MEIOTIC DRIVE

Spindle asymmetry drives non-Mendelian chromosome segregation

Takashi Akera,¹ Lukáš Chmátal,¹ Emily Trimm,¹ Karren Yang,¹ Chanat Aonbangkhen,² David M. Chenoweth,² Carsten Janke,^{3,4} Richard M. Schultz,¹ Michael A. Lampson^{1*}

王擎天,朱柏昇,張家瑜

Mendelian inheritance (1866)

- Law of Segregation
- Law of Independent Assortment
- Law of Dominance

Gregor Mende (1822 - 1884) wikipedia

Law of segregation(分離定律)

- Every individual organism contains two alleles(等位基因) for each trait
- Alleles segregate during meiosis each gamete contains only one of the alleles

Law of Independent Assortment(獨立分配定律)

 The separation and combination of genetic elements that control different traits do not interfere with each other

Law of Dominance (顯性法則)

• Recessive alleles will always be masked by dominant alleles.

Theory of Evolution

I think

"Survival of the **fittest**"

Charles Darwin, Op-

of Species (1859)?

Eng of ulition. C+B.The fint production, B + D rather greater histachen

wikimedia http://www.macleans.ca/wp-content/uploads/2013/02/5519745603_e6be133cf8.jpg

Theory of Evolution

I think

"Survival of the *fittest*"

Herbert Spencer, Principles of Biology (1864)

"Survival of the successful reproducers"

Evolution is change in the heritable characteristics of biological populations over successive generations.
In evolution, fitness simply means reproductive success and reflects how well an organism is adapted to its environment.
All life on Earth shares a common ancestor.

wikimedia

http://www.macleans.ca/wp-content/uploads/2013/02/5519745603_e6be133cf8.jpg

The selfish gene (The Immortal Gene)

Richard Dawkins, 1966

rather greater histadem

I think

- Gene centered view of Evolution
- Evolution occurs through the differential survival of competing genes, increasing the allele frequency of those alleles whose phenotypic trait effects successfully promote their own propagation.

Richard Dawkins

wikipedia

Numbers of genes

Organism	# of protein coding genes	# of genes by prediction	
HIV	9	10	viruses
Influenze A virus	11	14	
Bacteriophage	66	49	
Buchnera sp.	610	640	prokaryotes
T. maritima	1900	1900	
E. coli	4300	4600	
E. coli S. cerevisiae	4300 6600	4600 12000	eukaryotes
E. coli S. cerevisiae C. elegans	4300 6600 20000	4600 12000 100000	eukaryotes
E. coli S. cerevisiae C. elegans D. melanogaster	4300 6600 20000 14000	4600 12000 100000 140000	eukaryotes
E. coli S. cerevisiae C. elegans D. melanogaster M. musculus	4300 6600 20000 14000 20000	4600 12000 100000 140000 2800000	eukaryotes

Chromosome theory (1902)

"Chromosomes are the carriers of genetic material (genes)."

Walter Sutton (left) Theodor Boveri (right)

Chromosome structure

Junk DNAs (1)

- Susumu Ohno (大野乾)
- Noncoding region of the genome.
- Any DNA sequence that does not play a functional role in development, physiology, or some other organism-level capacity

Sur on Ohno

Junk DNAs (2)

National Human Genome Research Institute

- ENCODE Project
- Goal:
 - Mapping and characterizing the functionality of the entire human genome.

"These data enabled us to assign biochemical functions for **80%** of the genome, in particular outside of the well studied protein-coding regions. "

The ENCODE Project Consortium

2012, Nature

Junk DNAs (3)

Viewpoints

The Case for Junk DNA

Alexander F. Palazzo¹*, T. Ryan Gregory²*

1 University of Toronto, Department of Biochemistry, Toronto, Ontario, Canada, 2 University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada

"... We examine several lines of evidence that support the notion that a substantial percentage of the DNA in many eukaryotic genomes lacks an organism-level function and that **the junk DNA concept remains viable post-ENCODE**."

Alexander F. Palazzo , T. Ryan Gregory

2014, PLOS Genetic

Genome structure (1)

Genome: The genetic material of an organism.

(T. Ryan Gregory, *Nature Reviews Genetics,* 2005)

Genome structure (2)

Main components of human genome

⁽T. Ryan Gregory, *Nature Reviews Genetics,* 2005)

Genome structure (1)

Genome: The genetic material of an organism.

(T. Ryan Gregory, *Nature Reviews Genetics,* 2005)

Tandem repeats (TRs, Simple sequence repeat)

- Microsatellites (1-10nt)
- Minisatellites (> 10nt)
- Repeat 5 50 times
- 50,000-100,000 dinucleotide microstaellites in human genome

Tandem repeats (TRs)

- Mutation rate
 - $\circ~10^{\text{-2}}$ $10^{\text{-6}}$ / sexual generation
 - points mutation $(10^{-10} 10^{-11})$ sexual generation) • $(10^{-6}) \times (2 \times 3 \times 10^9) = 6 \times 10^3$ mutations per gen.
- Telomeres
 - TTAGGG 2,500 times in human
 - $\circ~$ 11 kilobases at birth \rightarrow 4 kilobases in old age
- Huntington's disease
 - Expansion of CAG in gene coding region of Huntingtin protein

Genome structure (1)

Genome: The genetic material of an organism.

(T. Ryan Gregory, *Nature Reviews Genetics,* 2005)

Transposable Elements (TE, transposons) (1)

- Barbara McClintock (1902 1992)
- First discovered in Maize (1948)
- 1983 Nobel Prize
- A DNA sequence that can change its position within a genome.

https://images-na.ssl-images-amazon.com/images/I/817ocdJh0-L.jpg https://bookzone.cwgv.com.tw/public/upload/books/BCS/BCS019/cover/thumb/BCS019.png

Transposable Elements (TE, transposons) (2)

- Retrotransposons
 - copy and paste Ο
 - LTRs, LINEs, SINEs Ο
 - Retroviruses \bigcirc

- **DNA transposons** cut-and-paste
 - Transposase Ο

23

Horizontal Transmission of TEs (1)

Horizontal Transmission of TEs (2)

Transfer of carbohydrate active enzymes from marine bacteria to Japanese gut microbita

Hehemann, Nature, 2010

"The consumption of food with associated environmental bacteria is the most likely mechanism that promoted this CAZyme update into the human gut microbe."

Hehemann

Figure 3 | Phylogenetic analysis of GH16 galactanases reveals

(Hehemann, Nature, 2010)

Crossing over

Unequal crossing over

Chromosome translocation

L: https://www.yourgenome.org/facts/what-is-a-chromosome-disorde R: Janssen et al, Science 30 Sep, 2011

The structure of a eukaryotic protein-coding gene

UTR: UnTranslated Regions ORF: Open Reading Frame

Which is bigger, mRNA or the protein it codes for?

Which is bigger, mRNA or the protein it codes for?

Cell division

- mitosis
- meiosis

http://www.lunenfeld.ca/about-us/discovery-corner-stories/hela-c ell-undergoing-mitosis

Sister chromosome and homologous chromosome

http://ib.bioninja.com.au/standard-level/topic-3-genetics/33-meiosis/sister-chromatids.html

http://ib.bioninja.com.au/standard-level/topic-1-cell-biology/16-cell-division/mitosis.html

Meiosis

https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Meiosis_Overview_new.svg/1280px-Meiosis_Overview_new.svg.png

http://ib.bioninja.com.au/standard-level/topic-3-genetics/33-meiosis/stages-of-meiosis.html

Gametogenesis

- spermatogenesis
- oogenesis

http://ib.bioninja.com.au/higher-level/topic-11-animal-physiology/114-sexual-reproduction/gametogenesis.html

Centromere and Kinetochore

http://www.majordifferences.com/2017/03/differences-between-centromere-and-kinetochore.html#.WjUstN-Wbcs38

Spindle fibers

Microtubule and tubulin

https://en.wikipedia.org/wiki/Microtubule

Assembly and Disassembly

Akhmanova and Steinmetz, 2008

https://www.mcb.ucdavis.edu/faculty-labs/al-bassam/research.html

Tyrosine and alpha-tubulin

TTL:tubulin-tyrosine ligase

http://cancerres.aacrjournals.org/content/71/4/1219

Cortical side and egg side

Preferential inheritance during female meiosis

A parasitic DNA sequence in centromeric repeats exploits the asymmetry inherent in female meiosis to bias their chances of transmission to the next generation.

Oocyte

Chromosomes on the cortical side of the oocyte are eliminated in the first polar body during meiosis I.

After meiosis II, one of the chromatids with more parasitic DNA repeats is preferentially inherited.

Strong centromere and week centromere

Chromosome Flipping -I

Chromosome Flipping -II

40 min

-

Spindle asymmetry

A

Conclusion

- Microtubule tyrosination promotes unstable interactions between selfish centromeres and the cortical side of the spindle.
- Spindle asymmetry drives non-Mendelian chromosome segregation
- Selfish centromeres have bigger chance to face toward egg side, and pass their genetic information into next generation.

Take home message

• Selfish meiotic drivers exploit the asymmetry inherent in female meiosis to bias their transmission.

Video link

https://www.youtube.com/watch?v=uNRBZ6ARQp4