Algorithms for Biological Sequence Analysis (Midterm \# 1)

Instructor: Kun-Mao Chao TA: Yi-Ching Chen

November 6, 2007

Problem 1 ($\mathbf{1 5 \%}$): Suppose we are given a very long DNA sequence where the occurrence probabilities of nucleotides A (adenine), C (cytosine), G (guanine), T (thymine) are $0.1,0.3,0.4$, and 0.2 , respectively.
(a) (10\%): Construct a Huffman code for them. You should work out the binary tree construction as well as the code assignment.
(b) (5\%): By the above Huffman coding scheme, what is the binary string for a 10 -nucleotide DNA sequence "GGGCTTCACG."

Problem $2 \mathbf{(1 5 \%)}$: In class, we introduced an $O(n \log n)$-time algorithm for finding a longest increasing subsequence. Use $\langle 8,2,6,4,5,7,3,1,12,9,10\rangle$ to explain how the algorithm works.

Problem 3 ($\mathbf{1 0 \%}$): Given a sequence of real numbers $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$, the maximum-sum segment problem is to find a consecutive subsequence, i.e., a substring or segment, in A with the maximum sum. Let prefix sum $P[i]=\sum_{j=1}^{i} a_{j}$ be the sum of the first i elements. Explain how to use the prefix sum to deliver the maximum-sum segment in $O(n)$ time.
In the following, we are given two sequences $A=\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$ and $B=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$. An alignment of A and B is obtained by introducing dashes into the two sequences such that the lengths of the two resulting sequences are identical and no column contains two dashes. Let Σ denote the input symbol alphabet. A score $\sigma(a, b)$ is defined for each $(a, b) \in \Sigma \times \Sigma$. The score of an alignment is the sum of σ scores of all columns with no dashes minus the penalties of the gaps.

Problem $4 \mathbf{(2 5 \%}$): In this problem, we employ a simple scoring scheme where each gap symbol is penalized by a nonnegative constant β. Let $S[i, j]$ denote the score of an optimal alignment between $\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle$ and $\left\langle b_{1}, b_{2}, \ldots, b_{j}\right\rangle$. With proper initializations, $S[i, j]$ can be computed by the following recurrences:

$$
S[i, j]=\max \left\{\begin{array}{l}
S[i-1, j]-\beta \\
S[i, j-1]-\beta \\
S[i-1, j-1]+\sigma\left(a_{i}, b_{j}\right)
\end{array}\right.
$$

(a) ($\mathbf{1 5 \%}$): Write down a complete pseudo-code for computing $S[m, n]$ in $O(m n)$ time and $O(m+n)$ space. All initializations should be included in the pseudo-code.
(b) (10\%): Assume that we allow at most three gaps in an alignment. Give a method (as efficient as possible) for computing the score of an optimal alignment.

Problem $5 \mathbf{(2 0 \%})$: In affine gap penalties, a gap of length k is penalized by $\alpha+k \times \beta$, where α and β are both nonnegative constants.
(a) ($\mathbf{1 0 \%}$): Give the recurrence relations for computing the score of an optimal (global) alignment between A and B. Justify your recurrence relations and include all initializations.
(b) (10\%): Give the recurrence relations for computing the score of an optimal local alignment between A and B. Explain your recurrence relations and include all initializations.

Problem $6 \mathbf{(1 5 \%)}$: Consider the problem of computing all Δ-points of two sequences of lengths m and n, where $m \ll n$. Describe a method for computing all Δ-points that works in $O(m n)$ time and $O\left(m^{\frac{11}{10}}+n\right)$ working space.

