
Genomic Sequence Analysis: A Case Study in
Constrained Heaviest Segments

(Working draft)

Kun-Mao Chao1,2,3

1Graduate Institute of Biomedical Electronics and Bioinformatics
2Department of Computer Science and Information Engineering

3Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

Email: kmchao@csie.ntu.edu.tw

Abstract
Methods for genomic sequence analysis have been studied for more

than a decade. One line of investigation is to locate the biologically
meaningful segments, like conserved regions or GC-rich regions in
DNA sequences. A common approach is to assign a real number (also
called scores) to each residue, and then look for the maximum-sum or
maximum-average segment. In this chapter, we address a few interest-
ing applications concerning the search for the “heaviest” segment of a
numerical sequence that naturally arises in the biomolecular sequence
analysis. We also introduce some fundamental algorithmic techniques
for solving them.

Keywords: algorithm, maximum-average segment, maximum-sum segment,
sequence analysis

1 Introduction

With the rapid expansion in genomic data, the age of large-scale biomolecular
sequence analysis has arrived. An important line of research in sequence anal-

1

ysis is to locate biologically meaningful segments, e.g. conserved segments
(Stojanovic et al., 1999), GC-rich regions (Bird, 1987; Gardiner-Garden and
Frommer, 1987; Huang, 1994), non-coding RNA genes (Csűrös, 2004), and
transmembrane segments (Fariselli et al., 2003).

A common approach is to assign a value to each residue, and then look
for consectutive subsequences (substring; segment) with high sum or aver-
age. In order to locate these interesting segments, many combinatorial and
probabilistic techniques have been proposed. Perhaps the most popular ones
are window-based. That is, a window of a fixed length is moved down the
sequence/alignment and the content statistics are calculated at each position
that the window is moved to (Nekrutenko and Li, 2000). Since an optimal
region could span several windows, the window-based approach might fail in
finding the exact locations of some interesting regions.

This chapter surveys recent developments in locating constrained heaviest
segments in a number sequence. We first compile a list of recent applications
in this category. Then we introduce two basic algorithms for solving the
maximum-sum segment problem and the maximum-average segment prob-
lem. Finally, we discuss some possible extensions.

2 Heaviest Segments in Genomic Sequence

Analysis

This section describes the heaviest segments and their applications in ge-
nomic sequence analysis in details to put the problems and some related
results in proper perspective.

2.1 GC-Rich Regions

In all organisms, the GC base composition of DNA varies between 25–75%,
with the greatest variation in bacteria. Mammalian genomes typically have
a GC content of 45-50%. Nekrutenko and Li (2000) showed that the extent
of the compositional heterogeneity in a genomic sequence strongly correlates
with its GC content. Genes are found predominantly in the GC-richest iso-
chore classes. Hence, finding GC-rich regions is an important problem in
gene recognition and comparative genomics.

Huang (1994) used the expression x − p · l to measure the GC richness
of a region, where x is the C+G count of the region, p is a positive constant

2

ratio, and l is the length of the region. In other words, each of nucleotides
C and G is given a reward of 1 − p, and each of nucleotides A and T is
penalized by p. Similar expression was used by Sellers (1984) for recognizing
patterns by mismatch density. A length cutoff L is given to avoid reporting
extremely short optimal regions. Huang extended the well-known recurrence
relation used by Bentley (1986) for solving the maximum sum consecutive
subsequence problem, and derived a linear-time algorithm for computing the
optimal segments with lengths at least L.

Here we explain briefly Huang’s idea for computing the maximum sum
consecutive subsequence of length at least L. Let A = 〈a1, a2, . . . , an〉 be
a DNA sequence of length n. Use w(X) to denote the score of nucleotide
X, i.e. w(G)=w(C)=1 − p, and w(A)=w(T)=−p. Define S(i) to be the
maximum score of regions ending at position i of A, which include the empty
region. The scores S(i) can be computed by the following recurrence:

S(i) =

{
max{S(i− 1) + w(ai), 0} if i > 0,
0 if i = 0.

Now let us shift along the sequence with a window of size L. For each
fixed window, we can compute its score, and then the maximum score of
regions ending at the front of the window with the help of the vector S. This
results in a linear-time method for computing the maximum sum consecutive
subsequence of length at least L.

As noted by Huang, the lengths of the regions reported by the algorithm
are usually much greater than the cutoff L. An immediate implication is
that they might contain some very poor and irrelevant regions. It is there-
fore natural to consider bounding the target regions with additional upper
bound. Lin et al. (2002), and Fan et al. (2003) gave an algorithm that
can be combined with Huang’s algorithm to yield a linear-time algorithm
for computing the maximum sum consecutive subsequence of length between
lower bound L and upper bound U .

Huang (1994) also proposed an interesting alternative measure for finding
GC-rich regions. Namely, given a DNA sequence, one would now attempt to
find segments of length at least L with the highest C+G ratio. Specifically,
each of nucleotides C and G is assigned a score of 1, and each of nucleotides
A and T is assigned a score of 0.

DNA sequence: ATGACTCGAGCTCGTCA

Binary sequence: 00101011011011010

3

The maximum-average segments of the binary sequence correspond to seg-
ments with the highest GC ratio in the DNA sequence.

He noted that such an optimal segment is of length at most 2L − 1.
This observation yields an O(nL)-time algorithm for computing a segment
of length at least L with the highest C+G ratio, where n is the length of the
input sequence. More efficient algorithms for this problem were given by Lin
et al. (2002), Goldwasser et al. (2005), and Chung and Lu (2004).

2.2 CpG Islands

CpG islands are defined as regions of DNA of at least 200bp (i.e. base
pairs) in length with G+C content above 50%, and a ratio of observed vs.
expected CpGs (CG di-nucleotides) at least 0.6 (Gardiner-Garden and From-
mer, 1987). Most of the CpG islands are between 200 and 1400bp with a
majority of them being 200–400bp.

CpG islands often occur in the 5′ regions of genes (Bird, 1987). They are
typically a few hundred to a few thousand bases long. Though the widely ac-
cepted definition of what constitutes a CpG island was proposed by Gardiner-
Garden and Frommer (1987), new definitions and methods for a CpG island
are still in progress (Takai and Jones, 2002).

A Markov chain model was introduced by Durbin et al. (1998) to decide
if a short DNA sequence comes from a CpG island or not. The model consists
of a dinucleotide table, which, for each of the 16 different dinucleotides, gives
the log likelihood ratio of the frequencies of the dinucleotide in CpG islands
and in non-CpG regions. The numbers in the table range from −1.169 for
the dinucleotide TA to 1.812 for the dinucleotide CG. The log-odds score of a
DNA sequence is the sum of the log-odds scores of every dinucleotide in the
sequence. The average score (also called normalized score) of the sequence
is obtained by dividing its score by its length. It is known that CpG islands
and non-CpG regions can be better discriminated by using average scores
than using raw scores. The histogram of the average scores of CpG islands
and non-CpG regions in (Durbin et al., 1998) shows that all non-CpG regions
have average scores less than 0.1 and most of the CpG islands have average
scores greater than 0.1. The average score value of 0.1 could thus be used as
a cutoff in deciding if a sequence comes from a CpG island.

The above Markov chain model can be used to locate CpG islands in
a long genomic sequence by computing the average score for a window of
constant size around every position in the sequence and plotting the scores.

4

However, this approach is not very effective because CpG islands have sharp
boundaries and variable lengths (Durbin et al., 1998). We consider an alter-
native approach to identify CpG islands based on the Markov chain model
and program MAVG.

The input genomic sequence is converted into a sequence of real num-
bers using the dinucleotide table mentioned above. The average (score) of a
segment of the number sequence is the sum of the numbers in the segment
divided by the length of the segment. The core of a CpG island is defined
as a region of length at least 250 bp with the maximum average score. The
full extent of a CpG island is the longest region that does not contain any
sufficiently long (i.e. 250 bp or longer) subregion with average score below
the cutoff. Lin et al. (2003) implemented an algorithm for enumerating k
maximum-average segments with lengths at least L, where L is given pa-
rameter, as a C program called MAVG. The empirical tests suggest that the
programs MAVG and NEWCPGSEEK, which is a popular existing program
for finding CpG islands, are complementary in the sense that a combination
of their may provide a more accurate predication of CpG islands.

2.3 Annotating Multiple Sequence Alignments

Conserved regions in biomolecular sequences are strong candidates for func-
tional elements. The most popular methods to compute conserved regions
all start with a given multiple sequence alignment (Stojanovic et al., 1999;
Stojanovic and Dewar, 2004). Stojanovic et al. (1999) gave several meth-
ods for finding highly conserved regions within previously computed multiple
alignments. Three of the methods are based on assigning a numerical score
to each column of a multiple alignment and then looking for runs of columns
with high cumulative scores. Since the assigned scores may be all positive
(e.g. in the information content case), each examined column could increase
the cumulative score. It follows that the entire alignment could be reported
erroneously as a conserved region. Therefore, it is imperative that each col-
umn score is adjusted by subtracting a positive anchor value. Determining
such an anchor value appropriately for each dataset could make the use of
a program based on the above approach very complicated. An alternative
solution to the above problem is to look for runs of sufficiently many columns
in the multiple alignment with the maximum average (or normalized) score
instead. This can be efficiently computed by the algorithm for the length-
constrained maximum average consecutive subsequence problem.

5

2.4 Post-Processing Sequence Alignments

A new popular approach to gene prediction in the human genome is based on
comparative analysis of human and mouse DNA. The rationale behind this
approach is that similarity between corresponding human and mouse exons
is 85% on average, while similarity between introns is 35% on average (Ar-
slan, Eğecioğlu, and Pevzner, 2001). Though the Smith-Waterman (Smith
and Waterman, 1981) local alignment approach has been very successful in
revealing highly conserved regions by discarding poorly conserved surround-
ing regions, a potential drawback of the method is that it may lead to the
inclusion of arbitrarily poor internal regions (called the mosaic effect).

In an attempt to fix the mosaic effect problem, Zhang et al. (1999) sug-
gested to first run Smith-Waterman type of alignment algorithms and then
post-process the computed alignments. They developed an elegant linear-
time algorithm that decomposes a long alignment into sub-alignments to
avoid the mosaic effect. The method for computing the length-constrained
maximum average consecutive subsequences can be used to locate within an
alignment the region that is sufficiently long and has the maximum degree
of normalized similarity.

2.5 All Maximal Scoring Segments

Ruzzo and Tompa (1999) gave a linear-time algorithm for finding all maximal-
sum segments. The problem arises in biological sequence analysis, where the
maximal-sum segments correspond to regions of unusual composition in a
nucleic acid or protein sequence. See Karlin and Brendel (1992) and Karlin
and Altschul (1993) for some potential applications.

The idea of this linear-time algorithm is to maintain a list of candidates
while processing the sequence. For each candidate segment (i, j), there are
two crucial values: (1) the prefix sum of the first i−1 positions, i.e. P (i−1),
which is referred to as the left prefix sum, and (2) the prefix sum of the first
j positions, i.e. P (j), which is referred to as the right prefix sum. Whenever
we scan in a new positive value, we search the candidate segments from right
to left for the leftmost segment to merge with. The segments to be merged
with must have a lower left prefix sum, and a lower right prefix sum.

6

2.6 Maximum-Scoring Segment Sets

Csűrös (2004) considers the problem of finding maximum-scoring segment
sets. Given a sequence of length n and an integer k ≤ n, we wish to find
a non-intersecting set of k segments with maximum total score. A k-cover
C = {S1, S2, ..., Sk} is a nonintersecting set of segments. The score of a
k-cover C is the sum of its elements’ scores. Csűrös (2004) proposed two
algorithms which are based on the incremental nature of maximal covers. He
first showed that a maximal (k +1)-cover can be obtained from any maximal
k-cover, either (1) by adding a new segment to it, or (2) by removing the
middle of segment in it. This immediately yields an algorithm that finds
a k-cover with maximum score for k ≤ K in O(nK) time where K is an
upper bound on the cover size. On the other hand, he also showed that a
maximal (k− 1)-cover can be created from any maximal k-cover by merging
two segments, or by removing one. This yields an algorithm for finding a
maximal k-cover in O(n log n) time. An improved algorithm was given by
Bengtsson and Chen (2006).

Csűrös (2004) tested his program on M. jannaschii (1.66 Mbp, GenBank
accession NC 000909.1). By a maximum likelihood estimation of segments,
he employed the scores -0.66 if the corresponding nucleotide was A (adenine),
T (thymine), or W (weak), and the scores 0.72 for G (guanine), C(cytosine),
or S (strong). The smallest maximal cover that includes all tRNAs has size
k = 38. That cover also includes all rRNAs, RNase P RNA, and SRP 7S
genes. The maximal 46-cover contains all RNA genes of Klein et al. (2002),
including Mj6a, not discovered by either the HMM or the sliding windows of
Schattner (2002). The 46-cover intersects only one more protein-coding gene
than the 38-cover.

3 Two Basic Algorithms

This section introduces some algorithmic techniques for solving the maximum-
sum segment problem and the maximum-average problem.

3.1 The maximum-sum segment problem

Given a sequence of real numbers A = 〈a1, a2, . . . , an〉, the maximum-sum
segment problem is to find a consecutive subsequence (i.e., a substring or
segment) in A with the maximum sum. For each position i, we can compute

7

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

S(i) 9 6 7 14 –1 2 5 1 3 –4 6 4 12 16 7

Figure 1: A = 〈 9, -3, 1, 7, -15, 2, 3, -4, 2, 7, 6, -2, 8, 4, -9 〉. The maximum-sum
segment of A is 〈 6, -2, 8, 4 〉, whose sum is 16.

the maximum-sum segment ending at that position in O(i) time. Therefore,
a naive algorithm runs in

∑n
i=1 O(i) = O(n2) time.

Now let us describe a more efficient dynamic-programming algorithm for
this problem (Bentley, 1986; Cormen et al., 1999). Define S(i) to be the
maximum sum of segments ending at position i of A. The value S(i) can be
computed by the following recurrence:

S(i) =

{
ai + max{S(i− 1), 0} if i > 1,
a1 if i = 1.

If S(i − 1) < 0, concatenating ai with its previous elements will give
smaller sum than ai itself. In this case, the maximum-sum segment ending
at position i is ai itself.

By a tabular computation, each S(i) can be computed in constant time
from i = 1 to i = n, therefore in total O(n) time. During the computation, we
also need to record the largest entry computed so far in order to report where
the maximum-sum segment ends. We also record the traceback information
for each position i so that we can trace back from the end position of the
maximum-sum segment to its start position. If S(i − 1) > 0, we need to
concatenate with previous elements for a larger sum, therefore the traceback
symbol for position i is “←.” Otherwise, “↑” is recorded. The traceback
information can be used to quickly construct the maximum-sum segment by
following the arrows until a “↑” is reached. Figure 1 illustrates the process.

Let prefix sum P (i) =
∑i

j=1 aj be the sum of the first i elements. It

can be easily seen that
∑j

k=i ak = P (j) − P (i − 1). Therefore, if we wish
to compute for a given position the maximum-sum segment ending at it, we
could just look for a minimum prefix sum ahead of this position. This yields
another linear-time algorithm for the maximum-sum segment problem.

8

3.2 The maximum-average segment problem

Given a sequence of real numbers, A = 〈a1, a2, . . . , an〉, the maximum-average
segment problem is to find, for each position i, a consecutive subsequence
of A starting at that position such that the average value of the numbers
in the subsequence is maximized. Lin et al. (2002) gave a very interesting
linear-time algorithm for solving this problem.

By using a technique of partitioning each suffix of A into chain of right-
skew substrings, which will be defined later, we can answer for each position
i, a consecutive subsequence of A starting at that position such that the
average value of the numbers in the subsequence is maximized. We show
that this right-skew decomposition can be done in O(n) time by scanning
all suffices from the shortest to the longest. The algorithmic details of the
techniques used are somewhat involved. For a reader interested in them, we
continue with a more detailed overview of the right-skew decomposition.

Let w(A) =
∑n

i=1 ai be the sum of elements of A. Furthermore, let
d(A) = |A| = n, be the length of the sequence A. The average of A is defined
as µ(A) = w(A)/d(A). The definition below is the key to the construction.

Definition 1 A sequence A = 〈a1, a2, . . . , an〉 is right-skew if and only if
the average of any prefix 〈a1, a2, . . . , ai〉 is always less than or equal to the
average of the remaining suffix subsequence 〈ai+1, ai+2, . . . , an〉. A partition
A = A1A2 · · ·Ak is decreasingly right-skew if each segment Ai of the partition
is right-skew and µ(Ai) > µ(Aj) for any i < j .

The following are some useful properties of right-skew segments and their
averages.

Lemma 1 (Combination) Let A,B be two sequences with µ(A) < µ(B).
Then µ(A) < µ(AB) < µ(B).

Proof. Let λ = d(A)/d(AB). We have µ(AB) = λµ(A) + (1− λ)µ(B). The
result is true because 0 < λ < 1. ¤

Lemma 2 Let A,B be two right-skew sequences with µ(A) ≤ µ(B). Then
the sequence AB is also right-skew.

Proof. Consider a prefix P of AB. Clearly, µ(P) ≤ µ(B) if P = A. If P
is a proper prefix of A, i.e. A = PY for some nonempty sequence Y , then

9

Report-DRS-Part(i, p[·])
Input: i denoting the suffix sequence 〈ai, ai+1, . . . , an〉; p[·]: right-skew pointers of A.
Output: The decreasingly right-skew partition of the suffix.
1 while i ≤ n do B Reports 〈ai, . . . , aj〉 as a right-skew segment.
2 Output (i, p[i]); i ← p[i] + 1

Figure 2: Reporting the decreasingly right-skew partition of a suffix sequence.

DRS-Point(A)
Input: A sequence A = 〈a1, a2, . . . , an〉.
Output: n right-skew pointers of A, encoded by array p[·].
1 for i ← n downto 1 do
2 p[i] ← i; w[i] ← w(ai); d[i] ← d(ai); B Each 〈ai〉 alone is right-skew.
3 while (p[i] < n) and (w[i]/d[i] ≤ w[p[i] + 1]/d[p[i] + 1]) do
4 w[i] ← w[i] + w[p[i] + 1]
5 d[i] ← d[i] + d[p[i] + 1]
6 p[i] ← p[p[i] + 1]

Figure 3: Setting up the right-skew pointers in O(n) time.

we have µ(P) ≤ µ(A) ≤ µ(Y) by Lemma 1. Hence, µ(P) ≤ µ(Y B) since
µ(P) ≤ µ(B).

On the other hand, if P contains a proper prefix of B, i.e. B = CD and
P = AC for some nonempty sequences C and D, then µ(C) ≤ µ(B) ≤ µ(D).
Hence, µ(P) = µ(AC) ≤ µ(D) since µ(A) ≤ µ(B) ≤ µ(D). ¤

Each suffix of A, 〈ai, . . . , an〉, defines a decreasingly right-skew partition,

denoted as A
(i)
1 A

(i)
2 · · ·A(i)

k , for some k ≥ 1. Suppose that A
(i)
1 = 〈ai, . . . , ap[i]〉,

where p[i] is called the right-skew pointer of index i. Note that the right-skew
pointers of A implicitly encode the decreasingly right-skew partitions for each
suffix 〈ai, . . . , an〉 of A. Given the right-skew pointers, one can easily report
the decreasingly right-skew partitions of a suffix as illustrated in Figure 2.
Interestingly, we can compute all right-skew pointers in linear time.

Lemma 3 The algorithm DRS-Point given in Figure 3 computes all right-
skew pointers for a length n sequence in O(n) time.

Proof. Consider the algorithm DRS-Point shown in Figure 3. The working

10

pointer i scans the elements of A from right to left. By Lemma 2, two
increasingly right-skew segments can be grouped into one right-skew segment
and hence, the pair (i, p[i]) always represents a segment of A that is right-skew
throughout the entire algorithm. The correctness of the algorithm follows
from the fact that the right-skew pointers found by the algorithm encode a
partition of each suffix of A with strictly decreasing averages.

We can analyze the time complexity of the algorithm by an amortized
argument. We conclude that the amortized cost of each iteration of the
for-loop is just a constant.

In short, we deposit a credit whenever a correct value of the right-skew
pointer p[·] is found. Later on, when the algorithm needs to advance the
p[·] pointer in the while-loop, the skipping cost can be charged to the pre-
deposited credits. Since exactly n credits are deposited in the entire process,
the while-loop spends at most overall O(n) time. ¤

It should be noted that (i, p[i]) is the maximum-average segment of A
starting at position i. Readers are encouraged to define the “left-skew de-
composition” and locate the maximum-average segments ending at each po-
sition.

4 Discussion

This chapter briefly surveys a few fundamental problems concerning the
search for the “heaviest” segment of a numerical sequence that naturally
arises in the biomolecular sequence analysis. Two fundamental algorithms
are presented to help the readers understand the basic techniques used in
this line of investigation.

This has been an exciting new research theme in recent years. Other
related interesting topics include the problems of locating the longest and
shortest heaviest segments (Allison, 2003; Wang and Xu, 2003; Chen and
Chao, 2005), the maximum segments with a constrained length (Fariselli et
al., 2003), the range maximum-sum segment query (Chen and Chao, 2004),
the k maximum-sum segments (Bae and Takaoka, 2004; Bengtsson and Chen,
2004; Cheng et al., 2005), and the disjoint segments with maximum sum of
densities (Bergkvist and Damaschke, 2005; Chen et al., 2005; Liu and Chao,
2006).

11

Acknowledgements

Kun-Mao Chao was supported in part by NSC grants 94-2213-E-002-018 and
95-2221-E-002-126-MY3 from the National Science Council, Taiwan.

References

[1] Allison, L. (2003). Longest biased interval and longest non-negative sum
interval. Bioinformatics 19, 1294–1295.

[2] Arslan A., Eğecioğlu, Ö and Pevzner, P. (2001). A new approach to
sequence comparison: normalized sequence alignment. Bioinformatics
17, 327–337.

[3] Bae, S.E. and Takaoka, T. (2004). Algorithms for the problem of k
maximum sums and a VLSI algorithm for the k maximum subarrays
problem. Proceedings of the 7th International Symposium on Parallel
Architectures, Algorithms and Networks, 247–253.

[4] Bengtsson, F. and Chen, J. (2004). Efficient algorithms for k maximum
sums. Proceedings of the 15th International Symposium on Algorithms
And Computation, LNCS 3341, 137–148.

[5] Bengtsson, F. and Chen, J. (2006). Computing maximum-scoring seg-
ments in almost linear time. Proceedings of the 12th Annual Interna-
tional Computing and Combinatorics Conference, LNCS 4112, 255–264.

[6] Bentley, J. (1986). Programming Pearls (Reading: Addison-Wesley).

[7] Bergkvist, A. and Damaschke, P. (2005) Fast algorithms for finding dis-
joint subsequences with extremal densities. Proceedings of the 16th An-
nual International Symposium on Algorithms and Computation, LNCS
3827, 714–723, 2005.

[8] Bird, A. (1987). CpG islands as gene markers in the vertebrate nucleus.
Trends in Genetics 3, 342–347.

[9] Chen, K.-Y. and Chao, K.-M. (2004). On the range maximum-sum seg-
ment query problem. Proceedings of the 15th International Symposium
on Algorithms And Computation, LNCS 3341, 294–305.

12

[10] Chen, K.-Y. and Chao, K.-M. (2005). Optimal algorithms for locating
the longest and shortest segments satisfying a sum or an average con-
straint. Information Processing Letters 96, 197–201.

[11] Chen, Y.H., Lu, H.-I. and Tang, C.Y. (2005). Disjoint segments with
maximum density. Proceedings of the 5th Annual International Confer-
ence on Computational Science, 845-850, 2005.

[12] Cheng, C.-H., Chen, K.-Y., Tien, W.-C., and Chao, K.-M. (2005). Im-
proved algorithms for the k maximum-sum problems. Proceedings of the
16th International Symposium on Algorithms And Computation, LNCS
3827, 799–808.

[13] Chung, K.-M. and Lu, H.-I. (2004). An optimal algorithm for the
maximum-density segment problem. SIAM Journal on Computing 34,
373–387.

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (1999). In-
troduction to Algorithms (The MIT Press: 2nd Edition).

[15] Csűrös, M. (2004). Maximum-scoring segment sets. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 1, 139–150.

[16] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological
sequence analysis (Cambridge University Press).

[17] Fan, T.-H., Lee, S., Lu, H.-I., Tsou, T.-S., Wang, T.-C., and Yao, A.
(2003). An optimal algorithm for maximum-sum segment and its appli-
cation in bioinformatics. Proceedings of the Eighth International Con-
ference on Implementation and Application of Automata, LNCS 2759,
251–257.

[18] Fariselli, P., Finelli, M., Marchignoli, D., Martelli, P.L., Rossi, I., and
Casadio, R. (2003). MaxSubSeq: an algorithm for segment-length op-
timization. The case study of the transmembrane spanning segments.
Bioinformatics 19, 500–505.

[19] Gardiner-Garden, M. and Frommer, M. (1987). CpG islands in verte-
brate genomes. J. Mol. Biol. 196, 261–282.

13

[20] Goldwasser, M.H., Kao, M.-Y., and Lu, H.-I. (2005) Linear-time algo-
rithms for computing maximum-density sequence segments with bioin-
formatics applications. Journal of Computer and System Sciences 70,
128-144 (2005)

[21] Grenander, U. (1978). Pattern Analysis (New York: Springer-Verlag).

[22] Huang, X. (1994). An algorithm for identifying regions of a DNA se-
quence that satisfy a content requirement. Computer Applications in
the Biosciences 10, 219–225.

[23] Karlin, S. and Altschul, S.F. (1993). Applications and statistics for mul-
tiple high-scoring segments in molecular sequences. Proc. Natl. Acad.
Sci. USA 90, 5873–5877.

[24] Karlin, S. and Brendel, V. (1992). Chance and significance in protein
and DNA sequence analysis. Science 257, 39–49.

[25] Klein, R.J., Misulovin, Z., and Eddy, S.R. (2002). Noncoding RNA genes
identified in AT-rich hyperthemorphiles. Proc. Natl. Acad. Sci. USA 99,
7542–7547.

[26] Lin, Y.-L., Huang, X., Jiang, T., and Chao, K.-M. (2003). MAVG: lo-
cating non-overlapping maximum average segments in a given sequence.
Bioinformatics 19, 151–152.

[27] Lin, Y.-L., Jiang, T., and Chao, K.-M. (2002). Efficient algorithms for
locating the length-constrained heaviest segments with applications to
biomolecular sequence analysis. Journal of Computer and System Sci-
ences 65, 570–586.

[28] Liu, H.-F. and Chao, K.-M. (2006) On locating disjoint segments with
maximum sum of densities. Proceedings of the 17th Annual Symposium
on Algorithms and Computation, LNCS 4288, 300–307.

[29] Nekrutenko, A. and Li, W.-H. (2000). Assessment of compositional het-
erogeneity within and between eukaryotic genomes. Genome Research
10, 1986–1995.

[30] Ruzzo, W.L. and Tompa, M. (1999). A linear time algorithm for finding
all maximal scoring subsequences. Proceedings of the 7th International
Conference on Intelligent Systems for Molecular Biology, 234–241.

14

[31] Schattner, P. (2002). Searching for RNA genes using base composition
statistics. Nucleic Acids Res. 30, 2076–2082.

[32] Smith, T.F. and Waterman, M.S. (1981). Identification of common
molecular sequences. J. Mol. Biol. 147, 195–197.

[33] Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J., Good-
man, M., Miller, W., and Hardison, R. (1999). Comparison of five meth-
ods for finding conserved sequences in multiple alignments of gene reg-
ulatory regions. Nucleic Acids Research 19, 3899–3910.

[34] Stojanovic, N. and Dewar, K. (2005). Identifying multiple alignment re-
gions satisfying simple formulas and patterns. Bioinformatics 20, 2140–
2142.

[35] Takai, D. and Jones, P.A. (2002). Comprehensive analysis of CpG islands
in human chromosomes 21 and 22. PNAS 99, 3740–3745.

[36] Wang, L. and Xu, Y. (2003). SEGID: identifying interesting segments
in (multiple) sequence alignments. Bioinformatics 19, 297–298.

[37] Zhang, Z., Berman, P., Wiehe, T., and Miller, W. (1999). Post-
processing long pairwise alignments. Bioinformatics 15, 1012–1019.

15

