
Algorithms for Biological Sequence Analysis (Midterm # 1)

Instructor: Kun–Mao Chao TA: Yi-Ching Chen

November 6, 2007

Problem 1 (15%): Suppose we are given a very long DNA sequence where the occurrence probabilities of
nucleotides A (adenine), C (cytosine), G (guanine), T (thymine) are 0.1, 0.3, 0.4, and 0.2, respectively.

(a) (10%): Construct a Huffman code for them. You should work out the binary tree construction
as well as the code assignment.

(b) (5%): By the above Huffman coding scheme, what is the binary string for a 10-nucleotide DNA
sequence “GGGCTTCACG.”

Problem 2 (15%): In class, we introduced an O(n log n)-time algorithm for finding a longest increasing
subsequence. Use 〈8, 2, 6, 4, 5, 7, 3, 1, 12, 9, 10〉 to explain how the algorithm works.

Problem 3 (10%): Given a sequence of real numbers A = 〈a1, a2, . . . , an〉, the maximum-sum segment
problem is to find a consecutive subsequence, i.e., a substring or segment, in A with the maximum
sum. Let prefix sum P [i] =

∑i
j=1 aj be the sum of the first i elements. Explain how to use the prefix

sum to deliver the maximum-sum segment in O(n) time.

In the following, we are given two sequences A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉. An align-
ment of A and B is obtained by introducing dashes into the two sequences such that the lengths of
the two resulting sequences are identical and no column contains two dashes. Let Σ denote the input
symbol alphabet. A score σ(a, b) is defined for each (a, b) ∈ Σ × Σ. The score of an alignment is the
sum of σ scores of all columns with no dashes minus the penalties of the gaps.

Problem 4 (25%): In this problem, we employ a simple scoring scheme where each gap symbol is pe-
nalized by a nonnegative constant β. Let S[i, j] denote the score of an optimal alignment between
〈a1, a2, . . . , ai〉 and 〈b1, b2, . . . , bj〉. With proper initializations, S[i, j] can be computed by the follow-
ing recurrences:

S[i, j] = max





S[i− 1, j]− β
S[i, j − 1]− β
S[i− 1, j − 1] + σ(ai, bj)

(a) (15%): Write down a complete pseudo-code for computing S[m,n] in O(mn) time and O(m + n)
space. All initializations should be included in the pseudo-code.

(b) (10%): Assume that we allow at most three gaps in an alignment. Give a method (as efficient as
possible) for computing the score of an optimal alignment.

Problem 5 (20%): In affine gap penalties, a gap of length k is penalized by α + k× β, where α and β are
both nonnegative constants.

(a) (10%): Give the recurrence relations for computing the score of an optimal (global) alignment
between A and B. Justify your recurrence relations and include all initializations.

(b) (10%): Give the recurrence relations for computing the score of an optimal local alignment be-
tween A and B. Explain your recurrence relations and include all initializations.

Problem 6 (15%): Consider the problem of computing all ∆-points of two sequences of lengths m and
n, where m ¿ n. Describe a method for computing all ∆-points that works in O(mn) time and
O(m

11
10 + n) working space.

1


