
Dynamic Programming – a Quick Review

Kun-Mao Chao1,2

1Department of Computer Science and Information Engineering
2Graduate Institute of Networking and Multimedia

National Taiwan University, Taipei, Taiwan 106
Email: kmchao@csie.ntu.edu.tw

October 5, 2005

1 Introduction

Dynamic programming is a class of solution methods for solving sequential
decision problems with a compositional cost structure. It is one of the major
paradigms of algorithm design in computer science. The name was given in
1957 by Richard Bellman. The word “programming” both here and in linear
programming refers to a tabular method that makes a series of choices, not
to writing computer code. The word “dynamic” in this context conveys the
idea that choices may depend on the current state, rather than being decided
ahead of time.

Typically, dynamic programming is applied to optimization problems.
In such problems, there exist many possible solutions. Each solution has a
value, and we wish to find a solution with the optimum value. There are
two ingredients for an optimization problem to be suitable for a dynamic-
programming approach. One is that it satisfies the principle of optimality,
i.e., each substructure is optimal. The other is that it has overlapping sub-
problems, otherwise a divide-and-conquer approach is the choice.

The development of a dynamic-programming algorithm has three basic
components: the recurrence relation (for defining the value of an optimal
solution), the tabular computation (for computing the value of an optimal

1

solution), and the traceback (for delivering an optimal solution). Here we
introduce these basic ideas by developing dynamic-programming solutions
for problems from different application areas.

2 Elementary Dynamic-Programming Algo-

rithms

The Fibonacci numbers example is used to demonstrate how a tabular com-
putation can avoid recomputation. The longest increasing subsequence prob-
lem and the longest common subsequence problem are all very classical
and instructive for introducing dynamic-programming approaches to solv-
ing sequence-related problems [1, 2].

2.1 Fibonacci numbers

The Fibonacci numbers were first created by Leonardo Fibonacci in 1202. It
is a simple series, but its applications are nearly everywhere. It has fascinated
mathematicians for over 800 years. The Fibonacci numbers are defined by
the following recurrence:





F0 = 0,
F1 = 1,
Fi = Fi−1 + Fi−2 for i ≥ 2.

Given a positive integer n, how would you compute Fn? You might say
that it can be easily solved by a straightforward recursive method based on
the recurrence. That’s right. But is it efficient? Take the computation of F10

for example. By definition, F10 is derived by adding up F9 and F8. What
about the values of F9 and F8? Again, F9 is derived by adding up F8 and
F7; F8 is derived by adding up F7 and F6. Working towards this direction,
we’ll finally reach the values of F1 and F0, i.e., the end of the recursive calls.
By adding them up backwards, we have the value of F10. It can be shown
that the number of recursive calls we have to make for computing Fn is
exponential in n.

Those who are ignorant of history are doomed to repeat it. A major
drawback of this recursive approach is to solve many of the subproblems
repeatedly. A tabular method solves every subproblem just once and then

2

Table 1: A tabular method can avoid recomputation.

553421138532110

F10F9F8F7F6F5F4F3F2F1F0

saves its answer in a table, thereby avoiding the work of recomputing the
answer every time the subproblem is encountered. Table 1 illustrates that
Fn can be computed in O(n) steps by a tabular computation. It should be
noted that Fn can be computed in just O(log n) steps by applying matrix
computation [1].

2.2 Longest increasing subsequence

Given a sequence of real numbers A = 〈a1, a2, . . . , an〉, the longest increasing
subsequence problem is to find an increasing subsequence in A whose length is
maximum. Without loss of generality, we assume these numbers are distinct.
Formally, given a sequence of distinct real numbers A = 〈a1, a2, . . . , an〉,
another sequence B = 〈b1, b2, . . . , bk〉 is a subsequence of A if there exists
a strictly increasing sequence 〈i1, i2, . . . , ik〉 of indices of A such that for all
j = 1, 2, . . . , k, we have aij = bj. We say the subsequence B is increasing if
b1 < b2 < . . . < bk. The longest increasing subsequence problem is to find a
maximum-length increasing subsequence of A.

For example, suppose A = 〈9, 2, 5, 3, 7, 11, 8, 10, 13, 6〉, both 〈2, 3, 7〉 and
〈5, 7, 10, 13〉 are increasing subsequences of A, while 〈9, 7, 11〉 and 〈3, 5, 11, 13〉
are not.

Let L(i) be the length of a longest increasing subsequence ending at
position i. They can be computed by the following recurrence:

L(i) =

{
1 + maxj=0,...,i−1{L(j) | ai < aj} if i > 0,
0 if i = 0.

Here we assume a0 is a dummy element and smaller than any element
in A, and L(0) is equal to 0. By tabular computation, each L(i) can be
computed in O(i) steps. Therefore, they require in total

∑n
i=1 O(i) = O(n2)

steps. For each position i, we record the best previous element for current
element to concatenate with. By tracing back from the element with the

3

9 2 5 3 7 11 8 10 13 6
L(i) 1 1 2 2 3 4 4 5 6 3

Figure 1: A = 〈9, 2, 5, 3, 7, 11, 8, 10, 13, 6〉. The reported longest increasing sub-
sequence is 〈2, 3, 7, 8, 10, 13〉. Notice 〈2, 5, 7, 8, 10, 13〉 is an alternative longest in-
creasing subsequence.

largest L value, we derive a longest increasing subsequence. Figure 1 gives
an example.

In the following, we briefly describe a more efficient dynamic-programming
algorithm for delivering a longest increasing subsequence [2]. Let BestEnd(k)
denote the smallest ending element of all possible increasing subsequences of
length k ending before current position i. How do we update BestEnd(k)
when we consider ai? Notice first the elements in BestEnd are in increas-
ing order. In fact, ai will affect only one entry in BestEnd. If ai is larger
than all the elements in BestEnd, then we can concatenate ai to the longest
increasing subsequence computed so far. That is, one more entry is added
to the end of BestEnd. A backtracking pointer is recorded by pointing to
the previous last element of BestEnd. Otherwise, let BestEnd(k′) be the
smallest element that is larger than ai. We replace BestEnd(k′) by ai be-
cause now we have a smaller ending element of an increasing subsequence of
length k′. Since BestEnd is a sorted array, the above process can be done
by a binary search. For each position i, it takes O(log i) time to determine
the appropriate entry to be updated by ai. Therefore, in total we have an
O(n log n)-time algorithm for the longest increasing subsequence problem.
Figure 2 illustrates the idea.

2.3 Longest common subsequence

A subsequence of a sequence S is obtained by deleting zero or more symbols
from S. For example, these are all subsequences of the sequence president:
pred, sdn, predent.

4

9 2 5 3 7 11 8 10 13 6
9 2 2

5

2

3

2

3

7

2

3

7

11

2

3

7

8

2

3

7

8

10

2

3

7

8

10

13

2

3

6

8

10

13

Figure 2: A = 〈9, 2, 5, 3, 7, 11, 8, 10, 13, 6〉. Notice that each ai modifies only one
entry in BestEnd. We also record a pointer to its previous entry for backtracking.
It should be noted, however, that the final BestEnd (〈2, 3, 6, 8, 10, 13〉) is not a
longest increasing subsequence.

Given two sequences, the longest common subsequence problem is to find
a subsequence that is common to both sequences and its length is maximized.
For example, given two sequences president and providence, the subsequence
prd is a common subsequence of them, while the subsequence prv is not. We
are interested in finding a maximum-length common subsequence between
two sequences.

We are given two sequences A = 〈a1, a2, . . . , am〉, and B = 〈b1, b2, . . . , bn〉.
Let len(i, j) denote the length of the longest common sequence between
〈a1, a2, . . . , ai〉, and 〈b1, b2, . . . , bj〉. They can be computed by the following
recurrence:

len(i, j) =





0 if i = 0 or j = 0,
len(i− 1, j − 1) + 1 if i, j > 0 and ai = bj,
max{len(i, j − 1), len(i− 1, j)} otherwise.

In other words, if any sequence of the two is an empty sequence, the length
of the longest common subsequence is of course zero. If ai matches with bj,
the longest common subsequence between 〈a1, a2, . . . , ai〉, and 〈b1, b2, . . . , bj〉
is the longest common subsequence of 〈a1, a2, . . . , ai−1〉, and 〈b1, b2, . . . , bj−1〉
followed by ai. Therefore, in this case len(i, j) = len(i− 1, j − 1) + 1. Oth-
erwise, ai doesn’t match with bj. The length of the longest common subse-
quence is thus the larger of len(i, j − 1) and len(i− 1, j).

5

Figure 3 gives the pseudo-code for computing len(i, j). The array prev(i, j)
is used to record the backtracking information. The total running time is
O(mn).

procedure LCS-Length(A, B)

1. for i ← 0 to m do len(i,0) = 0

2. for j ← 1 to n do len(0,j) = 0

3. for i ← 1 to m do

4. for j ← 1 to n do

5. if ji ba = then  =
+−−=

" "),(

1)1,1(),(

jiprev

jilenjilen

6. else if)1,(),1(−≥− jilenjilen

7. then  =
−=
" "),(

),1(),(

jiprev

jilenjilen

8. else  =
−=
" "),(

)1,(),(

jiprev

jilenjilen

9. return len and prev

Figure 3: Computing len(i, j)

Figure 4 illustrates the tabular computation. The length of the longest
common subsequence of the sequences president and providence is 6.

i j 0 1
p

2
r

3
o

4
v

5
i

6
d

7
e

8
n

9
c

10
e

0 0 0 0 0 0 0 0 0 0 0 0

1 p 0 1 1 1 1 1 1 1 1 1 1

2 r 0 1 2 2 2 2 2 2 2 2 2

3 e 0 1 2 2 2 2 2 3 3 3 3

4 s 0 1 2 2 2 2 2 3 3 3 3

5 i 0 1 2 2 2 3 3 3 3 3 3

6 d 0 1 2 2 2 3 4 4 4 4 4

7 e 0 1 2 2 2 3 4 5 5 5 5

8 n 0 1 2 2 2 3 4 5 6 6 6

9 t 0 1 2 2 2 3 4 5 6 6 6
Figure 4: The tabular computation.

Figure 5 lists the pseudo-code for delivering the longest common subse-
quence. We backtrack recursively according the direction of the arrow. Only
when a diagonal arrow is encountered, we append the current matched letter
to the end. It takes O(m + n) time to do the backtracking.

Figure 6 illustrates the backtracking process. Recall that we will output
a matched letter when a diagonal arrow is reached.

6

 procedure Output-LCS(A, prev, i, j)

1 if i = 0 or j = 0 then return

2 if prev(i, j)=” “ then  −−−

ia

jiprevALCSOutput

print

)1,1,,(

3 else if prev(i, j)=” “ then Output-LCS(A, prev, i-1, j)

4 else Output-LCS(A, prev, i, j-1)

Figure 5: Traceback.

i j 0 1
p

2
r

3
o

4
v

5
i

6
d

7
e

8
n

9
c

10
e

0 0 0 0 0 0 0 0 0 0 0 0

1 p 0 1 1 1 1 1 1 1 1 1 1

2 r 0 1 2 2 2 2 2 2 2 2 2

3 e 0 1 2 2 2 2 2 3 3 3 3

4 s 0 1 2 2 2 2 2 3 3 3 3

5 i 0 1 2 2 2 3 3 3 3 3 3

6 d 0 1 2 2 2 3 4 4 4 4 4

7 e 0 1 2 2 2 3 4 5 5 5 5

8 n 0 1 2 2 2 3 4 5 6 6 6

9 t 0 1 2 2 2 3 4 5 6 6 6
Figure 6: The longest common subsequence is priden. The shaded area is the
trace of backtracking.

Acknowledgements

Kun-Mao Chao was supported in part by NSC grants 94-2213-E-002-018 and
94-2213-E-002-091 from the National Science Council, Taiwan.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein Introduction to
Algorithms, the MIT Press, Cambridge, Massachusetts, 1999.

[2] U. Manber Introduction to Algorithms, Addison Wesley, 1989.

7

