National Taiwan University

Designing small universal k-mer hitting sets for improved analysis of high throughput sequencing

Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C

PLOS Computational Biology. 2017 October; 13(10): e1005777

Hung-Yu Chen, R06945024 Vincent Hwang, B05902122

Outline

- · Background
- · Methods and results
- · Conclusion

Background

- · Sequencing datasets are larger and larger.
- \cdot New computational ideas are essential to manage and analyze data.

Minimizer

- · Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, James A. Yorke; Reducing storage requirements for biological sequence comparison, Bioinformatics, Volume 20, Issue 18, 12 December 2004, Pages 3363—3369
- \cdot Given a sequence of length L, the minimizer is the lexicographically smallest k-mer in it.
- \cdot Given a sequence S of any length, the minimizer set is the set of minimizers of every L-long subsequence in S.
- \implies Every *L*-long subsequence in *S* is represented in the set.

Application of Minimizers

- · Hashing for read overlapping
- · Sparse suffix arrays
- · Bloom filters to speed up sequence search

Hashing for read overlapping

L = 6, k = 3R1:CATCGACA

minimizers: ATC, ACA

R2:ACTCGACA

minimizers: ACT, CGA, ACA

R3:GAGCTTGC

minimizers: AGC, CTT

Sparse suffix arrays

Sparse Suffix Array To query a string q,

perform at most s queries starting from

indices $0, \dots, s-1$ in q.

6 To query a string q, find q's minimizers and search strings starting with these minimizers.

When L = 6, k = 3. minimizers: AGT, CGA, ACT

Designing small universal k-mer hitting sets for improved analysis of high throughput sequencing Orenstein Y, Pellow D, Marcais G, Sha

Bloom filters to speed up sequence search

Bloom filter

- A bit array.
- A constant number of different hash functions are defined to map elements to the array.
- Supports two operations: "storing an element in the set" and "checking if an element is in the set."
- Can generate false positives during querying.

Universal hitting set(UHS)

- · For integers k, L, a set $U_{k,L}$ is called a UHS of k-mers if every possible sequence of length L must contain at least one k-mer in $U_{k,L}$.
- \cdot For example, the set of all k-mers is a trivial UHS.
- · **Problem 1**. Given k and L, find a smallest UHS of k-mers.

- · A k-mer w hits string S, denoted $w \subseteq S$, if w is a substring in S.
- · k-mer set X hits string S if there exists $w \in X$ such that $w \subseteq S$.
- · The UHS in Problem 1 is a set of k-mers $U_{k,L}$ which hits every possible sequence of length L.

Advantages of UHS over minimizers

- \cdot The set of minimizers may be as large as the complete set of k-mers. The method in this paper can often generate UHSs smaller by a factor of nearly k.
- · UHS is universal.
- \implies For any k and L, a UHS needs to be computed only once for every dataset.
- \implies The data structures created for different datasets will contain a comparable set of k-mers.

Using de Bruijn graphs to find UHSs

• **Problem 2.** Given a complete de Bruijn graph D_k of order k and an integer L, find a smallest set of vertices $U_{k,L}$ such that any path in D_k of length I = L - k passes through at least one vertex of $U_{k,L}$.

Complete de Bruijn graph

- · A complete de Bruijn graph of order k over alphabet Σ :
 - $V: |\Sigma|^k$ vertices, each labelled with a unique k-mer.

E: If there is an edge (u,v) with a (k+1)-mer label I, then the label of vertex u is the k-suffix of I and the label of vertex v is the k-prefix of I. A complete de Bruijn graph contains all possible $|\Sigma|^{k+1}$ edges of this type.

Image from Genome Reconstruction by Phillip E. C. Compeau and Pavel A. Pevzner

How to find the UHS?

- · NP-hard in general(supporting information in the paper).
- · Heuristic approaches.(DOCKS, DOCKSany, DOCKSanyX)

How to find UHS?

- 1. Generate a complete de Bruijn graph of order k, set l = L k.
- 2. Find the decycling vertex set(V set), X.
- 3. Remove X from the graph, result in G'.
- 4. Remove vertices from G' and add them to S to hit the remained L length sequences.
- (i) DOCKS
- (ii) DOCKSany
- (iii) DOCKSanyX
- 5. *X* is the universal hitting set we're searching for.

Decycling de Bruijn graph

- · Vertices labeling
- · Factor
- · Pure cycling register(PCR_k)
- · V-set

Decycling de Bruijn graph

Vertices labeling

For a vertex $v(s_0, s_1, \ldots, s_{k-1})$, calculate the center of mass. According to the center of mass position in the coordinate system, label the vertex I if x = 0, L if x < 0, R if x > 0,

Vertex labeling example

v = 010111, the center of mass' x value > 0. $\implies R$.

Factor

- \cdot A factor is a set of cycles such that all vertices in the graph are in exactly one of the cycles.
- · Each cycle has a unique feedback function $f(s_0, s_1, \dots, s_{k-1}) = s_k$.

Pure cycling register(PCR_k)

- · PCR_k is a factor.
- · Each cycle has a unique function $f(s_0, s_1, \ldots, s_{k-1}) = s_k = s_0$, that is, for every arc $\langle u, v \rangle$, $u = (s_0, s_1, \ldots, s_{k-1}) \Longrightarrow v = (s_1, s_2, \ldots, s_k) = (s_1, s_2, \ldots, s_0)$.
- · The number of cycles in PCR_k is Z(k), which converges to $\frac{|\Sigma|^k}{k}$.
- · It is proved that any circle in the PCR_k must be either all l's or a block of L's and a block of R's separated by at most two l's.

PCR_k example

Factor but not PCR_k example

Lemmas tell us:

- · All cycles are in the form of all I's or at least a L and a R.
- · Cycles with all l's are in PCR_k .
- · For each cycle with at least a L and a R, there exist exactly one cycle in PCR_k such that the first vertex of L block of the two cycles are the same one.
- \implies We only need to deal with cycles in PCR_k .

A minimum set of vertices which when removed leaves a graph with no cycles.

Naïve algorithm:

- 1. Choose a vertex v, find the cycle belongs to PCR_k that contains v.
 - 2. Choose a certain vertex *u* and add it to the V-set: Arbitrary one, if the cycle is all *l*'s. The first vertex in the *L* block, otherwise.
 - 3. Remove the cycle from the graph.
 - 4. Repeat until all cycles belong to PCR_k are tested.

V-set example

V-set example

O

110

Time complexity analysis

There are Z(k) iterations. Find the vertex to be added with O(k) time cost in every iteration.

 $\implies O(kZ(k)) = O(|\Sigma|^k)$ in total.

How to find Minimum UHS?

- 1. Generate a complete de Bruijn graph of order k, set l = L k.
- 2. Find the decycling vertex set(V set), X.
- 3. Remove X from the graph, result in G'.
- 4. Remove vertices from G' and add them to S to hit the remained L length sequences.
- (i) DOCKS
- (ii) DOCKSany
- (iii) DOCKSanyX
- 5. *X* is the universal hitting set we're searching for.

DOCKS

Define:

$$D(v, i) =$$
 the number of *i*-long paths starting at v
 $F(v, i) =$ the number of *i*-long paths ending at v

 \Longrightarrow

$$T(v, l)$$
 = the number of l -long paths through v
= $\sum_{i=0}^{l} F(v, i) \cdot D(v, l - i)$

- · Calculate D(-,-), F(-,-) to find T(-,l).
- · Choose the one has the largest T(-, I) and extract it.
- · Repeat until no such vertex(p iterations).
- $\cdot O((1+p)|\Sigma|^{k+1} \cdot I)$

DOCKS performance(set size)

DOCKS performance(runtime)

DOCKS performance(memory)

DOCKSany

Define:

$$D(v)$$
 = the number of paths start at v
 $F(v)$ = the number of paths end at v

 \Longrightarrow

$$T(v)$$
 = the number of paths through v
= $F(v) \cdot D(v)$

- · Calculate D(-), F(-) to find T(-).
- · Choose the one has the largest T(-) and extract it.
- \cdot Repeat until no paths of length I(p) iterations).
- $\cdot O((1+p)|\Sigma|^{k+1})$

DOCKSany performance(set size)

DOCKSany performance(runtime)

DOCKSany performance(memory)

DOCKSanyX

Same calculation as DOCKSany. Extract at most x such vertices instead of just one.

DOCKSanyX performance(set size)

DOCKSanyX performance(runtime)

DOCKSanyX performance(memory)

Conclusion

- \cdot DOCKS can generate compact sets of k-mers that hit all L-long sequences for any $k \leq 13$ and L.
- \cdot These compact sets can improve many of the applications that currently use minimizers.