¶}½Ò³æ¦ì¨t©Ò

 

  ¸ê°T¨t

 

 

½Ò   µ{

¢i¤@¯ë½Òµ{

(§t¥²¡B¿ï­×)

¡¼  ³qÃѽҵ{

 

¡¼±Ð¨|¾Çµ{

 

¡¼­x°V½Òµ{

 

¡¼Ê^¨|½Òµ{

¡¼(1¤H¤å 2ªÀ·|

3ª«½è 4¥Í©R

½Ò¸¹¡G

¯Z¦¸¡G

¾Ç¤À¡G3

¦WºÙ¡G¥Íª«§Ç¦C¤ÀªRºtºâªk(Algorithms for Analyzing Biological Sequences)

±Â ½Ò ±Ð ®v

»¯©[­Z (Kun-Mao Chao)

 

½Òµ{¤jºõ¤º®e(§t¶i«×¡B±Ð¬ì®Ñ©Î°Ñ¦Ò®Ñ¥Ø¡B¦¨ÁZµû¶q¤è¦¡)

Web site: http://www.csie.ntu.edu.tw/~kmchao/seq05fall

 

Prerequisites: Some basic knowledge on algorithm development and program design is required. Background in bioinformatics and computational biology is welcome but not required for taking this course.

Outline:

1.          Introduction to sequence analysis

2.          Dynamic programming strategy revisited

3.          Maximum-sum and maximum-density segments

4.          Pairwise sequence alignment

5.          Multiple sequence alignment

6.          Suboptimal alignment

7.          Hidden Markov models (the Viterbi algorithm et al.)

8.          Comparative genomics

9.          Phylogenetic trees

10.      SNP and haplotype data analysis

11.      Genome annotation

12.      Other advanced topics

 

References:

1.          Class notes

2.          Related journal and conference papers

3.     Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, by Dan Gusfield (1997)

4.          Biological Sequence Analysis, by Richard Durbin et al. (1998)

5.                      Computational Molecular Biology: An Algorithmic Approach, by Pavel Pevzner (2000)

6.       An Introduction to Bioinformatics Algorithms, by Neil C. Jones and Pavel Pevzner (2004)

 

Coursework:

Programming assignments and Class participation(30%)

One exam (40%)

Final project (Oral presentation of selected papers) (30%)