of a suffix tree for a sequence
of lengthm can be done inO(m) time and space based on a few other crucial
observations, including the use of suffix links. Once a suffix tree has been built,
we can answer several kinds of pattern matching queries iteratively and efficiently.
Take the exact word match problem for example. Given are two sequencesA =
a1a2 . . .am, andB = b1b2 . . .bn, and a positive integerw. An exact word match
of length w occurs inaiai+1 . . .ai+w−1 and b jb j+1 . . .b j+w−1 if and only if the
suffixesaiai+1 . . .am andb jb j+1 . . .bn share a common prefix of length at leastw.
With a suffix tree at hand, finding a common prefix becomes an easy job since
all suffixes with a common prefix will share the path from the root that labels out
that common prefix in the suffix tree. Not only does it work well for finding all
exact word matches of a fixed length, it can also be used to detect all maximal
word matches between two sequences or among several sequences by employing
a so-called generalized suffix tree, which is a suffix tree for a set of sequences.
Interested readers are referred to the book by Gusfield.

1.3 Suffix Arrays

A suffix array for sequenceA = a1a2 . . .am is an array of all suffixes ofA in lex-
icographical order. Figure 4 constructs a suffix array forGATCCATCTT. At first
glance, this conceptual representation seems to require quadratic space, but in fact
the suffix array needs only linear space since it suffices to store only the starting

5

11AG TTCTACCT 1021 9876543 $10 362 845 19ATCCATCTT$ TT$ GATCCATCTT$CCATCTT$TT$ATCTT$ T CATCTT$ TTT 7C$ $ 11
Figure 3: A suffix tree forGATCCATCTT$.

positions for all sorted suffixes.
Recall that an exact word match of lengthw occurs inaiai+1 . . .ai+w−1 and

b jb j+1 . . .b j+w−1 if and only if the suffixesaiai+1 . . .am andb jb j+1 . . .bn share
a common prefix of length at leastw. Once a suffix array has been built, one
can look up the table for any particular prefix by a binary search algorithm. This
search can be done even more efficiently if some data structure for querying the
longest common prefixes is employed.

2 FASTA

FASTA uses a multi-step approach to finding local alignments. First, it finds runs
of identities, and identifies regions with the highest density of identities. A pa-
rameterktup is used to describe the minimum length of the identity runs. These
runs of identities are grouped together according to their diagonals. For each di-
agonal, it locates the highest-scoring segment by adding up bonuses for matches
and subtracting penalties for intervening mismatches. The ten best segments of
all diagonals are selected for further consideration.

The next step is to re-score those selected segments using the scoring matrix
such as PAM and BLOSUM, and eliminate segments that are unlikely to be part of
the alignment. If there exist several segments with scores greater than the cutoff,
they will be joined together to form a chain provided that the sum of the scores of
the joined regions minus the gap penalties is greater than the threshold.

6

AG TTCTACCT 1021 9876543GATCCATCTT 1ATCCATCTT 2TCCATCTT 3CCATCTT 4CATCTT 5ATCTT 6TCTT 7CTT 8TT 9T 10
ATCCATCTT 2ATCTT 6CATCTT 5CCATCTT 4CTT 8GATCCATCTT 1T 10TCCATCTT 3TCTT 7TT 9

(a) all suffixes (b) suffix array
Figure 4: A suffix array forGATCCATCTT.

Finally, it considers the band of a couple of residues, say 32, centered on
the chain found in the previous step. A banded Smith-Waterman method is used
to deliver an optimal alignment between the query sequence and the database
sequence.

Since FASTA was the first popular biological sequence database search pro-
gram, its sequence format, called FASTA format, has been widely adopted. FASTA
format is a text-based format for representing DNA, RNA, and protein sequences,
where each sequence is preceded by its name and comments as shown below:

>HAHU Hemoglobin alpha chain - Human
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTK
TYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNAL
SALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA
VHASLDKFLASVSTVLTSKYR

3 BLAST

The BLAST program is the most widely used tool for homology search in DNA
and protein databases. It finds regions of local similarity between a query se-
quence and each database sequence. It also calculates the statistical significance

7

of matches. It has been used by numerous biologists to reveal functional and evo-
lutionary relationships between sequences and identify members of gene families.

The first version of BLAST was launched in 1990. It generates ungapped
alignments and hence is calledUngapped BLAST. Seven years later, BLAST
2.0 came to the world. Two major products of BLAST 2.0 are Gapped BLAST
and Position-Specific Iterated BLAST (PSI-BLAST). Gapped BLAST produces
gapped alignments, yet it is able to run faster than the original one. PSI-BLAST
can be used to find distant relatives of a protein based the profiles derived from
the multiple alignments of the highest scoring database sequence segments with
the query segment in iterative Gapped BLAST searches.GCTACCTA TC

T -4 GTCTTACTA -4-4-4-4-4-4-4 5-4-4-4 -4-45-4-45-4 -4-4-4-4 55-4-45-45 -45-45 -4-4-45-4-4-4 -4-455 -4-4-45-4-4-4 -4-45-4 -4-45-4-45-4 -4-4-4-4 55-4-45-45 -45-45 -4-4-45-4-4-4 -4-45-4 55-4-45-45 -45-4T -4 55-4-45-45 -45-4
Figure 5: A matrix of similarity scores for the pairs of residues of the two se-
quencesGATCCATCTTandCTATCATTCTG.

3.1 Ungapped BLAST

As discussed in previous notes, all possible pairs of residues are assigned their
similarity scores when we compare biological sequences. For protein sequences,
PAM or BLOSUM substitution matrix is often employed, whereas for DNA se-
quences, an identity is given a positive score and a mismatch is penalized by a neg-
ative score. Figure 5 depicts the similarity scores of all the pairs of the residues of
the two sequencesGATCCATCTTandCTATCATTCTG, where an identity is given
a score +5 and a mismatch is penalized by -4.

Let a sequence segment be a contiguous stretch of residues of a sequence. The
score for the aligned segmentsaiai+1 . . .ai+`−1 andb jb j+1 . . .b j+`−1 of length`

8

is the sum of the similarity scores for each pair of aligned residues(ai+k,b j+k)
where0≤ k < `. A maximal-scoring segment pair (MSP) is the highest scoring
pair of segments of the same length chosen from the two sequences. Since its
score is the highest, any stretch of this aligned segment pair will not increase the
similarity score. In order to compute the MSP score, a straightforward approach is
to compute the maximum-sum segment for each diagonal of the similarity scores
matrix of the two sequences. Fix a diagonal, the maximum-sum segment can be
found by a linear-time algorithm for the maximum-sum segment problem given
in Section??. Figure 6 locates a maximal-scoring segment pair in Figure 5.

10
1110GCTACCTA TC

T -4 GTCTTACTA -4-4-4-4-4-4-4 5-4-4-4 -4-45-4-4-4 -4-4-4-4 55-4-4-45 -45-45 -4-4-4-4-4-4 -4-455 -4-45-4-4-4 -4-45-4 -45-4-45-4 -4-4-4-4 5-4-45-45 -45-45 -4-4-45-4-4-4 -4-4-4 55-4-45-45 -4-45 5 5 -4 -4 5 5187654329
21 9876543

T -4 55-4-45-45 -45-4 5
Figure 6: A maximum-scoring segment pair of the two sequencesGATCCATCTT
andCTATCATTCTG.

However, there areO(m+n) diagonals to be processed. If we apply the linear-
time algorithm to all the diagonals, the resulting method takes the time propor-
tional to the product of the lengths of the sequences. To speed up the computation,
BLAST computes approximate MSPs, often referred to as high-scoring segment
pairs (HSPs), in two phases. The first phase is to scan the database for hits, which
are word pairs of lengthw with score at leastT. The second phase is to extend
each hit to see if it is contained within a segment pair whose score is no less than
S.

Let us now explain these two phases in greater detail. In the first phase,
BLAST seeks only segment pairs containing ahit, which is a word pair of length
w with score at leastT. For DNA sequences, these word pairs are exact word

9

user
刪劃線

user
插入號
our previous note

matches of fixed lengthw, whereas for protein sequences, these word pairs are
those fixed-length segment pairs who have a score no less than the thresholdT.

Section 1 gives three methods for finding exact word matches between two
sequences. Figure 7 depicts all the exact word matches of length three between
the two sequencesGATCCATCTTandCTATCATTCTG.GCTACCTA TC

T
GTCTTACTA 111021 987654318765432910 T

Figure 7: Exact word matches of length three between the two sequences
GATCCATCTTandCTATCATTCTG.

For protein sequences, we are not looking for exact word matches. Instead, a
hit is a fixed-length segment pair having a score no less than the thresholdT. A
query word may be represented by several different words whose similarity scores
with the query word are at leastT.

The second phase of BLAST is to extend a hit in both directions (diagonally)
to find a locally maximal-scoring segment pair containing that hit. It continues
the extension in one direction until the score has dropped more thanX below the
maximum score found so far for shorter extensions. If the resulting segment pair
has score at leastS, then it is reported.

It should be noted that both the Smith-Waterman algorithm and BLAST asymp-
totically take the time proportional to the product of the lengths of the sequences.
The speedup of BLAST comes from the reduced sample space size. For two se-
quences of lengthsm andn, the Smith-Waterman algorithm involves(n+ 1)×

10

(m+ 1) entries in the dynamic-programming matrix, whereas BLAST takes into
account only thosew-mers, whose number is roughlymn/4w for DNA sequences
or mn/20w for protein sequences.

3.2 Gapped BLAST

Gapped BLAST uses a new criterion for triggering hit extensions and generates
gapped alignment for segment pairs with “high scores.”

It was observed that the hit extension step of the original BLAST consumes
most of the processing time, say 90%. It was also observed that an HSP of in-
terest is much longer than the word sizew, and it is very likely to have multiple
hits within a relatively short distance of one another on the same diagonal. Specifi-
cally, the two-hit method is to invoke an extension only when two non-overlapping
hits occur within distanceD of each other on the same diagonal (see Figure 8).
These adjacent non-overlapping hits can be detected if we maintain, for each di-
agonal, the coordinate of the most recent hit found.

D≤

Figure 8: Two non-overlapping hits within distanceD of each other on the same
diagonal.

Another desirable feature of Gapped BLAST is that it generates gapped align-
ments explicitly for some cases. The original BLAST delivers only ungapped

11

alignments. Gapped alignments are implicitly taken care of by calculating a joint
statistical assessment of several distinct HSPs in the same database sequence.

A gapped extension is in general much slower than an ungapped extension.
Two ideas are used to handle gapped extensions more efficiently. The first idea
is to trigger a gapped extension only for those HSPs with scores exceeding a
thresholdSg. The parameterSg is chosen in a way that no more than one gap
extension is invoked per 50 database sequences.

The second idea is to confine the dynamic programming to those cells for
which the optimal local alignment score drops no more thanXg below the best
alignment score found so far. The gapped extension for a selected HSP starts from
a seed residue pair, which is a central residue pair of the highest-scoring length-
11 segment pair along the HSP. If the HSP is shorter than 11, its central residue
pair is chosen as the seed. Then the gapped extension proceeds both forward and
backward through the dynamic-programming matrix confined by the parameter
Xg (see Figure 9). HSP with score at least Sqseed residue pairregion confined by Xq
Figure 9: A scenario of the gap extensions in the dynamic-programming matrix
confined by the parameterXg.

3.3 PSI-BLAST

PSI-BLAST runs BLAST iteratively with an updated scoring matrix generated
automatically. In each iteration, PSI-BLAST constructs a position specific score
matrix (PSSM) of dimensioǹ× 20 from a multiple alignment of the highest-
scoring segments with the query segment of length`. The constructed PSSM is
then used to score the segment pairs for the next iteration. It has been shown that
this iterative approach is often more sensitive to weak but biologically relevant
sequence similarities.

12

user
註解
S_g

user
註解
X_g

PSI-BLAST collects, from the BLAST output, all HSPs withE-value below
a threshold, say 0.01, and uses the query sequence as a template to construct a
multiple alignment. For those selected HSPs, all database sequence segments
that are identical to the query segment are discarded, and only one copy is kept
for those database sequence segments with at least 98% identities. In fact, users
can specify the maximum number of database sequence segments to be included
in the multiple alignment. In case the number of HSPs withE-value below a
threshold exceeds the maximum number, only those top ones are reported. A
sample multiple alignment is given below:

query: GVDIIIMGSHGKTNLKEILLGSVTENVIKKSNKPVLVVK
seq1: GADVVVIGSR-NPSISTHLLGSNASSVIRHANLPVLVVR
seq2: PAHMIIIASH-RPDITTYLLGSNAAAVVRHAECSVLVVR
seq3: QAGIVVLGTVGRTGISAAFLGNTAEQVIDHLRCDLLVIK

If all segments in the alignment are given the same weight, then a small set
of more divergent sequences might be suppressed by a much larger set of closely
related sequences. To avoid such a bias, PSI-BLAST assigns various sequence
weights by a sequence weighting method. Thus, to calculate the observed residue
frequencies of a column of a multiple alignment, PSI-BLAST takes its weighted
frequencies into account.

4 BLAT

BLAT is short for “BLAST-like alignment tool.” It is often used to search for
database sequences that are closely related to the query sequences. For DNA
sequences, it aims to find those sequences of length 25 bp or more and with at
least 95% similarity. For protein sequences, it finds those sequences of length 20
residues or more and with at least 80% similarity.

A desirable feature is that BLAT builds an index of the whole database and
keeps it in memory. The index consists of non-overlappingK-mers and their
positions in the database. It excludes thoseK-mers that are heavily involved in
repeats. DNA BLAT setsK to 11, and protein BLAT setsK to 4. The index
requires a few gigabytes of RAM and is affordable for many users. This feature
lets BLAT scan linearly through the query sequence, rather than scan linearly
through the database.

BLAT builds a list of hits by looking up each overlappingK-mer of the query
sequence in the index (see Figure 10). The hits can be single perfect word matches

13

or near perfect word matches. The near perfect mismatch option allows one mis-
match in a hit. Given aK-mer, there areK× (|Σ|−1) other possibleK-mers that
match it in all but one position, where|Σ| is the alphabet size. Therefore, the near
perfect mismatch option would requireK×(|Σ|−1)+1 lookups perK-mer of the
query sequences.database index query
Figure 10: The index consists of non-overlappingK-mers in the database, and
each overlappingK-mer of the query sequence is looked up for hits.

BLAT identifies homologous regions of the database by clumping hits as fol-
lows. The hits are distributed into buckets of 64k according to their database
positions. In each bucket, hits are bundled into a clump if they are within the gap
limit on the diagonal and the window limit on the database coordinate. To smooth
the boundary cut, the hits and clumps within the window limit of the next bucket
are passed on for possible clumping and extension. If a clump contains a certain
amount of hits, then it defines a region of the database that are homologous to the
query sequence. If two homologous regions of the database are within 300 nu-
cleotides or 100 amino acids, they are merged as one. Finally, each homologous
region is flanked with a few hundred additional residues on both sides.

The alignment stage of BLAT delivers alignments in the homologous regions
found in the clumping process. The alignment procedures for nucleotide se-
quences and protein sequences are different. Both of them work well for aligning
sequences that are closely related.

For nucleotide alignment, the alignment procedure works as follows. It stretches
eachK-mer as far as possible allowing no mismatches. An extendedK-mer forms
a hit if it is unique or exceeds a certain length. Overlapping hits are merged to-
gether. To bridge the gaps among hits, a recursive procedure is employed. A
recursion continues if it finds no additional hits using a smallerK or the gap is no

14

more than five nucleotides.
For protein alignment, the alignment procedure works as follows. The hits are

extended into high-scoring segment pairs (HSPs) by giving a bonus score +2 to
a match and penalizing a mismatch by−1. Let H1 andH2 be two HSPs that are
non-overlapping in both the database and the query sequences, and assume that
H1 precedesH2. An edge is added to connect fromH1 to H2, where the edge
weight is the score ofH2 minus the gap cost based on the distance betweenH1

andH2. For those overlapping HSPs, a cutting point is chosen to maximize the
score of the joint HSP. Then a dynamic-programming method is used to find the
maximal-scoring path,i.e., the maximal-scoring alignment, in the graph one by
one until all HSPs are reported in some alignment.

5 PatternHunter

As discussed in Section 3, BLAST computes HSPs by extending so-called “hits”
or “seeds” between the query sequence and the database sequence. The seeds used
by BLAST are short contiguous word matches. Some homologous regions might
be missed if they do not contain any seed.

An advanced homology search program named PatternHunter has been devel-
oped to enhance the sensitivity by finding short word matches under a spaced seed
model. A spaced seed is represented as a binary string oflengthl , where a “1” bit
at a position means that a base match is required at the position, and a “* ” bit at a
position means that either a base match or mismatch is acceptable at the position.
The number of 1 bits in a spaced seed is theweightof the seed. For example, the
wordsACGTCandATGACform a word match under spaced seed1*1*1 , but not
under11**1 . Note that BLAST simply uses a consecutive model that consists of
consecutive 1s, such as11111 .

In general, a spaced seed model shares fewer 1s with any of its shifted copies
than the contiguous one. Define the number of overlapping 1s between a model
and its shifted copy as the number of 1s in the shifted copy that correspond to 1s
in the model. The number of non-overlapping 1s between a model and its shifted
copy is the weight of the model minus the number of overlapping 1s. If there
are more non-overlapping 1s between the model and its shifted copy, then the
conditional probability of having another hit given one hit is smaller, resulting in
higher sensitivity.

A model of lengthl hasl−1 shifted copies. For a modelπ of lengthl , the sum
of overlapping hit probabilities between the model and each of its shifted copies,

15

φ(π, p), is calculated by the equation

φ(π, p) =
l−1

∑
i=1

pni , (1)

wherep is the similarity level andni denotes the number of non-overlapping 1s
between the modelπ and its ith shifted copy. Figure 11 computesφ(π, p) for
π=1*11*1 .

i ith shifted
copy

non-overlapping 1s overlapping hit probability

0 1*11*1
1 1*11*1 3 p3

2 1*11*1 2 p2

3 1*11*1 2 p2

4 1*11*1 4 p4

5 1*11*1 3 p3

Figure 11: Calculation of the sum of overlapping hit probabilities between the
model π and each of its shifted copies,φ(π, p) = p3 + p2 + p2 + p4 + p3, for
π=1*11*1 .

Both empirical and analytical studies suggest that, among all the models of
fixed length and weight, a model is more sensitive if it has a smaller sum of over-
lapping hit probabilities. A model of lengthl and weightw is anoptimalmodel
if its φ value is minimum among all models of lengthl and weightw. For exam-
ple, the spaced seed model111*1**1*1**11*111 used in PatternHunter is an
optimal one for length 18 and weight 11 with similarity levelp = 0.7.

In order to calculate the value ofφ for a spaced seed model, we need to count
the number of non-overlapping 1s between the model and each of its shifted
copies, which can be computed by subtracting the number of overlapping 1s
from the weightw. This can be done by a straightforward dynamic-programming
method, which takesO(`2) time to computeφ for any model of length̀. By ob-
serving that at mostO(`) bit overlaps differ for two models with only one pair
of * and 1 swapped, one can develop anO(`) time algorithm for updating the
numbers of non-overlapping 1s for a swapped model. This suggests a practical
computation method for evaluatingφ values of all models by orderly swapping
one pair of* and 1 at a time.

16

Given a spaced seed model, how can one find all the hits? Recall that only
those 1s account for a match. One way is to employ a hash table like Figure 1 for
exact word matches but use a spaced index instead of a contiguous index. Let the
spaced seed model be of length` and weightw. For DNA sequences, a hash table
of size4w is initialized. Then we scan the sequence with a window of size` from
left to right. We extract the residues corresponding to those 1s as the index of the
window (see Figure 12). T

… …… …… …… …… …… …AG TTCTACC 1021 9876543
CACTCATCTTTTGAC010001 (17)100001 (33)110100 (52)110111 (55)111111 (63)
AAA000000 (0) ATC001101 (13) 123457
ATT001111 (15) 6… …010100 (20) CCTATG001110 (14)

Figure 12: A hash table forGATCCATCTTunder a weight three model11*1 .

Once the hash table is built, the lookup can be done in a similar way. Indeed,
one can scan the other sequence with a window of size` from left to right and
extract the residues corresponding to those 1s as the index for looking up the hash
table for hits.

Hits are extended diagonally in both sides until the score drops by a certain
amount. Those extended hits with scores exceeding a threshold are collected as

17

user
註解
010111 (23)

user
打字機文字
010100 (20) --> 010111(23)

high-scoring segment pairs (HSPs). As for the gap extension of HSPs, a red-black
tree with diagonals as the key is employed to manipulate the extension process
efficiently.

18

