Designing small universal k-mer hitting sets for improved analysis of high throughput sequencing

Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C

PLOS Computational Biology. 2017 October; 13(10): e1005777

Hung-Yu Chen, R06945024
Vincent Hwang, B05902122
Outline

- Background
- Methods and results
- Conclusion
· Sequencing datasets are larger and larger.
· New computational ideas are essential to manage and analyze data.
Minimizer

- Given a sequence of length L, the minimizer is the lexicographically smallest k-mer in it.
- Given a sequence S of any length, the minimizer set is the set of minimizers of every L-long subsequence in S.

\[\implies\] Every L-long subsequence in S is represented in the set.
Application of Minimizers

- Hashing for read overlapping
- Sparse suffix arrays
- Bloom filters to speed up sequence search
$L = 6, \ k = 3$

R1: CATCGACA

minimizers: ATC, ACA

R2: ACTCGACA

minimizers: ACT, CGA, ACA

R3: GAGCTTGC

minimizers: AGC, CTT

Table:

<table>
<thead>
<tr>
<th></th>
<th>AAA</th>
<th>AAC</th>
<th>...</th>
<th>ACA</th>
<th>...</th>
<th>ACT</th>
<th>AGC</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Test R1 and R2.
Sparse suffix arrays

<table>
<thead>
<tr>
<th>Index</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGTCGACT</td>
</tr>
<tr>
<td>2</td>
<td>GTCGACT</td>
</tr>
<tr>
<td>3</td>
<td>TCGACT</td>
</tr>
<tr>
<td>4</td>
<td>CGACT</td>
</tr>
<tr>
<td>5</td>
<td>GACT</td>
</tr>
<tr>
<td>6</td>
<td>ACT</td>
</tr>
<tr>
<td>7</td>
<td>CT</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
</tr>
</tbody>
</table>

Suffix Array

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>6</td>
</tr>
<tr>
<td>AGTCGACT</td>
<td>1</td>
</tr>
<tr>
<td>CGACT</td>
<td>4</td>
</tr>
<tr>
<td>CT</td>
<td>7</td>
</tr>
<tr>
<td>GACT</td>
<td>5</td>
</tr>
<tr>
<td>GTCGACT</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>8</td>
</tr>
<tr>
<td>TCGACT</td>
<td>3</td>
</tr>
</tbody>
</table>

Sparse Suffix Array

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>6</td>
</tr>
<tr>
<td>CGACT</td>
<td>4</td>
</tr>
<tr>
<td>GTCGACT</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>8</td>
</tr>
</tbody>
</table>

To query a string q, perform at most s queries starting from indices 0, ..., $s-1$ in q.

$s = 2$

To query a string q, find q's minimizers and search strings starting with these minimizers.

When $L = 6$, $k = 3$, minimizers: AGT, CGA, ACT
Bloom filter

- A bit array.
- A constant number of different hash functions are defined to map elements to the array.
- Supports two operations: “storing an element in the set” and “checking if an element is in the set.”
- Can generate false positives during querying.

![Bloom filter diagram](image)
Universal hitting set (UHS)

- For integers k, L, a set $U_{k,L}$ is called a UHS of k-mers if every possible sequence of length L must contain at least one k-mer in $U_{k,L}$.
- For example, the set of all k-mers is a trivial UHS.
- **Problem 1.** Given k and L, find a smallest UHS of k-mers.
A k-mer w hits string S, denoted $w \subseteq S$, if w is a substring in S.

k-mer set X hits string S if there exists $w \in X$ such that $w \subseteq S$.

The UHS in Problem 1 is a set of k-mers $U_{k,L}$ which hits every possible sequence of length L.

Advantages of UHS over minimizers

- The set of minimizers may be as large as the complete set of k-mers. The method in this paper can often generate UHSs smaller by a factor of nearly k.
- UHS is universal.
 - For any k and L, a UHS needs to be computed only once for every dataset.
 - The data structures created for different datasets will contain a comparable set of k-mers.
Problem 2. Given a complete de Bruijn graph D_k of order k and an integer L, find a smallest set of vertices $U_{k,L}$ such that any path in D_k of length $l = L - k$ passes through at least one vertex of $U_{k,L}$.
A complete de Bruijn graph of order k over alphabet Σ:

- V: $|\Sigma|^k$ vertices, each labelled with a unique k-mer.
- E: If there is an edge (u, v) with a $(k + 1)$-mer label l, then the label of vertex u is the k-suffix of l and the label of vertex v is the k-prefix of l. A complete de Bruijn graph contains all possible $|\Sigma|^{k+1}$ edges of this type.

A complete de Bruijn graph of order 3 over alphabet $\{0, 1\}$

$= B(2, 4)$

A complete de Bruijn graph of order k over alphabet Σ

$= B(|\Sigma|, k+1)$

Image from Genome Reconstruction by Phillip E. C. Compeau and Pavel A. Pevzner
How to find the UHS?

- NP-hard in general (supporting information in the paper).
- Heuristic approaches. (DOCKS, DOCKSany, DOCKSanyX)
How to find UHS?

1. Generate a complete de Bruijn graph of order \(k \), set \(l = L - k \).
2. Find the decycling vertex set (V set), \(X \).
3. Remove \(X \) from the graph, result in \(G' \).
4. Remove vertices from \(G' \) and add them to \(S \) to hit the remained \(L \) length sequences.
 (i) DOCKS
 (ii) DOCKSany
 (iii) DOCKSanyX
5. \(X \) is the universal hitting set we’re searching for.
Decycling de Bruijn graph

- Vertices labeling
- Factor
- Pure cycling register(PCR_k)
- V-set
Decycling de Bruijn graph

Designing small universal k-mer hitting sets for improved analysis of high throughput sequencing Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C

PLoS Computational Biology. 2017 October; 13(10): e1005777
Vertices labeling

For a vertex $v(s_0, s_1, \ldots, s_{k-1})$, calculate the center of mass. According to the center of mass position in the coordinate system, label the vertex I if $x = 0$, L if $x < 0$, R if $x > 0$,
Vertex labeling example

\[v = 010111, \text{ the center of mass' } x \text{ value } > 0. \implies R. \]
A factor is a set of cycles such that all vertices in the graph are in exactly one of the cycles. Each cycle has a unique feedback function $f(s_0, s_1, \ldots, s_{k-1}) = s_k$.
Pure cycling register(PCR_k)

- PCR_k is a factor.
- Each cycle has a unique function $f(s_0, s_1, \ldots, s_{k-1}) = s_k = s_0$, that is, for every arc $<u, v>$, $u = (s_0, s_1, \ldots, s_{k-1}) \implies v = (s_1, s_2, \ldots, s_k) = (s_1, s_2, \ldots, s_0)$.
- The number of cycles in PCR_k is $Z(k)$, which converges to $\frac{|\Sigma|^k}{k}$.
- It is proved that any circle in the PCR_k must be either all I’s or a block of L’s and a block of R’s separated by at most two I’s.
PCR_k example
Factor but not PCR_k example
Why PCR_k?

Lemmas tell us:

- All cycles are in the form of all I’s or at least a L and a R.
- Cycles with all I’s are in PCR_k.
- For each cycle with at least a L and a R, there exist exactly one cycle in PCR_k such that the first vertex of L block of the two cycles are the same one.

\implies We only need to deal with cycles in PCR_k.

A minimum set of vertices which when removed leaves a graph with no cycles.
V-set

Naïve algorithm:
1. Choose a vertex \(v \), find the cycle belongs to \(PCR_k \) that contains \(v \).
2. Choose a certain vertex \(u \) and add it to the V-set:
 - Arbitrary one, if the cycle is all \(l \)'s.
 - The first vertex in the \(L \) block, otherwise.
3. Remove the cycle from the graph.
4. Repeat until all cycles belong to \(PCR_k \) are tested.
V-set example

V-set example

000 010 111 110
Time complexity analysis

There are $Z(k)$ iterations. Find the vertex to be added with $O(k)$ time cost in every iteration.

$$\implies O(kZ(k)) = O(|\Sigma|^k) \text{ in total.}$$
How to find Minimum UHS?

1. Generate a complete de Bruijn graph of order k, set $l = L - k$.
2. Find the decycling vertex set (V set), X.
3. Remove X from the graph, result in G'.
4. Remove vertices from G' and add them to S to hit the remained L length sequences.
 (i) DOCKS
 (ii) DOCKSany
 (iii) DOCKSanyX
5. X is the universal hitting set we’re searching for.
Define:

\[D(v, i) = \text{the number of } i\text{-long paths starting at } v \]
\[F(v, i) = \text{the number of } i\text{-long paths ending at } v \]

\[T(v, l) = \text{the number of } l\text{-long paths through } v \]
\[= \sum_{i=0}^{l} F(v, i) \cdot D(v, l - i) \]

- Calculate \(D(-, -) \), \(F(-, -) \) to find \(T(-, l) \).
- Choose the one has the largest \(T(-, l) \) and extract it.
- Repeat until no such vertex \((p \text{ iterations})\).
- \(O((1 + p)|\Sigma|^{k+1} \cdot l) \)
DOCKS performance (set size)

Fig A

A

GreedyL / DOCKS

set size

k

5

6

7

8

9

10

L - sequence length

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
DOCKS performance (runtime)
DOCKS performance (memory)

Define:

\[D(v) = \text{the number of paths start at } v \]
\[F(v) = \text{the number of paths end at } v \]

\[T(v) = \text{the number of paths through } v \]

\[= F(v) \cdot D(v) \]

\[T(v) = \text{the number of paths through } v \]

- Calculate \(D(_), F(_ _ \) to find \(T(_ _ \) .
- Choose the one has the largest \(T(_ _ \) and extract it.
- Repeat until no paths of length \(l \) (\(p \) iterations).
- \(O((1 + p)|\Sigma|^{k+1}) \)
DOCKSany performance (set size)

Fig C
DOCKSany performance (runtime)

Designing small universal k-mer hitting sets for improved analysis of high throughput sequencing Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C

PLoS Computational Biology. 2017 October; 13(10): e1005777
DOCKSany performance (memory)
Same calculation as DOCKSany.
Extract at most x such vertices instead of just one.
DOCKSanyX performance (set size)

Fig D

A

L - sequence length

DOCKSanyX / DOCKS
set size

的设计和优化分析方法为高通量测序提供改进。

DOCKSanyX performance (runtime)
DOCKSanyX performance (memory)
DOCKS can generate compact sets of k-mers that hit all L-long sequences for any $k \leq 13$ and L.

These compact sets can improve many of the applications that currently use minimizers.