
A Class Note on Global Alignment

Kun-Mao Chao1,2,3

1Graduate Institute of Biomedical Electronics and Bioinformatics
2Department of Computer Science and Information Engineering

3Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

September 30, 2008

In nature, even a single amino acid sequence contains all the information nec-
essary to determine the fold of the protein. However, the folding process is still
mysterious to us, and some valuable information can be revealed by sequence
comparison. Take a look at the following sequence:

THETR UTHIS MOREI MPORT ANTTH ANTHE FACTS

What did you see in the above sequence? By comparing it with the words in the
dictionary, we find the tokens “FACTS,” “ IMPORTANT,” “ IS ,” “ MORE,” “ THAN,”
“THE,” and “TRUTH.” Then we figure out the above is the sentence “The truth is
more important than the facts.”

Even though we have not yet decoded the DNA and protein languages, the
emerging flood of sequence data has provided us with a golden opportunity of
investigating the evolution and function of biomolecular sequences. We are in a
stage of compiling dictionaries for DNA, proteins, and so forth. Sequence com-
parison plays a major role in this line of research and thus becomes the most basic
tool of bioinformatics.

Sequence comparison has wide applications to molecular biology, computer
science, speech processing, and so on. In molecular biology, it is often used
to reveal similarities among sequences, determine the residue-residue correspon-
dences, locate patterns of conservation, study gene regulation, and infer evolu-
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ATCTGCTAT
A C GAG T GGT C

Figure 1: A dot matrix of the two sequencesATACATGTCTandGTACGTCGG.

tionary relationships. It helps us to fish for related sequences in databanks, such
as the GenBank database. It can also be used for the annotation of genomes.

1 Dot Matrix

A dot matrix is a two-dimensional array of dots used to highlight the exact matches
between two sequences. Given are two sequencesA = 〈a1,a2, . . . ,am〉 (or A =
a1a2 . . .am in short), andB = 〈b1,b2, . . . ,bn〉. A dot is plotted on the(i, j) entry
of the matrix if ai = b j . Users can easily identify similar regions between the
two sequences by locating those contiguous dots along the same diagonal. Fig-
ure 1 gives a dot matrix of the two sequencesATACATGTCTandGTACGTCGG.
Dashed lines circle those regions with at lease three contiguous matches on the
same diagonal.

A dot matrix allows the users to quickly visualize the similar regions of two
sequences. However, as the sequences get longer, it becomes more involved to
determine their most similar regions, which can no longer be answered by merely
looking at a dot matrix. It would be more desirable to automatically identify
those similar regions and rank them by their “similarity scores.” This leads to the
development of sequence alignment.
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A GTCAT -TCTG G-CAT GGCT-5 -3+8+8+8 -3 +8+8+8 -5 = 29A--3deletion gap insertion gap
Figure 2: An alignment of the two sequencesATACATGTCTandGTACGTCGG.

2 Global Alignment

Following its introduction by Needleman and Wunsch in 1970, dynamic program-
ming has become a major algorithmic strategy for many optimization problems in
sequence comparison. This strategy is guaranteed to produce an alignment of two
given sequences having the highest score for a number of useful alignment-scoring
schemes.

Given two sequencesA = a1a2 . . .am, andB = b1b2 . . .bn, an alignmentof
A andB is obtained by introducing dashes into the two sequences such that the
lengths of the two resulting sequences are identical and no column contains two
dashes. LetΣ denote the alphabet over whichA andB are defined. To simplify
the presentation, we employ a very simple scoring scheme as follows. A score
σ(a,b) is defined for each(a,b) ∈ Σ×Σ. Each indel,i.e., a column with a space,
is penalized by a constantβ . The score of an alignment is the sum ofσ scores
of all columns with no dashes minus the penalties of the gaps. Anoptimal global
alignmentis an alignment that maximizes the score. By global alignment, we
mean that both sequences are aligned globally, i.e., from their first symbols to
their last.

Figure 2 gives an alignment of sequencesATACATGTCTandGTACGTCGG
and its score. In this and the next sections, we assume the following simple scoring
scheme. A match is given a bonus score 8, a mismatch is penalized by assigning
score−5, and the gap penalty for each indel is−3. In other words,σ(a,b) = 8 if
a andb are the same,σ(a,b) =−5 if a andb are different, andβ =−3.

It is quite helpful to recast the problem of aligning two sequences as an equiv-
alent problem of finding a maximum-scoring path in the alignment graph as has
been observed by a number of researchers. Recall that the alignment graph of
A and B is a directed acyclic graph whose vertices are the pairs(i, j) where
i ∈{0,1,2, . . . ,m} and j ∈{0,1,2, . . . ,n}. These vertices are arrayed inm+1 rows
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andn+1 columns. The edge set consists of three types of edges. The substitution
aligned pairs, insertion aligned pairs, and deletion aligned pairs correspond to the
diagonal edges, horizontal edges, and vertical edges, respectively. Specifically, a
vertical edge from(i−1, j) to (i, j), which corresponds to a deletion ofai , is drawn
for i ∈ {1,2, . . . ,m} and j ∈ {0,1,2, . . . ,n}. A horizontal edge from(i, j −1) to
(i, j) , which corresponds to an insertion ofb j , is drawn fori ∈ {0,1,2, . . . ,m} and
j ∈ {1,2, . . . ,n}. A diagonal edge from(i−1, j−1) to (i, j) , which corresponds
to a substitution ofai with b j , is drawn fori ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . ,n}.

It has been shown that an alignment corresponds to a path from the leftmost
cell of the first row to the rightmost cell of the last row in the alignment graph.
Figure 3 gives another example of this correspondence.ATCTGCTAT

A C GAG T GGT C A GTCAT -TCTG G-CAT GGCTA-deletion gap insertion gap
Figure 3: A path in an alignment graph of the two sequencesATACATGTCTand
GTACGTCGG.

Let S[i, j] denote the score of an optimal alignment betweena1a2 . . .ai , and
b1b2 . . .b j . By definition, we haveS[0,0] = 0, S[i,0] =−β × i, andS[0, j] =−β ×
j. With these initializations,S[i, j] for i ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . ,n} can
be computed by the following recurrence.

S[i, j] = max





S[i−1, j]−β ,
S[i, j−1]−β ,
S[i−1, j−1]+σ(ai ,b j).

Figure 4 explains the recurrence by showing that there are three possible ways
entering into the grid point(i, j), and we take the maximum of their path weights.
The weight of the maximum-scoring path entering(i, j) from (i−1, j) vertically is
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the weight of the maximum-scoring path entering(i−1, j) plus the weight of edge
(i−1, j)→ (i, j). That is, the weight of the maximum-scoring path entering(i, j)
with a deletion gap symbol at the end isS[i−1, j]−β . Similarly, the weight of the
maximum-scoring path entering(i, j) from (i, j−1) horizontallyis S[i, j−1]−β
and the weight of the maximum-scoring path entering(i, j) from (i − 1, j − 1)
diagonally is S[i − 1, j − 1] + σ(ai ,b j). To computeS[i, j], we simply take the
maximum value of these three choices. The valueS[m,n] is the score of an optimal
global alignment between sequencesA andB.

i jS[i, j]S[i-1, j]S[i, j-1]S[i-1, j-1] S[i-1, j-1] S[i, j]S[i-1, j]S[i, j-1] β-),( ji baσ

β-

Figure 4: There are three ways entering the grid point(i, j).

Figure 5 gives the pseudo-code for computing the score of an optimal global
alignment. Whenever there is a tie, any one of them will work. Since there are
O(mn) entries and the time spent for each entry isO(1), the total running time of
algorithmGLOBAL ALIGNMENT SCOREis O(mn).

Now let us use an example to illustrate the tabular computation. Figure 6
computes the score of an optimal alignment of the two sequencesATACATGTCT
andGTACGTCGG, where a match is given a bonus score 8, a mismatch is penalized
by a score−5, and the gap penalty for each gap symbol is−3. The first row
and column of the table are initialized with proper penalties. Other entries are
computed in order. Take the entry(5,3) for example. Upon computing the value
of this entry, the following values are ready:S[4,2] =−3, S[4,3] = 8, andS[5,2] =
−6. Since the edge weight of(4,2) → (5,3) is 8 (a match symbol “A”), the
maximum score from(4,2) to (5,3) is −3+ 8 = 5. The maximum score from
(4,3) is 8−3 = 5, and the maximum score from(5,2) is −6−3 = −9. Taking
the maximum of them, we haveS[5,3] = 5. Once the table has been computed,
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Algorithm GLOBAL ALIGNMENT SCORE(A = a1a2 . . .am, B = b1b2 . . .bn)
begin

S[0,0]← 0
for j ← 1 to n do S[0, j]←−β × j
for i ← 1 to m do

S[i,0]←−β × i
for j ← 1 to n do

S[i, j]←max





S[i−1, j]−β
S[i, j−1]−β
S[i−1, j−1]+σ(ai ,b j)

OutputS[m,n] as the score of an optimal alignment.
end

Figure 5: Computation of the score of an optimal global alignment.

the value in the rightmost cell of the last row,i.e., S[10,9] = 29, is the score of an
optimal global alignment.

In Section??, we have shown that if a backtracking information is saved for
each entry while we compute the dynamic-programming matrix, an optimal solu-
tion can be derived following the backtracking pointers. Here we show that even
if we don’t save those backtracking pointers, we can still reconstruct an optimal
solution by examining the values of an entry’s possible contributors. Figure 7
lists the pseudo-code for delivering an optimal global alignment, where an initial
call GLOBAL ALIGNMENT OUTPUT(A, B, S, m, n) is made to deliver an optimal
global alignment. Specifically, we trace back the dynamic-programming matrix
from the entry(m,n) recursively according to the following rules. Let(i, j) be
the entry under consideration. Ifi = 0 or j = 0, we simply output all the inser-
tion pairs or deletion pairs in these boundary conditions. Otherwise, consider the
following three cases. IfS[i, j] = S[i−1, j −1] + σ(ai ,b j), we make a diagonal

move and output a substitution pair

(
ai

b j

)
. If S[i, j] = S[i−1, j]−β , then we

make a vertical move and output a deletion pair

(
ai

−
)

. Otherwise, it must be the

case whereS[i, j] = S[i, j −1]−β . We simply make a horizontal move and out-

put an insertion pair

( −
b j

)
. Algorithm GLOBAL ALIGNMENT OUTPUT takes
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G T A C G T C G GATACATGTC
0 -3 -6 -9 -12 -15 -18 -21 -24 -27-3 -5 -8 2 -1 -4 -7 -10 -13 -16-6 -8 3 0 -3 -6 4 1 -2 -5-9 -11 0 11 8 5 2 -1 -4 -7-12 -14 -3 8 19 16 13 10 7 4-15 -17 -6 5 16 14 11 8 5 2-18 -20 -9 2 13 11 22 19 16 13-21 -10 -12 -1 10 21 19 17 27 24-24 -13 -2 -4 7 18 29 26 24 22-27 -16 -5 -7 4 15 26 37 34 31T -30 -19 -8 -10 1 12 23 34 32 29

Figure 6: The score of an optimal global alignment of the two sequences
ATACATGTCTandGTACGTCGG, where a match is given a bonus score 8, a mis-
match is penalized by a score−5, and the gap penalty for each gap symbol is
−3.

O(m+n) time in total since each recursive call reducesi and/or j by one. The to-
tal space complexity isO(mn) since the size of the dynamic-programming matrix
is O(mn). In Section??, we shall show that an optimal global alignment can be
recovered even if we don’t save the whole matrix.

Figure 8 delivers an optimal global alignment by backtracking from the right-
most cell of the last row of the dynamic-programming matrix computed in Fig-
ure 6. We start from the entry(10,9) whereS[10,9] = 29. We have a tie there
because bothS[10,8]−3 andS[9,8]−5 equal to29. In this illustration, the hor-
izontal move to the entry(10,8) is chosen. Interested readers are encouraged to
try the diagonal move to the entry(9,8) for an alternative optimal global align-
ment, which is actually chosen byGLOBAL ALIGNMENT OUTPUT. Continue this
process until the entry(0,0) is reached. The shaded area depicts the backtracking
path whose corresponding alignment is given on the right-hand side of the figure.

It should be noted that during the backtracking procedure, we derive the aligned
pairs in a reverse order of the alignment. That’s why we make a recursive call be-
fore actually printing out the pair in Figure 7. Another approach is to compute the
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Algorithm GLOBAL ALIGNMENT OUTPUT(A = a1a2 . . .am, B = b1b2 . . .bn, S, i, j)
begin

if i = 0 or j = 0 then

if i > 0 then for i′← 1 to i do print
(

ai′
−

)

if j > 0 then for j ′← 1 to j do print
( −

b j ′

)

return
if S[i, j] = S[i−1, j−1]+σ(ai ,b j) then

GLOBAL ALIGNMENT OUTPUT(A, B, S, i−1, j−1)

print
(

ai

b j

)

else ifS[i, j] = S[i−1, j]−β then
GLOBAL ALIGNMENT OUTPUT(A, B, S, i−1, j)

print
(

ai

−
)

else
GLOBAL ALIGNMENT OUTPUT(A, B, S, i, j−1)

print
( −

b j

)

end

Figure 7: Backtracking procedure for delivering an optimal global alignment.

dynamic-programming matrix backward from the rightmost cell of the last row
to the leftmost cell of the first row. Then when we trace back from the leftmost
cell of the first row toward the rightmost cell of the last row, the aligned pairs
are derived in the same order as in the alignment. This approach could avoid the
overhead of reversing an alignment.
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G T A C G T C G GATACATGTC
0 -3 -6 -9 -12 -15 -18 -21 -24 -27-3 -5 -8 2 -1 -4 -7 -10 -13 -16-6 -8 3 0 -3 -6 4 1 -2 -5-9 -11 0 11 8 5 2 -1 -4 -7-12 -14 -3 8 19 16 13 10 7 4-15 -17 -6 5 16 14 11 8 5 2-18 -20 -9 2 13 11 22 19 16 13-21 -10 -12 -1 10 21 19 17 27 24-24 -13 -2 -4 7 18 29 26 24 22-27 -16 -5 -7 4 15 26 37 34 31T -30 -19 -8 -10 1 12 23 34 32 29 A GTCAT -TCTG G-CAT GGCT-5 -3+8+8+8 -3 +8+8+8 -5 = 29A--3

Figure 8: Computation of an optimal global alignment of sequences
ATACATGTCTandGTACGTCGG, where a match is given a bonus score 8, a mis-
match is penalized by a score−5, and the gap penalty for each gap symbol is
−3.
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