¶}½Ò³æ¦ì¨t©Ò |
|
¸ê°T¨t |
|||||
½Ò µ{ |
¢i¤@¯ë½Òµ{ (§t¥²¡B¿ï×) |
¡¼ ³qÃѽҵ{ |
¡¼±Ð¨|¾Çµ{ |
¡¼x°V½Òµ{ |
¡¼Ê^¨|½Òµ{ |
||
¡¼(1¤H¤å 2ªÀ·| 3ª«½è 4¥Í©R |
|||||||
½Ò¸¹¡G |
¯Z¦¸¡G |
¾Ç¤À¡G3 |
|||||
¦WºÙ¡G¥Íª«§Ç¦C¤ÀªRºtºâªk(Algorithms for Analyzing
Biological Sequences) |
|||||||
±Â ½Ò ±Ð ®v |
»¯©[Z (Kun-Mao Chao) |
||||||
½Òµ{¤jºõ¤º®e(§t¶i«×¡B±Ð¬ì®Ñ©Î°Ñ¦Ò®Ñ¥Ø¡B¦¨ÁZµû¶q¤è¦¡) |
Web site:
http://www.csie.ntu.edu.tw/~kmchao/seq05fall Prerequisites: Some basic knowledge on algorithm development and program design
is required. Background in bioinformatics and computational biology is welcome
but not required for taking this course. Outline: 1.
Introduction
to sequence analysis 2.
Dynamic
programming strategy revisited 3.
Maximum-sum
and maximum-density segments 4.
Pairwise
sequence alignment 5.
Multiple
sequence alignment 6.
Suboptimal
alignment 7.
Hidden
Markov models (the Viterbi algorithm et al.) 8.
Comparative
genomics 9.
Phylogenetic
trees 10.
SNP
and haplotype data analysis 11.
Genome
annotation 12.
Other
advanced topics References: 1. Class notes 2. Related journal and conference papers 3. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, by Dan Gusfield (1997) 4. Biological Sequence Analysis, by Richard Durbin et al. (1998) 5. Computational Molecular Biology: An Algorithmic Approach, by Pavel Pevzner (2000)
Coursework: Programming
assignments
and Class participation(30%)
One exam (40%) Final project (Oral
presentation of selected papers) (30%) |
||||||