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1 Introduction

With the rapid expansion in genomic data, the age of large-scale biomolecular
sequence analysis has arrived. An important line of research in sequence anal-
ysis is to locate biologically meaningful segments, e.g. conserved segments
(Stojonovic et al., 1999) and GC-rich regions (Bird, 1987; Gardiner-Garden
and Frommer 1987; Huang 1994), non-coding RNA genes (Cstirés, 2004),
and transmembrane segments (Fariselli et al., 2003).



A common approach is to assign a value to each residue, and then look
for consectutive subsequences (substring) with high sum or average. In or-
der to locate these interesting segments, many combinatorial and proba-
bilistic techniques have been proposed. Perhaps the most popular ones are
window-based. That is, a window of a fixed length is moved down the se-
quence/alignment and the content statistics are calculated at each position
that the window is moved to (Nekrutenko and Li, 2000). Since an optimal
region could span several windows, the window-based approach might fail in
finding the exact locations of some interesting regions.

This chapter surveys recent developments in locating constrained heaviest
segments in a number sequence. We start by introducing two basic algorithms
for solving the maximum-sum substring problem and the maximum-average
substring problem. Then we compile a list of recent application in this cate-
gory. Finally, we discuss some possible extensions.

2 Two Basic Algorithms

2.1 The maximum-sum substring problem

Given a sequence of real numbers A = (aq,as,...,a,), the maximum-sum
substring problem is to find a consecutive subsequence (i.e., a substring)
in A with the maximum sum. For each position i, we can compute the
maximum-sum substring ending at that position in O(7) time. Therefore, a
naive algorithm runs in >, O(¢) = O(n?) time.

Now let us describe a more efficient dynamic-programming algorithm for
this problem (Bentley, 1986). Define S(7) to be the maximum sum of sub-
strings ending at position ¢ of A. The value S(i) can be computed by the
following recurrence:

S(i) = { a; + max{S(: — 1),0} 1f1 > 1,
aq if 1 = 1.

If S(@ — 1) < 0, concatenating a; with its previous elements will give less
sum than a; itself. In this case, the maximum-sum substring ends at position
118 a; itself.

By a tabular computation, each S(i) can be computed in constant time
from i = 1to i = n, therefore in total O(n) time. During the computation, we
also need to record the largest entry computed so far in order to report where



9-31 7 -1523-42-76-2 8 4-9
S(i)9 6714 -125 13-46 41216 7 U

Figure 1: A=(9,-3,1,7,-15,2,3,-4,2,7,6,-2,8, 4,-9 ). The maximum-sum
substring of A is ( 6, -2, 8, 4 ), whose sum is 16.

the maximum-sum substring ends. We also record the traceback information
for each position ¢ so that we can trace back from the end position of the
maximum-sum substring to its start position. If S(i — 1) > 0, we need to
concatenate with previous elements for a larger sum, therefore the traceback
symbol for position i is “«—.” Otherwise, “]” is recorded. The traceback
information can be used to quickly construct the maximum-sum substring
by following the arrows until a “1” is reached. Figure 1 illustrates the process.

2.2 The maximum-average substring problem

Given a sequence of real numbers, A = (ay, as, ..., a,), the maximum-average
substring problem is to find, for each position ¢, a consecutive subsequence
of A starting at that position such that the average value of the numbers
in the subsequence is maximized. Lin, Jiang and Chao (2002) gave a very
interesting linear-time algorithm for solving this problem.

Let w(A) = > a; be the sum of elements of A. Furthermore, let
d(A) = |A| = n, be the length of the sequence A. The average of A is defined

as p(A) = w(A)/d(A).

Definition 1 A sequence A = {(ay,aq,...,a,) is right-skew if and only if
the average of any prefir (ay, as,...,a;) is always less than or equal to the
average of the remaining suffiz subsequence (a;i1,aiva,...,a,). A partition
A= A1 Ay -+ A is decreasingly right-skew if each segment A; of the partition
is right-skew and p(A;) > p(A;) for any i < j .

The following are some useful properties of right-skew segments and their
averages.

Lemma 1 (Combination) Let A, B be two sequences with u(A) < u(B).
Then u(A) < p(AB) < u(B).



REPORT-DRS-PART(i, p[+])

Input: i denoting the suffix sequence (a;, a;11,...,a,); p[-]: right-skew pointers of A.
Output: The decreasingly right-skew partition of the suffix.

1 while i <n do > Reports (a;, ..., a;) as a right-skew segment.

2 OuTPUT (i,p[i]);i < pli] + 1

Figure 2: Reporting the decreasingly right-skew partition of a suffix sequence.

Proof. Let A = d(A)/d(AB). We have u(AB) = Au(A) + (1 — A\ u(B). The
result is true because 0 < \ < 1. L]

Lemma 2 Let A, B be two right-skew sequences with u(A) < p(B). Then
the sequence AB is also right-skew.

Proof. Consider a prefix P of AB. Clearly, u(P) < u(B) if P = A. If P is
a proper prefix of A, i.e. A = PY for some nonempty sequence Y, then we
have p(P) < u(A) < u(Y) by the last lemma. Hence, u(P) < pu(Y B) since
1(P) < p(B).

On the other hand, if P contains a proper prefix of B, i.e. B = CD and
P = AC for some nonempty sequences C' and D, then u(C) < u(B) < u(D).
Hence, pu(P) = u(AC) < u(D) since p(A) < u(B) < u(D). O

For a sequence A = (ay, as, ..., a,), each suffix of A, (a;, ..., a,), defines a
decreasingly right-skew partition, denoted as Agi) Agi) > -A,(f), for some k£ > 1.
Suppose that Agi) = (@i, . . ., ap[)), where p[i] is called the right-skew pointer
of index 7. Note that the right-skew pointers of A implicitly encode the
decreasingly right-skew partitions for each suffix (a,,...,a,) of A. Given
the right-skew pointers, one can easily report the decreasingly right-skew
partitions of a suffix as illustrated in Figure 2. Interestingly, we can compute
all right-skew pointers in linear time.

Lemma 3 The algorithm DRS-POINT given in Figure 3 computes all right-
skew pointers for a length n sequence in O(n) time.

Proof. Consider the algorithm DRS-POINT shown in Figure 3. The working
pointer ¢ scans the elements of A from right to left. By Lemma 2, two
increasingly right-skew segment can be grouped into one right-skew segment
and hence, the pair (7, p[i]) always represents a segment of A that is right-skew
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DRS-POINT(A)

Input: A sequence A = (ay,as,...,a,).

Output: n right-skew pointers of A, encoded by array p|].
1 for ¢ < n downto 1 do

2 pli] — i;wli] — w(a;); d[i] — d(a;); > Each (a;) alone is right-skew.
3 while (p[i] < n) and (w[i]/d[i] < w[pli] + 1]/d[p[i] + 1]) do

4 wli] — wli] + wip[i] + 1]

5 d[i] « d[i] + d[p[i] + 1]

6 pli] — plpli] + 1]

Figure 3: Setting up the right-skew pointers in O(n) time.

throughout the entire algorithm. The correctness of the algorithm follows
from the fact that the right-skew pointers found by the algorithm encode a
partition of each suffix of A with strictly decreasing averages.

We can analyze the time complexity of the algorithm by an amortized
argument. We conclude that the amortized cost of each iteration of the
for-loop is just a constant.

In short, we deposit a credit whenever a correct value of the right-skew
pointer p[-] is found. Later on, when the algorithm needs to advance the
p[-] pointer in the while-loop, the skipping cost can be charged to the pre-
deposited credits. Since exactly n credits are deposited in the entire process,
the while-loop spends at most overall O(n) time. O

It should be noted that (7, p[i]) is the maximum-average substring of A
starting at position i. Readers are encouraged to define the “left-skew de-
composition”, and locate the maximum-average substrings ending at each
position.

3 Applications

This section describes the applications in details to put the problems and
some related results in proper perspective.



3.1 GC-Rich Regions

In all organisms, the GC base composition of DNA varies between 25-75%,
with the greatest variation in bacteria. Mammalian genomes typically have
a GC content of 45-50%. Nekrutenko and Li (2000) showed that the extent
of the compositional heterogeneity in a genomic sequence strongly correlates
with its GC content. Genes are found predominantly in the GC-richest iso-
chore classes. Hence, finding GC-rich regions is an important problem in
gene recognition and comparative genomics.

Huang (1994) used the expression = — p - [ to measure the GC richness
of a region, where x is the C+G count of the region, p is a positive constant
ratio, and [ is the length of the region. In other words, each of nucleotides
C and G is given a reward of 1 — p, and each of nucleotides A and T is
penalized by p. Similar expression was used by Sellers (1984) for recognizing
patterns by mismatch density. A length cutoff L is given to avoid reporting
extremely short optimal regions. Huang extended the well-known recurrence
relation used by Bentley (1986) for solving the maximum sum consecutive
subsequence problem, and derived a linear-time algorithm for computing the
optimal segments with lengths at least L.

Here we explain briefly Huang’s idea for computing the maximum sum
consecutive subsequence of length at least L. Let A = (aj,as,...,a,) be
a DNA sequence of length n. Use w(X) to denote the score of nucleotide
X, i.e. w(G)=w(C)=1—p, and w(A)=w(T)=—p. Define S(i) to be the
maximum score of regions ending at position ¢ of A, which include the empty
region. The scores S(i) can be computed by the following recurrence:

. max{S(i — 1) + w(a;),0} ifi >0,
S(Z)_{o iti=0.

Now let us shift along the sequence with a window of size L. For each
fixed window, we can compute its score, and then the maximum score of
regions ending at the front of the window with the help of the vector S. This
results in a linear-time method for computing the maximum sum consecutive
subsequence of length at least L.

As noted by Huang, the lengths of the regions reported by the algorithm
are usually much greater than the cutoff L. An immediate implication is
that they might contain some very poor and irrelevant regions. It is there-
fore natural to consider bounding the target regions with additional upper
bound. Lin, Jiang and Chao (2002) gave an algorithm that can be combined
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with Huang’s algorithm to yield a linear-time algorithm for computing the
maximum sum consecutive subsequence of length between lower bound L
and upper bound U.

Huang (2002) has also proposed an interesting alternative measure for
finding GC-rich regions. Namely, given a DNA sequence, one would now
attempt to find segments of length at least L with the highest C+G ratio.
Specifically, each of nucleotides C and G is assigned a score of 1, and each of
nucleotides A and T is assigned a score of 0.

DNA sequence: ATGACTCGAGCTCGTCA
Binary sequence: 00101011011011010

The maximum-average segments of the binary sequence correspond to seg-
ments with the highest GC ratio in the DNA sequence.

He noted that such an optimal segment is of length at most 2L — 1.
This observation yields an O(nL)-time algorithm for computing a segment
of length at least L with the highest C+G ratio, where n is the length of
the input sequence. A linear-time algorithm for this problem was given by
Chung and Lu (2004).

3.2 CpG Islands

CpG islands are defined as regions of DNA of at least 200bp (i.e. base
pairs) in length with G+C content above 50%, and a ratio of observed vs.
expected CpGs (CG di-nucleotides) at least 0.6 (Gardiner-Garden and From-
mer, 1987). Most of the CpG islands are between 200 and 1400bp with a
majority of them being 200-400bp.

CpG islands often occur in the 5 regions of genes (Bird, 1987). They are
typically a few hundred to a few thousand bases long. Though the widely ac-
cepted definition of what constitutes a CpG island was proposed by Gardiner-
Garden and Frommer (1987), new definitions and methods for a CpG island
are still in progress (Takai and Jones, 2002).

A Markov chain model was introduced by Durbin et al. (1998) to decide
if a short DNA sequence comes from a CpG island or not. The model consists
of a dinucleotide table, which, for each of the 16 different dinucleotides, gives
the log likelihood ratio of the frequencies of the dinucleotide in CpG islands
and in non-CpG regions. The numbers in the table range from —1.169 for
the dinucleotide TA to 1.812 for the dinucleotide CG. The log-odds score of a



DNA sequence is the sum of the log-odds scores of every dinucleotide in the
sequence. The average score (also called normalized score) of the sequence
is obtained by dividing its score by its length. It is known that CpG islands
and non-CpG regions can be better discriminated by using average scores
than using raw scores. The histogram of the average scores of CpG islands
and non-CpG regions in (Durbin et al., 1998) shows that all non-CpG regions
have average scores less than 0.1 and most of the CpG islands have average
scores greater than 0.1. The average score value of 0.1 could thus be used as
a cutoff in deciding if a sequence comes from a CpG island.

The above Markov chain model can be used to locate CpG islands in
a long genomic sequence by computing the average score for a window of
constant size around every position in the sequence and plotting the scores.
However, this approach is not very effective because CpG islands have sharp
boundaries and variable lengths (Durbin et al., 1998). We consider an alter-
native approach to identify CpG islands based on the Markov chain model
and program MAVG.

The input genomic sequence is converted into a sequence of real num-
bers using the dinucleotide table mentioned above. The average (score) of a
segment of the number sequence is the sum of the numbers in the segment
divided by the length of the segment. The core of a CpG island is defined
as a region of length at least 250 bp with the maximum average score. The
full extent of a CpG island is a longest region that does not contain any
sufficiently long (it i.e. 250 bp or longer) subregion with average score below
the cutoff. Lin et al. (2003) implemented an algorithm for enumerating k
maximum-average segments with lengths at least L, where L is given pa-
rameter, as a C program called MAVG. The empirical tests suggest that the
programs MAVG and NEWCPGSEEK, which is a popular existing program
for finding CpG islands, are complementary in the sense that a combination
of their may provide a more accurate predication of CpG islands.

3.3 Annotating Multiple Sequence Alignments

Conserved regions in biomolecular sequences are strong candidates for func-
tional elements. The most popular methods to compute conserved regions
all start with a given multiple sequence alignment (Stojanovic et al., 1999;
Stojanovic and Dewar, 2004). Stojanovic et al. (1999) gave several meth-
ods for finding highly conserved regions within previously computed multiple
alignments. Three of the methods are based on assigning a numerical score



to each column of a multiple alignment and then looking for runs of columns
with high cumulative scores. Since the assigned scores may be all positive
(e.g. in the information content case), each examined column could increase
the cumulative score. It follows that the entire alignment could be reported
erroneously as a conserved region. Therefore, it is imperative that each col-
umn score is adjusted by subtracting a positive anchor value. Determining
such an anchor value appropriately for each dataset could make the use of
a program based on the above approach very complicated. An alternative
solution to the above problem is to look for runs of sufficiently many columns
in the multiple alignment with the maximum average (or normalized) score
instead. This can be efficiently computed by the algorithm for the length-
constrained maximum average consecutive subsequence problem.

3.4 Post-Processing Sequence Alignments

A new popular approach to gene prediction in the human genome is based on
comparative analysis of human and mouse DNA. The rationale behind this
approach is that similarity between corresponding human and mouse exons
is 85% on average, while similarity between introns is 35% on average (Ar-
slan, Egecioglu, and Pevzner, 2001). Though the ingenious Smith-Waterman
(Smith and Waterman, 1981) local alignment approach has been very suc-
cessful in revealing highly conserved regions by discarding poorly conserved
surrounding regions, a potential drawback of the method is that it may lead
to the inclusion of arbitrarily poor internal regions (called the mosaic effect).

In an attempt to fix the mosaic effect problem, Zhang et al. (1999) sug-
gested to first run Smith-Waterman type of alignment algorithms and then
post-process the computed alignments. They developed an elegant linear-
time algorithm that decomposes a long alignment into sub-alignments to
avoid the mosaic effect. The method for computing the length-constrained
maximum average consecutive subsequences can be used to locate within an
alignment the region that is sufficiently long and has the maximum degree
of normalized similarity.



3.5 All Maximal Scoring Segments

3.6 Maximum-Scoring Segment Sets

4 Discussions

longest and shortest heaviest segments ...
MaxSubSeq
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