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1 Introduction

In nature, even a single amino acid sequence contains all the information necessary to

determine the fold of the protein. However, the folding process is still mysterious to us,

and some valuable information can be revealed by sequence comparison. Take a look at

the following sequence:

THETR UTHIS MOREI MPORT ANTTH ANTHE FACTS
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What did you see in the above sequence? By comparing it with the words in the dictio-

nary, we find the tokens “FACTS,” “IMPORTANT,” “IS,” “MORE,” “THAN,” ”THE,”

and “TRUTH.” Then we figure out the above is the sentence “The truth is more impor-

tant than the facts.”

Even though we have not decoded the DNA and protein languages, the emerging

flood of sequence data has provided us with a golden opportunity of investigating the

evolution and function of biomolecular sequences. Sequence comparison plays a major

role in this line of research, and thus becomes the most basic tool of bioinformatics.

Sequence comparison has wide applications to molecular biology, computer science,

speech processing, and so on. In molecular biology, it is often used to reveal similarities

among sequences, determine the residue-residue correspondences, locate patterns of con-

servation, study gene regulation, and infer evolutionary relationships. It helps us to fish

for related sequences in databanks, such as the GenBank database. It can also be used

for the annotation of genomes.

To be continued...

2 Sequence Alignment

The unfortunate scarcity of interaction between biologists and computer scientists is well

illustrated by the parallel developments of dynamic-programming methods for comparing

sequences. Such methods were independently discovered by biologists [22], computer

scientists [29], and workers in other fields. (For a survey of the history, see [26]) The

precise relationship between the methods developed by the two communities is somewhat
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obscured by notational differences, most but not all of which are insignificant. Computer

scientists typically make explicit the relationship between two sequences by producing a

list of editing operations that converts one sequence to the other, while biologists prefer

to see an alignment of the sequences. Moreover, mathematically-oriented researchers find

it natural to compare sequences using a distance “metric”, i.e., where a sequence is at

distance zero from itself and large values of the measure correspond to highly divergent

sequences. On the other hand, biologists tend to think in terms of similarity scores, i.e.,

a sequence has a very high similarity score when compared with itself, similar sequences

have a smaller, but still positive, similarity score, and a pair of unrelated sequences

has a negative score. It is tempting to believe that there is some kind of “duality”

between minimizing a distance measure and maximizing a similarity score that makes it

immaterial which one is adopted. Indeed, this is true under certain circumstances [28],

though not for “local” alignments (see below).

Besides needing flexible ways of scoring alignments, biologists typically want to com-

pute kinds of alignments that are not equivalent to the models studied by computer

scientists. Computer scientists generally consider a problem equivalent to global align-

ment, i.e., computing an optimal alignment that is required to extend from the starts

of the given sequences to their ends. Biologists frequently find it more useful to seek an

alignment that is highest-scoring among all alignments between an arbitrary section of

the first sequence and an arbitrary section of the second sequence [27], which is called

the local alignment problem. Probably the most useful of these variations for aligning bi-

ological sequences is that of computing “n best non-intersecting” local alignments. Care
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must be taken to formalize this notion in a way that allows subtle matches lying near

much stronger (but perhaps less interesting) matches to be found, while still permitting

efficient computation [32]. Earlier attempts to define the “n best local alignments prob-

lem” in terms of minimizing a measure of the distance between two sequences led to

substantially more cumbersome algorithms.

On the computer science side, Hirschberg [18] discovered a method for computing

longest common subsequences using only linear space (space proportional to the sum of

the sequence lengths) rather than the naive quadratic space (space proportional to the

product of the sequence lengths). Although space, rather than time, is often the con-

straining factor when applying dynamic-programming techniques to biological sequences

(e.g., with a DNA sequence of length 50,000, a quadratic-space method uses billions

of computer memory locations), biologists didn’t discover the technique for themselves.

While Hirschberg’s original formulation was for alignment scores that are unrealistically

simple for applications in biology, Myers and Miller [21] (also [20]) extended the approach

to affine gap costs. Moreover, linear-space methods have been developed for the “n best

local alignment problem” [19].

2.1 Global alignment

Following its introduction by Needleman and Wunsch [22], dynamic programming has

become the method of choice for “rigorous” alignment of DNA and protein sequences.

For a number of useful alignment-scoring schemes, this method is guaranteed to produce

an alignment of two given sequences having the highest possible score.
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C - - - T T A A C T
C G G A T C A - - T
+8    -3    -3    -3   +8    -5   +8   -3    -3    +8  =  +12

Figure 1: We assume the following simple scoring scheme: match = 8, mismatch = −5, and

g = 3. That is, w(a, b) = 8 if a and b are the same; w(a, b) = −5 if a and b are different; and

the gap penalty for each gap symbol is 3.

Given two sequences A = 〈a1, a2, . . . , aM〉, and B = 〈b1, b2, . . . , bN〉, an alignment of

A and B is obtained by introducing dashes into the two sequences such that the lengths

of the two resulting sequences are identical and no column contains two dashes. Let

Σ denote the input symbol alphabet. To simplify the presentation, we employ a very

simple scoring scheme as follows. A score w(a, b) is defined for each (a, b) ∈ Σ×Σ. Each

gap symbol is penalized by a constant g. The score of an alignment is the sum of w

scores of all columns with no dashes minus the penalties of the gaps. Figure 1 gives an

example of an alignment’s score. An optimal alignment is an alignment that maximizes

the score. By global alignment we mean that both sequences are aligned globally, i.e.,

from their first symbols to their last.

It is quite helpful to recast the problem of aligning two sequences as an equivalent

problem of finding a maximum-score path in a certain graph, as has been observed by a

number of authors [7]. Figure 2 gives an example.

Let S(i, j) denote the score of an optimal alignment between 〈a1, a2, . . . , ai〉, and

〈b1, b2, . . . , bj〉. With proper initializations, S(i, j) can be computed by the following

recurrence:
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Figure 2: An alignment corresponds to a path in an alignment graph. The substitution

aligned pairs, insertion aligned pairs, and deletion aligned pairs correspond to diagonal edges,

horizontal edges, and vertical edges, respectively.

S(i, j) = max





S(i− 1, j)− g

S(i, j − 1)− g

S(i− 1, j − 1) + w(ai, bj)

Figure 3 explains the recurrence by showing that there are three possible ways enter-

ing into the grid point (i, j), and we take the maximum of their path weights. The value

S(M, N) is the score of an optimal alignment between sequences A and B.

Figure 4 illustrates the tabular computation for S(i, j).

Figure 5 gives an optimal alignment that is corresponding to the backtracking in

Figure 4.
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Figure 3: There are three ways entering the point i, j). In this simple scoring scheme,

w(ai,−) = w(−, bj) = −g.
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Figure 4: The tabular computation. The maximum alignment score is 14. The shaded area is

the trace of backtracking.
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C T T A A C – T
C G G A T C A T
8 – 5 –5  +8  -5  +8  -3 +8 = 14

Figure 5: An optimal (global) alignment.

2.2 Local alignment

In many applications, a global (i.e., end-to-end) alignment of the two given sequences is

inappropriate; instead, a local alignment (i.e., involving only a part of each sequence) is

desired. In other words, one seeks a high-scoring path that need not terminate at the

corners of the dynamic-programming grid [27]. The highest local alignment score can be

computed as follows: :

S(i, j) = max





0

S(i− 1, j)− g

S(i, j − 1)− g

S(i− 1, j − 1) + w(ai, bj)

The recurrence is quite similar to that for global alignment except the first entry

“zero.” For local alignment, we are not required to start from the source (0, 0). Therefore,

if the scores of all possible paths ending at the current position are all negative, they are

reset to zero because any point in the alignment graph could be the starting position of

a local alignment. The largest value of S(i, j) is the score of the best local alignment

between sequences A and B.

Further complications arise when one seeks k best alignments, where k > 1. For

computing an arbitrary number of non-intersecting and high-scoring local alignments,

Waterman and Eggert [32] developed a very time-efficient method.
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Figure 6: The maximum score is 18. The shaded area is the trace of backtracking.

A – C - T
A T C A T
8-3+8-3+8 = 18

Figure 7: An optimal local alignment.

Figure 6 illustrates the tabular computation for local alignment.

Figure 7 gives an optimal local alignment that is corresponding to the backtracking

in Figure 6.

To attain greater speed, biologists have employed the strategy of building alignments

from alignment fragments [33, 34]. For example, one could specify some fragment length

k ≥ 1 and work with fragments consisting of a segment of length at least k that occurs

in both sequences. With protein sequences, it might well work better to begin with

inexact but high-scoring matches, such as those used by the blast program [2] for other

purposes. In any case, algorithms that optimize the score over alignments constructed

from fragments can run faster that algorithms than optimize over all possible alignments.
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Alignments constructed from fragments (or often just the alignments’ scores) have

been very successful in initial filtering criteria within programs that search a sequence

database for matches to a query sequence; database sequences whose alignment score with

the query sequence falls below a threshold are ignored, and the remainder are subjected to

a slower but higher-resolution alignment process. Moreover, the high-resolution process

can be made more efficient by restricting the search to a “neighborhood” of the alignment-

from-fragments [24, 6, 8].

The idea of filtration used in both FASTA and BLAST is based on the observation

that a good alignment usually includes short identical or very similar fragments. FASTA

[24] uses a multi-step approach to finding local alignments: (1)find runs of identities,

and identify regions with the highest density of identities; (2)re-score using PAM matrix,

and keep top scoring segments; (3)eliminate segments that are unlikely to be part of the

alignment; and (4)optimize the alignment in a band.

The first version of BLAST finds ungapped alignments [2]. First, it builds a hash

table for the query sequence (see Figure 8). Then it scans the database for hits. Finally,

it extends hits as an ungapped alignment in both diagonal directions. New version

of BLAST accelerates the process of extending hits (which consumes almost 90% of

the computation time in the first version of BLAST), and is now able to deliver some

important gapped alignments.
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Seq. A = AGATCGAT
12345678

AAA
AAC
..
AGA   1
..
ATC   3
..
CGA   5
..
GAT   2    6
..
TCG   4
..

TTT

Figure 8: A hash table for finding exact matches of size 3.

2.3 Affine gap penalties

Biologists need more general measurements of sequence relatedness than are typically

considered by computer scientists. The most popular formulation in the computer science

literature is the “longest common subsequence problem,” which is equivalent to scoring

alignments by simply counting the number of exact matches. For comparing protein

sequences, it is important to permit the bonus awarded for aligning two symbols to

depend on the particular symbol pair [12]. For both DNA and protein sequences, it

is standard to penalize a long gap (i.e., deletion from one of the sequences) less than

the sum of the penalties for a set of shorter gaps of the same total length [14]. This

is usually accomplished by charging g + t × e for a gap of length t. Thus the “gap-

open penalty” g is assessed for every gap, regardless of length, and an additional “gap-

extension penalty” e is charged for every sequence entry in the gap. Such penalties are

called affine gap penalties (See Figure 9). Gotoh [15] showed how to efficiently compute
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C - - - T T A A C T
C G G A T C A - - T
+8    -3    -3    -3   +8    -5   +8   -3    -3    +8  =  +12

-4 -4

Alignment score: 12 – 4 – 4 = 4

Figure 9: tba

optimal alignments under such scoring rules.

Even more general models for quantifying sequence relatedness have been proposed.

For example, it is sometimes useful to have the penalty for adding a symbol to a gap

depend on the position of the gap within the sequence [16], which is motivated by the

observation that insertions in certain regions of a protein sequence can be much more

likely than at other regions. Another generalization is to let the incremental gap cost δi

= ci+1 − ci, where a k-symbol gap costs ck, be a monotone function of i, e.g., δ1 ≥ δ2 ≥

· · · [31, 20]. There is some evidence that monotonic gap-extension penalties incorrectly

model nature in certain circumstances [23].

Selection of the scoring parameters is often a major factor affecting the usefulness of

the computed alignments, since it determines which sequence regions will be considered

non-aligning (e.g. because of negative scores) and what relationships will be assigned

between aligning regions. Appropriateness of scoring parameters depends on several

factors, including evolutionary distance between the species being compared.
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2.4 Space-saving strategies

A dynamic-programming strategy for sequence alignment first proposed in 1975 by Dan

Hirschberg can be adapted to yield a number of extremely space-efficient algorithms

[18]. Specifically, these algorithms align two sequences using only “linear space”, i.e., an

amount of computer memory that is proportional to the sum of the lengths of the two

sequences being aligned.

We briefly describe Hirschberg’s linear-space alignment algorithm; the algorithm de-

livers an explicit optimal alignment, not merely its score. Readers can refer to [7] for

more space-saving strategies. First, make a linear-space “forward” score-only pass, stop-

ping at the middle row, i.e., row mid = bM/2c. Then make a linear-space “backward”

score-only pass, again stopping at the middle row. Thus, for each point along the middle

row, we now have the optimal score from (0, 0) to that point and the optimal score from

that point to (M, N). Adding those numbers gives the optimal score over all paths from

(0, 0) to (M, N) that pass through that point. A sweep along the middle row, check-

ing those sums, determines a point (mid, j) where an optimal path crosses the middle

row. This reduces the problem to finding an optimal path from (0, 0) to (mid, j) and an

optimal path from (mid, j) to (M,N), which is done recursively.

Figure 10(A) shows the two subproblems and each of their “subsubproblems”. Note

that regardless of where the optimal path crosses the middle row, the total of the sizes

of the two subproblems is just half the size of the original problem, where problem size

is measured by the number of nodes. Similarly, the total sizes of all subsubproblems is

a fourth the original size. Letting T be the size of the original, it follows that the total
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Figure 10: Hirschberg’s linear-space approach.

sizes of all problems, at all levels of recursion, is at most T + 1
2
T + 1

4
T ... = 2T . Since

computation time is directly proportional to the problem size, this approach will deliver

an optimal alignment in about twice the time needed to compute merely its score.

Figure 10(B) shows a typical point in the alignment process. The initial portion of

an optimal path will have been determined, and the current problem is to report the

aligned pairs along an optimal path from (i1, j1) to (i2, j2).

2.5 Multiple sequence alignment

Simultaneous alignment of several sequences is among the most important problems

in computational molecular biology [17]. In particular, accurate multiple alignment is

critical for the use of DNA sequence comparisons to study gene regulation. In spite of

the plethora of existing ideas and methods for multiple alignment, no available program

seemed well-suited to the needs.

When simultaneously aligning more than two sequences, it is hoped that knowledge

of appropriate parameters for pairwise alignment to lead immediately to appropriate

settings for the multiple-alignment scoring parameters. Thus, it is desirable that a scoring

scheme for multiple alignments that is intimately related to the pairwise alignment scores.

14



Of course, it is also necessary that the approach be amenable to a multiple-alignment

algorithm that is reasonably efficient with computer resources, i.e., time and space.

To attain this tight coupling of pairwise and multiple alignment scores at reasonable

computational expense, the algorithm has adopted the sum-of-pairs substitution scores

and quasi-natural gap costs, as described by Altschul [1]. Some notation will help for a

precise description of these ideas. Assume given are S1, S2, ..., Sm, each of which is a

sequence of “letters.” A quasi-alignment of those sequences is an m× n array of letters

and dashes, such that removing dashes from row i leaves the sequence Si for 1 ≤ i ≤ m.

An alignment is a quasi-alignment containing no null columns, i.e., columns consisting

entirely of dashes. For each pair of sequences, say Si and Sj, rows i and j of the m-way

alignment constitute a pairwise quasi-alignment of Si and Sj; removing any null columns

produces a pairwise alignment of these sequences.

To score an m-way alignment α given appropriate parameters for the score, say

Scorei,j, for pairwise alignments between each sequence pair (Si, Sj), it is natural to

define

Score(α) =
∑
i<j

Scorei,j(αi,j)

where αi,j is the pairwise alignment of Si and Sj induced by α. However, as explained

in detail by Altschul, this scoring scheme results in undesirable algorithmic complexity.

Altschul further observed that this complexity can be reduced dramatically if for every

pair of rows of the m-way alignment an additional gap penalty is assessed for each “quasi-

gap”, defined as follows. Fix a pair of rows and consider a gap, G, in the corresponding

pairwise quasi-alignment, i.e., a run of consecutive gap symbols occurring in one of the
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rows (the run should be extended in both directions until it hits a letter or the end of

the sequence). If at least one dash in G is aligned with a letter in the other row, then

G corresponds to a gap in the pairwise alignment (i.e., after discarding null columns),

and hence is penalized. The other possibility is that every dash in G is aligned with a

dash in the other sequence. If the gap in the other sequence starts strictly before and

ends strictly after G, then G is called a quasi-gap and may be penalized; if either end

of G is aligned to an end of the gap in the other sequence, then G is not penalized. See

Figure 11.

In summary, a multiple alignment is scored as follows. For each pair of rows, say

rows i and j, fix appropriate substitution scores σi,j and a gap cost gi,j. Then the

score for the multiple alignment is determined by the above SP equation, where each

Scorei,j(αi,j) is found by adding the sigma values for non-null columns of the pairwise

quasi-alignment, and subtracting a gap penalty g for each gap and for each “progressive”

quasi-gap (defined below).

For k sequences of length n, a straightforward mutliple sequence alignment algorithm

runs in O(nk) time. In fact, it has been shown to be NP-Complete by Wang and Jiang

[30]. Therefore, the exact multiple alignment algorithms for many sequences are not

feasible. Some approximation algorithms are given. For example, Bafna et al. [4] gave

an algorithm with approximation ratio 2− l/k for any fixed l.

A heuristic approach was proposed by Feng and Doolittle [13]. It iteratively merges

the most similar pairs of sequences/alignments, as illustrated by Figure 12, following the

principle “once a gap, always a gap.” The time for progressive alignment in most cases
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Figure 11: Scoring a multiple alignment. All pairs of rows are scored as described in the text

(all quasi-gaps are penalized) and the multiple alignment’s score is the sum of the pairwise

scores. The notion of a “quasi-gap” is defined in the text; it is introduced to reduce the

complexity of computing a highest-scoring multiple alignment. For this example, pairwise

alignments are scored by: match = 1, mismatch = -1, gap pair (one symbol is “-”) = 0.5 and

gap penalty = -3. Null columns (both entries “-”) always score 0. (In general, a different

scoring scheme can be used for each pair of rows.) The alignments shown are not intended to

be optimal.
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Figure 12: Progressive alignment.

is roughly the order of the time for computing all pairwise alignment, i.e., O(k2n2).
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