
A Class Note on Basic Algorithmic Techniques

Kun-Mao Chao1,2,3

1Graduate Institute of Biomedical Electronics and Bioinformatics
2Department of Computer Science and Information Engineering

3Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

Email: kmchao@csie.ntu.edu.tw

October 30, 2007

1 Algorithms and their Complexity

An algorithm is a step-by-step procedure for solving a problem by a computer.
When an algorithm is executed by a computer, the Central Processing Unit
(CPU) performs the operations and the memory stores the program and
data.

Let n be the size of the input, the output, or their sum. The time or space
complexity of an algorithm is usually denoted as a function f(n). Table 1
calculates the time needed if the function stands for the number of operations
required by an algorithm, and we assume that the CPU performs one million
operations per second. Exponential algorithms grow pretty fast and become
impractical even when n is small. For those quadratic and cubic functions,
they grow faster than the linear functions. The constant and log factor
matter, but are mostly acceptable in practice. As a rule of thumb, algorithms
with a quadratic time complexity or higher are often impractical for large
data sets.

These observations lead to the definition of the O-notation, which is very
useful for the analysis of algorithms. We say f(n) = O(g(n)) if and only if
there exist two positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all

1

Table 1: The time needed by the functions where we assume one million
operations per second.

f(n) n = 10 n = 100 n = 100000

30n 0.0003 sec. 0.003 sec. 3 sec.
100n log10 n 0.001 sec. 0.02 sec. 50 sec.
3n2 0.0003 sec. 0.03 sec. 30000 sec.
n3 0.001 sec. 1 sec. 1000000000 sec.
10n 104 sec. 1094 sec. 1099994 sec.

n ≥ n0. In other words, for sufficiently large n, f(n) can be bounded by g(n)
times a constant. In this kind of asymptotic analysis, the most crucial part is
the order of the function, not the constant. For example, if f(n) = 3n2 +5n,
we can say f(n) = O(n2) by letting c = 4 and n0 = 10. By definition, it
is also correct to say n2 = O(n3), but we always prefer to choose a tighter
order if possible. On the other hand, 10n 6= O(nx) for any integer x. That
is, an exponential function can not be bounded by any polynomial function.

2 Greedy Algorithms

A greedy method works in stages. It always makes a locally optimal (greedy)
choice at each stage. Once a choice has been made, it cannot be withdrawn,
even if later we realize that it is a poor decision. In other words, this greedy
choice may or may not lead to a globally optimal solution, depending on the
characteristics of the problem.

It is a very straightforward algorithmic technique, and has been used to
solve a variety of problems [2]. In some situations, it is used to solve the
problem exactly. In others, it has been proved to be effective in approxima-
tion.

What kind of problems are suitable for a greedy solution? There are two
ingredients for an optimization problem to be exactly solved by a greedy ap-
proach. One is that it satisfies the principle of optimality, i.e., each solution
substructure is optimal. The other is that it has the so-called greedy-choice
property, meaning that a locally optimal choice can reach a globally opti-
mal solution. We shall use Huffman coding, a frequency dependent coding
scheme, to illustrate the greedy approach.

2

2.1 Huffman Codes

Suppose we are given a very long DNA sequence where the occurrence prob-
abilities of nucleotides A (adenine), C (cytosine), G (guanine), T (thymine)
are 0.1, 0.1, 0.3, and 0.5, respectively. In order to store it in a computer, we
need to transform it into a binary sequence, using only 0’s and 1’s. A trivial
solution is to encode A, C, G and T by “00,” “01,” “10” and “11,” respec-
tively. This representation requires two bits per nucleotide. The question
is “Can we store the sequence in a more compressed way?” Fortunately, by
assigning longer codes for frequent nucleotides G and T, and shorter codes
for rare nucleotides A and C, we shall show that it requires less than two bits
per nucleotide in average.

David A. Huffman [4] proposed a greedy algorithm for building up an
optimal way of representing each letter as a binary string. It works in two
phases. In phase one, we build a binary tree based on the occurrence prob-
abilities of the letters. To do so, we first write down all the letters, together
with their associated probabilities. They are initially the unmarked terminal
nodes of the binary tree that we will build up as the algorithm proceeds. As
long as there are more than one unmarked nodes left, we repeatedly find the
two unmarked nodes with the smallest probabilities, mark them, create a
new unmarked internal node with an edge to each of the nodes just marked,
and set its probability as the sum of the probabilities of the two nodes.

The tree building process is depicted in Figure 1. Initially, there are four
unmarked nodes with probabilities 0.1, 0.1, 0.3 and 0.5. The two smallest
ones are with probabilities 0.1 and 0.1. Thus we mark these two nodes and
create a new node with probability 0.2, and connect it to the two nodes just
marked. Now we have three unmarked nodes with probabilities 0.2, 0.3 and
0.5. The two smallest ones are with probabilities 0.2 and 0.3. They are
marked and a new node connecting them with probabilities 0.5 is created.
The final iteration connects the only two unmarked nodes with probabilities
0.5 and 0.5. Since there is only one unmarked node left, i.e., the root of the
tree, we are done with the binary tree construction.

After the binary tree is built in phase one, the second phase is to as-
sign the binary strings to the letters. Starting from the root, we recur-
sively assign the value “zero” to the left edge and “one” to the right edge.
Then for each leaf, i.e. the letter, we concatenate the 0’s and 1’s from the
root to it to form its binary string representation. For example, in Fig-
ure 2 the resulting codewords for A, C, G and T are “000,” “000,” “01”

3

A0.1 0.2 C0.1 G0.3 T0.5
0.5 1.0

Figure 1: Building a binary tree based on the occurrence probabilities of the
letters.

and “1,” respectively. By this coding scheme, a 20-nucleotide DNA se-
quence “GTTGTTATCGTTTATGTGGC” will be represented as a 34-bit
binary sequence “0111011100010010111100010110101001.” In general, since
3 × 0.1 + 3 × 0.1 + 2 × 0.3 + 1 × 0.5 = 1.7, we conclude that, by Huff-
man coding techniques, each nucleotide requires 1.7 bits in average, instead
of 2 bits by a trivial solution. Notice that in a Huffman code, no code-
word is also a prefix of any other codeword. Therefore we can decode
a binary sequence without any ambiguity. For example, if we are given
“0111011100010010111100010110101001,” we decode the binary sequence as
“01” (G), “1” (T), “1” (T), “01” (G), and so forth.

The correctness of Huffman’s algorithms lies in two properties: (1) greedy-
choice property and (2) optimal-substructure property. It can be shown that
there exists an optimal binary code in which the codewords for the two
smallest-probability nodes have the same length and differ only in the last
bit. That’s the reason why we can contract them greedily without missing
the path to the optimal solution. Besides, after contraction, the optimal-
substructure property allows us to consider only those unmarked nodes.

Let n be the number of letters in the alphabet. For DNA, n is 4 and for
English, n is 26. Since a heap [2] can be used to maintain the minimum dy-
namically in O(log n) time for each insertion or deletion, the time complexity

4

A0.1 0.2 C0.1 G0.3 T0.5
0.5 1.0000 1 1 1000 001 01 1

Figure 2: Huffman code assignment.

of Huffman’s algorithm is o(n log n).

3 Divide-and-Conquer Strategies

The divide-and-conquer strategy divides the problem into a number of smaller
subproblems. If the subproblem is small enough, conquer the boundary case
directly. Otherwise, conquer the subproblem recursively. Once the solution
to each subproblem has been done, combine them together to form a solution
to the original problem.

Many of the well-known applications of the divide-and-conquer strategies
are sorting algorithms. We shall use mergesort to illustrate the divide-and-
conquer algorithm design paradigm.

3.1 Mergesort

Given a sequence of n numbers 〈a1, a2, . . . , an〉, the sorting problem is to sort
these numbers into a nondecreasing sequence. For example, if the given se-
quence is 〈65, 16, 25, 85, 12, 8, 36, 77〉, then its sorted sequence is 〈8, 12, 16, 25, 36, 65, 77, 85〉.

To sort a given sequence, mergesort splits the sequence into half, sorts

5

65 16 7736812852565 16 7736812852565 16 8525 812 773665 16 77368128525
Figure 3: The top-down dividing process of mergesort.

each of them recursively, then combines the resulting two sorted sequences
into one sorted sequence. Figure 3 illustrates the dividing process. The
original input sequence consists of eight numbers. We first divide it into
two smaller sequences, each consisting of four numbers. Then we divide
each four-number sequence into two smaller sequences, each consisting of
two numbers. Here we can sort the two numbers by comparing them directly,
or divide it further into two smaller sequences, each consisting of only one
number. Either way we’ll reach the boundary cases where sorting is trivial.
Notice that a sequential recursive process won’t expand the subproblems
simultaneously, but instead it solves the subproblems at the same recursion
depth one by one.

How to combine the solutions to the two smaller subproblems to form a
solution to the original problem? Let us consider the process of merging two
sorted sequences into a sorted output sequence. For each merging sequence,
we maintain a cursor pointing to the smallest element not yet included in
the output sequence. At each iteration, the smaller of these two smallest
elements is removed from the merging sequence and added to the end of
the output sequence. Once one merging sequence has been exhausted, the
other sequence is appended to the end of the output sequence. Figure 4

6

8 12 85776536251616 25 7736128 8565
Figure 4: The merging process of mergesort.

depicts the merging process. The merging sequences are 〈16, 25, 65, 85〉 and
〈8, 12, 36, 77〉. The smallest elements of the two merging sequences are 16
and 8. Since 8 is a smaller one, we remove it from the merging sequence
and add it to the output sequence. Now the smallest elements of the two
merging sequences are 16 and 12. We remove 12 from the merging sequence
and append it to the output sequence. Then 16 and 36 are the smallest
elements of the two merging sequences, thus 16 is appended to the output
list. Finally, the resulting output sequence is 〈8, 12, 16, 25, 36, 65, 77, 85〉. Let
N and M be the lengths of the two merging sequences. Since the merging
process scans the two merging sequences linearly, its running time is therefore
O(N + M) in total.

After the top-down dividing process, mergesort accumulates the solu-
tions in a bottom-up fashion by combining two smaller sorted sequences
into a larger sorted sequence as illustrated in Figure 5. In this example,
the recursion depth is dlog2 8e = 3. At recursion depth 3, every single ele-
ment is itself a sorted sequence. They are merged to form sorted sequences
at recursion depth 2: 〈16, 65〉, 〈25, 85〉, 〈8, 12〉, and 〈36, 77〉. At recursion
depth 1, they are further merged into two sorted sequences: 〈16, 25, 65, 85〉
and 〈8, 12, 36, 77〉. Finally, we merge these two sequences into one sorted
sequence: 〈8, 12, 16, 25, 36, 65, 77, 85〉.

It can be easily shown that the recursion depth of mergesort is dlog2 ne
for sorting n numbers, and the total time spent for each recursion depth is
O(n). Thus, we conclude that mergesort sorts n numbers in O(n log n) time.

7

8 12 85776536251616 25 7736128856516 65 8525 128 773665 16 77368128525
Figure 5: Accumulating the solutions in a bottom-up manner.

4 Dynamic Programming

Dynamic programming is a class of solution methods for solving sequential
decision problems with a compositional cost structure. It is one of the major
paradigms of algorithm design in computer science. The word “programming”
both here and in linear programming refers to a tabular method that makes
a series of choices, not to writing programs. The word “dynamic” in this
context conveys the idea that choices may depend on the current state, rather
than being decided ahead of time.

Typically, dynamic programming is applied to optimization problems.
In such problems, there exist many possible solutions. Each solution has a
value, and we wish to find a solution with the optimum value. There are
two ingredients for an optimization problem to be suitable for a dynamic-
programming approach. One is that it satisfies the principle of optimality,
i.e., each solution substructure is optimal. Greedy algorithms require this
very same ingredient, too. The other ingredient is that it has overlapping
subproblems, which has the implication that it can be solved more efficiently
if the solutions to the subproblems are recorded. If the subproblems are not
overlapping, a divide-and-conquer approach is the choice.

The development of a dynamic-programming algorithm has three basic

8

components: the recurrence relation (for defining the value of an optimal
solution), the tabular computation (for computing the value of an optimal
solution), and the traceback (for delivering an optimal solution). Here we
introduce these basic ideas by developing dynamic-programming solutions
for problems from different application areas.

First of all, the Fibonacci numbers are used to demonstrate how a tabular
computation can avoid recomputation. Then we use three classical problems,
namely, the maximum-sum segment problem, the longest increasing subse-
quence problem, and the longest common subsequence problem, to explain
how dynamic-programming approaches can be used to solve the sequence-
related problems [2, 3, 6].

4.1 Fibonacci numbers

The Fibonacci numbers were first created by Leonardo Fibonacci in 1202. It
is a simple series, but its applications are nearly everywhere in nature. It
has fascinated mathematicians for over 800 years. The Fibonacci numbers
are defined by the following recurrence:

F0 = 0,
F1 = 1,
Fi = Fi−1 + Fi−2 for i ≥ 2.

By definition, the sequence goes like this: 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711,
28657, 46368, 75025, 121393, · · ·. Given a positive integer n, how would you
compute Fn? You might say that it can be easily solved by a straightforward
divide-and-conquer method based on the recurrence. That’s right. But is
it efficient? Take the computation of F10 for example (see Figure 6). By
definition, F10 is derived by adding up F9 and F8. What about the values of
F9 and F8? Again, F9 is derived by adding up F8 and F7; F8 is derived by
adding up F7 and F6. Working towards this direction, we’ll finally reach the
values of F1 and F0, i.e., the end of the recursive calls. By adding them up
backwards, we have the value of F10. It can be shown that the number of
recursive calls we have to make for computing Fn is exponential in n.

Those who are ignorant of history are doomed to repeat it. A major
drawback of this divide-and-conquer approach is to solve many of the sub-
problems repeatedly. A tabular method solves every subproblem just once

9

Figure 6: Computing F10 by divide-and-conquer.0 11 3432 215 8 13 55
Figure 7: Computing F10 by a tabular computation.

and then saves its answer in a table, thereby avoiding the work of recomput-
ing the answer every time the subproblem is encountered. Figure 7 explains
that Fn can be computed in O(n) steps by a tabular computation. It should
be noted that Fn can be computed in just O(log n) steps by applying matrix
computation [2].

4.2 The maximum-sum segment problem

Given a sequence of real numbers A = 〈a1, a2, . . . , an〉, the maximum-sum
segment problem is to find a consecutive subsequence, i.e., a substring or
segment, in A with the maximum sum. For each position i, we can compute
the maximum-sum segment ending at that position in O(i) time. Therefore,
a naive algorithm runs in

∑n
i=1 O(i) = O(n2) time.

Now let us describe a more efficient dynamic-programming algorithm for

10

21 987654323 2-46-325-653 8610475-1
Figure 8: Finding a maximum-sum segment.

this problem [1]. Define S[i] to be the maximum sum of segments ending at
position i of A. The value S[i] can be computed by the following recurrence:

S[i] =

{
ai + max{S[i− 1], 0} if i > 1,
a1 if i = 1.

If S[i − 1] < 0, concatenating ai with its previous elements will give
smaller sum than ai itself. In this case, the maximum-sum segment ending
at position i is ai itself.

By a tabular computation, each S[i] can be computed in constant time
from i = 1 to i = n, therefore all S values can be computed in O(n) time.
During the computation, we record the largest S entry computed so far in
order to report where the maximum-sum segment ends. We also record the
traceback information for each position i so that we can trace back from the
end position of the maximum-sum segment to its start position. If S[i−1] >
0, we need to concatenate with previous elements for a larger sum, therefore
the traceback symbol for position i is “←.” Otherwise, “↑” is recorded.
Once we have computed all S values, the traceback information is used to
construct the maximum-sum segment by starting from the largest S entry
and following the arrows until a “↑” is reached. For example, in Figure 8,
A = 〈3, 2, -6, 5, 2, -3, 6,-4, 2〉. By computing from i = 1 to i = n, we have
S = 〈3, 5, -1, 5, 7, 4, 10,6, 8〉. The maximum S entry is S[7] whose value is
10. By backtracking from S[7], we conclude that the maximum-sum segment
of A is 〈5, 2, -3, 6〉, whose sum is 10.

Let prefix sum P [i] =
∑i

j=1 aj be the sum of the first i elements. It can be

easily seen that
∑j

k=i ak = P [j]−P [i− 1]. Therefore, if we wish to compute
for a given position the maximum-sum segment ending at it, we could just
look for a minimum prefix sum ahead of this position. This yields another
linear-time algorithm for the maximum-sum segment problem.

11

4.3 Longest increasing subsequence

Given a sequence of real numbers A = 〈a1, a2, . . . , an〉, the longest increas-
ing subsequence problem is to find an increasing subsequence in A whose
length is maximum. Without loss of generality, we assume that these num-
bers are distinct. Formally, given a sequence of distinct real numbers A =
〈a1, a2, . . . , an〉, sequence B = 〈b1, b2, . . . , bk〉 is said to be a subsequence of A
if there exists a strictly increasing sequence 〈i1, i2, . . . , ik〉 of indices of A such
that for all j = 1, 2, . . . , k, we have aij = bj. In other words, B is obtained
by deleting zero or more elements from A. We say that the subsequence B is
increasing if b1 < b2 < . . . < bk. The longest increasing subsequence problem
is to find a maximum-length increasing subsequence of A.

For example, suppose A = 〈4, 8, 2, 7, 3, 6, 9, 1, 10, 5〉, both 〈2, 3, 6〉 and
〈2, 7, 9, 10〉 are increasing subsequences of A, whereas 〈8, 7, 9〉 (not increasing)
and 〈2, 3, 5, 7〉 (not a subsequence) are not.

Let L[i] be the length of a longest increasing subsequence ending at po-
sition i. Note that we may have more than one longest increasing subse-
quences, so we use “a longest increasing subsequence” instead of “the longest
increasing subsequence.” They can be computed by the following recurrence:

L[i] =

{
1 + maxj=0,...,i−1{L[j] | ai < aj} if i > 0,
0 if i = 0.

Here we assume that a0 is a dummy element and smaller than any element
in A, and L[0] is equal to 0. By tabular computation starting from i = 1
to i = n, each L[i] can be computed in O(i) steps. Therefore, they require
in total

∑n
i=1 O(i) = O(n2) steps. For each position i, we use an array

P to record the index of the best previous element for current element to
concatenate with. By tracing back from the element with the largest L
value, we derive a longest increasing subsequence.

Figure 9 illustrates the process of finding a longest increasing subsequence
of A = 〈4, 8, 2, 7, 3, 6, 9, 1, 10, 5〉. Take i = 4 for instance, where a4 = 7.
Its previous smaller elements are a1 and a3, both with L value equaling
1. Therefore, we have L[4] = L[1] + 1 = 2, meaning that the length of a
longest increasing subsequence ending at position 4 is of length 2. Indeed,
both 〈a1, a4〉 and 〈a3, a4〉 are an increasing subsequence ending at position
4. In order to trace back the solution, we use array P to record which
entry contributes the maximum to the current L value. Thus, P [4] can be
1 (standing for a1) or 3 (standing for a3). Once we have computed all L

12

105814721 9765384 21 5143221 310 7065310 59 10632
Figure 9: An O(n2)-time algorithm for finding a longest increasing subse-
quence.

and P values, the maximum L value is the length of a longest increasing
subsequence of A. In this example, L[9] = 5 is the maximum. Tracing back
from P [9], we have found a longest increasing subsequence 〈a3, a5, a6, a7, a9〉,
i.e., 〈2, 3, 6, 9, 10〉.

In the following, we briefly describe a more efficient dynamic-programming
algorithm for delivering a longest increasing subsequence [6]. A crucial ob-
servation is that it suffices to store only those smallest ending elements for
all possible lengths of the increasing subsequences. For example, in Figure 9,
there are three entries whose L value is 2, namely a2 = 8, a4 = 7, and a5 = 3,
where a5 is the smallest. Any element after position 5 that is larger than a2

or a4 is also larger than a5. Therefore, a5 can replace the roles of a2 and a4

after position 5.
Let SmallestEnd[k] denote the smallest ending element of all possible

increasing subsequences of length k ending before current position i. The
algorithm proceeds from i = 1 to i = n. How do we update SmallestEnd[k]
when we consider ai? By definition, it is easy to see that the elements in
SmallestEnd are in increasing order. In fact, ai will affect only one entry in
SmallestEnd. If ai is larger than all the elements in SmallestEnd, then we
can concatenate ai to the longest increasing subsequence computed so far.
That is, one more entry is added to the end of SmallestEnd. A backtracking
pointer is recorded by pointing to the previous last element of SmallestEnd.
Otherwise, let SmallestEnd[k′] be the smallest element that is larger than
ai. We replace SmallestEnd[k′] by ai because now we have a smaller ending
element of an increasing subsequence of length k′.

Since SmallestEnd is a sorted array, the above process can be done by a
binary search. A binary search algorithm compares the query element with

13

the middle element of the sorted array, if query element is larger, then it
searches the larger half recursively. Otherwise, it searches the smaller half
recursively. Either way the size of the search space is shrunk by a factor of
two. At position i, the size of SmallestEnd is at most i. Therefore, for each
position i, it takes O(log i) time to determine the appropriate entry to be
updated by ai. Therefore, in total we have an O(n log n)-time algorithm for
the longest increasing subsequence problem.

Figure 10 illustrates the process of finding a longest increasing subse-
quence of A = 〈4, 8, 2, 7, 3, 6, 9, 1, 10, 5〉. When i = 1, there is only one
increasing subsequence, i.e., 〈4〉. We have SmallestEnd[1] = 4. Since a2 = 8
is larger than SmallestEnd[1], we create a new entry SmallestEnd[2] = 8
and set the backtracking pointer P [2] = 1, meaning that a2 can be concate-
nated with a1 to form an increasing subsequence 〈4, 8〉. When a3 = 2 is en-
countered, its nearest larger element in SmallestEnd is SmallestEnd[1] = 4.
We know that we now have an increasing subsequence 〈2〉 of length 1. So
SmallestEnd[1] is changed from 4 to a3 = 2 and P [3] = 0. When i = 4,
we have SmallestEnd[1] = 2 < a4 = 7 < SmallestEnd[2] = 8. By concate-
nating a4 with Smallest[1], we have a new increasing subsequence 〈2, 7〉 of
length 2 whose ending element is smaller than 8. Thus, SmallestEnd[2] is
changed from 8 to a4 = 7 and P [4] = 3. Continue this way until we reach
a10. When a10 is encountered, we have SmallestEnd[2] = 3 < a10 = 5 <
SmallestEnd[3] = 6. We set SmallestEnd[3] = a10 = 5 and P [10] = 5.
Now the largest element in SmallestEnd is SmallestEnd[5] = a9 = 10. We
can trace back from a9 by the backtracking pointers P and deliver a longest
increasing subsequence 〈a3, a5, a6, a7, a9〉, i.e., 〈2, 3, 6, 9, 10〉.

4.4 Longest common subsequence

A subsequence of a sequence S is obtained by deleting zero or more elements
from S. For example, sequences 〈p, r, e, d〉, 〈s, d, n〉, and 〈p, r, e, d, e, n, t〉 are
all subsequences of sequence 〈p, r, e, s, i, d, e, n, t〉.

Given two sequences, the longest common subsequence problem is to find
a subsequence that is common to both sequences and its length is maximized.
For example, given two sequences 〈p, r, e, s, i, d, e, n, t〉 and 〈p, r, o, v, i, d, e, n, c, e〉,
〈p, r, d, n〉 is a common subsequence of them, whereas 〈p, r, v〉 is not. Their
longest common subsequence is 〈p, r, i, d, e, n〉.

We are given two sequences A = 〈a1, a2, . . . , am〉, and B = 〈b1, b2, . . . , bn〉.
Let len[i, j] denote the length of a longest common sequence between 〈a1, a2, . . . , ai〉

14

21 5143221 310 7065330 5105814721 9765384 9 106324 48 28 27 23 236 2369 1369 136910 135910
Figure 10: An O(n log n)-time algorithm for finding a longest increasing sub-
sequence.

and 〈b1, b2, . . . , bj〉. They can be computed by the following recurrence:

len[i, j] =

0 if i = 0 or j = 0,
len[i− 1, j − 1] + 1 if i, j > 0 and ai = bj,
max{len[i, j − 1], len[i− 1, j]} otherwise.

In other words, if any sequence of the two is an empty sequence, the length
of their longest common subsequence is of course zero. If ai matches with bj,
a longest common subsequence between 〈a1, a2, . . . , ai〉, and 〈b1, b2, . . . , bj〉
is a longest common subsequence of 〈a1, a2, . . . , ai−1〉, and 〈b1, b2, . . . , bj−1〉
followed by ai. Therefore, in this case len[i, j] = len[i−1, j−1]+1. Otherwise,
ai doesn’t match with bj. Their longest common subsequence is either a
longest common subsequence of 〈a1, a2, . . . , ai〉, and 〈b1, b2, . . . , bj−1〉, or that
of 〈a1, a2, . . . , ai−1〉, and 〈b1, b2, . . . , bj〉. Its length is thus the larger one of
len[i, j − 1] and len[i− 1, j].

Figure 11 gives the pseudo-code for computing len[i, j]. The array prev[i, j]
is used to record the backtracking information. The total running time is
O(mn).

15

Algorithm LCS length(A = 〈a1, a2, . . . , am〉, B = 〈b1, b2, . . . , bn〉)
begin

for i ← 0 to m do len[i, 0] = 0
for j ← 1 to n do len[0, j] = 0
for i ← 1 to m do

for j ← 1 to n do
if ai = bj then

len[i, j] ← len[i− 1, j − 1] + 1
prev[i, j] =“↖”

else if len[i− 1, j] ≥ len[i, j − 1] then
len[i, j] ← len[i− 1, j]
prev[i, j] =“↑”

else
len[i, j] ← len[i− 1, j]
prev[i, j] =“←”

return len and prev
end

Figure 11: Computing the length of a longest common subsequence.

16

A NEMNGIL T
MHTIRO
GLA 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0
 0

 1 2 3 3 4 4
 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 1 2 2 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 4 4 4

Figure 12: Computing the length of a longest common subsequence of
〈a, l, g, o, r, i, t, h, m〉 and 〈a, l, i, g, n,m, e, n, t〉.

Figure 12 illustrates the tabular computation. The length of a longest
common subsequence of 〈a, l, g, o, r, i, t, h, m〉 and 〈a, l, i, g, n,m, e, n, t〉 is 4.

Figure 13 lists the pseudo-code for delivering a longest common sub-
sequence. We backtrack recursively according the direction of the arrow.
Whenever a diagonal arrow “↖” is encountered, we append the current
matched letter to the end. It takes O(m + n) time to do the backtrack-
ing.

Figure 14 illustrates the backtracking process. It outputs 〈a, l, g, t〉 as a
longest common subsequence of 〈a, l, g, o, r, i, t, h, m〉 and 〈a, l, i, g, n, m, e, n, t〉.

Acknowledgements

Kun-Mao Chao was supported in part by NSC grants 94-2213-E-002-018 and
95-2221-E-002-126-MY3 from the National Science Council, Taiwan.

17

Algorithm LCS output(A = 〈a1, a2, . . . , am〉, prev, i, j)
begin

if i = 0 or j = 0 then return
if prev[i, j] =“↖” then

LCS output(A, prev, i− 1, j − 1)
print ai

else if prev[i, j] =“↑” then LCS output(A, prev, i− 1, j)
else LCS output(A, prev, i, j − 1)

end

Figure 13: Delivering a longest common subsequence.A NEMNGIL T
MHTIRO
GLA 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0
 0

 1 2 3 3 4 4
 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 1 2 2 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4

Figure 14: Delivering a longest common subsequence of 〈a, l, g, o, r, i, t, h,m〉
and 〈a, l, i, g, n,m, e, n, t〉 by backtracking.

18

References

[1] Bentley, J (1986) Programming Pearls, Addison-Wesley Publishing
Company, Massachusetts.

[2] Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to
algorithms, The MIT Press, Massachusetts.

[3] Gusfield D (1997) Algorithm on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology, Cambridge University Press,
Cambridge.

[4] Huffman DA (1952) A method for the construction of minimum-
redundancy codes Proc. IRE 40, 1098-1101.

[5] Knuth, DE (1973) The art of computer programming, Vol. 3, Addison-
Wesley Publishing Company, Massachusetts.

[6] Manber, U (1989) Introduction to Algorithms, Addison-Wesley Publish-
ing Company, Massachusetts.

19

