
www.academicpress.com

Journal of Computer and System Sciences 65 (2002) 570–586

Efficient algorithms for locating the
length-constrained heaviest segments
with applications to biomolecular

sequence analysis

Yaw-Ling Lin,a Tao Jiang,b,* and Kun-Mao Chaoc

aDepartment of Computer Science and Information Management, Providence University,

200 Chung Chi Road, Shalu, Taichung County, 433 Taiwan
bDepartment of Computer Science, University of California Riverside, Riverside, CA 92521-0144, USA

cDepartment of Life Science, National Yang-Ming University, Taipei, 112 Taiwan

Received 20 January 2002; received in revised form 28 February 2002

Abstract

We study two fundamental problems concerning the search for interesting regions in

sequences: (i) given a sequence of real numbers of length n and an upper bound U ; find a

consecutive subsequence of length at most U with the maximum sum and (ii) given a sequence

of real numbers of length n and a lower bound L; find a consecutive subsequence of length at

least L with the maximum average. We present an OðnÞ-time algorithm for the first problem

and an Oðn log LÞ-time algorithm for the second. The algorithms have potential applications in

several areas of biomolecular sequence analysis including locating GC-rich regions in a

genomic DNA sequence, post-processing sequence alignments, annotating multiple sequence

alignments, and computing length-constrained ungapped local alignment. Our preliminary

tests on both simulated and real data demonstrate that the algorithms are very efficient and

able to locate useful (such as GC-rich) regions.

r 2002 Published by Elsevier Science (USA).

Keywords: Algorithm; Efficiency; Maximum consecutive subsequence; Length constraint; Biomolecular

sequence analysis; Ungapped local alignment

1. Introduction

With the rapid expansion in genomic data, the age of large-scale biomolecular
sequence analysis has arrived. An important line of research in sequence analysis is
to locate biologically meaningful segments, e.g. conserved segments and GC-rich

regions, in DNA sequences. Conserved segments of a DNA sequence are slow
changing sequences that form strong candidates for functional elements both in
protein coding and regulatory regions of genes [7,12,20]. Regions of a DNA

*To whom correspondence should be addressed.

E-mail addresses: yllin@pu.edu.tw (Y.-L. Lin), jiang@cs.ucr.edu (T. Jiang), kmchao@ym.edu.tw

(K.-M. Chao).

0022-0000/02/$ - see front matter r 2002 Published by Elsevier Science (USA).

PII: S 0 0 2 2 - 0 0 0 0 (0 2) 0 0 0 1 0 - 7

sequence that are rich in nucleotides C and G are usually significant in gene
recognition. In order to locate these interesting segments, many combinatorial and
probabilistic techniques have been proposed. Perhaps, the most popular ones are
window based. That is, a window of a fixed length is moved down the sequence/
alignment and the content statistics are calculated at each position that the window
is moved to [15,17]. Since an optimal region could span several windows, the
window-based approach might fail in finding the exact locations of some interesting
regions.
In this paper, we study two fundamental problems concerning the search for the

‘‘heaviest’’ segment of a numerical sequence that naturally arises in the above
applications. Our main results, as described below, are efficient algorithms for
locating the length-constrained heaviest segments in a given sequence or alignment.
The algorithms have potential applications in locating GC-rich regions in a genomic
DNA sequence, post-processing sequence alignments, annotating multiple sequence
alignments, and computing length-constrained ungapped local alignment.
Let A ¼ /a1; a2;y; anS be a sequence of real numbers and Upn a positive

integer, the objective of our first problem is to find a consecutive subsequence1 of A

of length at most U such that the sum of the numbers in the subsequence is
maximized. By using a technique of partitioning each suffix of A into minimal left-

negative (consecutive) subsequences, we propose an OðnÞ-time algorithm for finding
the length-constrained maximum sum consecutive subsequence of A: The algorithm
can be used to find GC-rich regions and efficiently construct ungapped local
alignments with length constraints in OðmnÞ time, where m; n are the lengths of the
two input sequences being aligned, as explained in the next section. We note in
passing that a linear-time algorithm for finding the maximum sum consecutive
subsequence with length at least L can be easily obtained [13] by extending the
dynamical algorithm for the standard maximum sum consecutive subsequence
problem in [6].
An alternative measure of the weight of the target segment that we consider is as

follows. Given a sequence of real numbers, A ¼ /a1; a2;y; anS; and a positive
integer Lpn; the goal is to find a consecutive subsequence of A of length at least L

such that the average of the numbers in the subsequence is maximized. We propose a
novel technique to partition each suffix of A into right-skew segments of strictly
decreasing averages, and based on this partition, we devise an Oðn log LÞ-time
algorithm for locating the maximum average consecutive subsequence of length at
least L:2 The algorithm is expected to have applications in finding GC-rich regions in
a genomic DNA sequence, post-processing sequence alignments, and annotating
multiple sequence alignments.
Observe that both problems studied in this paper have straightforward dynamic

programming algorithms with running time proportional to the product of the input
sequence length n and the length constraint (i.e. U or L). Such algorithms are
perhaps fast enough for sequences of small lengths, but can be too slow for instances
in some biomolecular sequence analysis applications, such as finding GC-rich
regions and post-processing sequence alignments, where long genomic sequences are
involved. Our above algorithms would be able to handle genomic sequences of
length up to millions of bases with satisfactory speeds, as demonstrated in the
preliminary experiments.

1Note that a consecutive subsequence is often referred to as a substring in some areas of computer

science.
2Note that, when there is no length constraint, finding the maximum average consecutive subsequence is

equivalent to finding the maximum element.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 571

The rest of the paper is organized as follows. Section 2 discusses the bio-
logical applications in more depth. We present the algorithm for the length-
constrained maximum sum consecutive subsequence problem in Section 3 and
the algorithm for the length-constrained maximum average consecutive subsequence
problem in Section 4. Some preliminary experiments on the speed and performance
of the algorithms are given in Section 5. Section 6 concludes the paper with a few
remarks.

2. Applications to biomolecular sequence analysis

Since the heaviest segment problems that we study here are mostly motivated by
their applications in several areas of biomolecular sequence analysis, we first describe
the applications in detail to put the problems and our results in proper perspective.

2.1. Locating GC-rich regions

In all organisms, the GC base composition of DNA varies between 25% and 75%,
with the greatest variation in bacteria. Mammalian genomes typically have a GC
content of 45–50%. Nekrutenko and Li [15] showed that the extent of the
compositional heterogeneity in a genomic sequence strongly correlates with its GC
content. Genes are found predominantly in the GC-richest isochore classes. Hence,
finding GC-rich regions is an important problem in gene recognition and
comparative genomics. As being mentioned in Section 1, previously devised
window-based strategies [15,17] might fail in finding the exact locations of some
interesting regions.
Huang [13] used the expression x � p l to measure the GC richness of a region,

where x is the CþG count of the region, p is a positive constant ratio, and l is the
length of the region. In other words, each of nucleotides C and G is given a reward of
1� p; and each of nucleotides A and T is penalized by p: Similar expression was used
by Sellers [18] for recognizing patterns by mismatch density. A length cutoff L is
given to avoid reporting extremely short optimal regions. Huang extended the well-
known recurrence relation used by Bentley [6] for solving the maximum sum
consecutive subsequence problem, and derived a linear-time algorithm for
computing the optimal segments with lengths at least L:
Here, we explain briefly Huang’s idea for computing the maximum sum

consecutive subsequence of length at least L: Let A ¼ /a1; a2;y; anS be a DNA
sequence of length n: Use wðX Þ to denote the score of nucleotide X ; i.e. wðGÞ ¼
wðCÞ ¼ 1� p; and wðAÞ ¼ wðTÞ ¼ �p: Define SðiÞ to be the maximum score of
regions ending at position i of A; which include the empty region. The scores SðiÞ can
be computed by the following recurrence:

SðiÞ ¼
maxfSði � 1Þ þ wðaiÞ; 0g if i > 0;

0 if i ¼ 0:

(

Now let us shift along the sequence with a window of size L: For each fixed window,
we can compute its score, and then the maximum score of regions ending at the front
of the window with the help of the vector S: This results in a linear-time method for
computing the maximum sum consecutive subsequence of length at least L:
As noted by Huang, the lengths of the regions reported by the algorithm are

usually much greater than the cutoff L: An immediate implication is that they might
contain some very poor and irrelevant regions. It is therefore natural to consider

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586572

bounding the target regions with additional upper bound. Our algorithm for the
length-constrained maximum sum consecutive subsequence problem can be
combined with Huang’s algorithm to yield a linear-time algorithm for computing
the maximum sum consecutive subsequence of length between lower bound L and
upper bound U : The details will be given in Section 3.
Huang has also proposed an interesting alternative measure for finding GC-rich

regions [13]. Namely, given a DNA sequence, one would now attempt to find
segments of length at least L with the highest CþG ratio. He noted that such an
optimal segment is of length at most 2L � 1 (see Lemma 7 for a proof). This
observation yields an OðnLÞ-time algorithm for computing a segment of length at
least L with the highest CþG ratio, where n is the length of the input sequence [13].
Our algorithm for the length-constrained maximum average consecutive subse-
quence problem would improve on this result and locate the regions of length at least
L with the highest CþG ratio in Oðn log LÞ time.
CpG islands are defined as regions of DNA of at least 200 bp (i.e. base pairs) in

length with Gþ C content above 50%, and a ratio of observed vs. expected CpGs
(CG di-nucleotides) at least 0.6 [9,14]. Most of the CpG islands are SP between 200
and 1400 bp with a majority of them being 200–400 bp: Based on large genomic
datasets, Hannenhalli and Levy [10] have recently showed that CpG islands play an
important role in the prediction of promoter. We expect that some of the techniques
used in our Oðn log LÞ-time algorithm, such as the concept of right-skew segments
and the decreasingly right-skew partitions developed in this paper, would be useful in
efficiently locating all CpG islands in a genomic sequence. For example, the method
can be easily extended to computing the region of the most frequent GC di-
nucleotides occurrences.

2.2. Post-processing sequence alignments

A new popular approach to gene prediction in the human genome is based
on comparative analysis of human and mouse DNA [4,5,16]. The rational behind
this approach is that similarity between corresponding human and mouse exons
is 85% on average, while similarity between introns is 35% on average [3]. Though
the ingenious Smith–Waterman [19,21] local alignment approach has been very
successful in revealing highly conserved regions by discarding poorly con-
served surrounding regions, a potential drawback of the method is that it may
lead to the inclusion of arbitrarily poor internal regions (called the mosaic effect)
[3,23,24].
In an attempt to fix the mosaic effect problem, Zhang et al. [23] developed some

efficient heuristic algorithms for delivering alignments that contain no low scoring
regions. This, however, does not take into account the length of the alignment.
Alexandrov and Solovyev [1] proposed to normalize the alignment score by its
length3 and demonstrated that this new approach leads to better protein
classification. Following this line of investigation, Arslan et at. [3] studied a variant
of normalized score, which is simply called length-adjusted normalized score for the
ease of presentation,4 and gave an Oðmn log nÞ-time algorithm for reporting regions
with the maximum length-adjusted normalized degree of similarity, where m; n are
the lengths of the two sequences being compared.

3For an alignment of length l with score s; its normalized score is defined as s=l [1]. Of course, in order

to avoid extremely short alignments, we need impose a constraint (lower bound) on the length of the

target alignment.
4For an alignment of length l with score s; its length-adjusted normalized score is defined as s=ðl þ LÞ;

where L > 0 is a pre-determined constant used to avoid extremely short alignments.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 573

An alternative approach is to first run Smith–Waterman-type of alignment
algorithms and then post-process the computed alignments. Zhang et al. [24]
developed an elegant linear-time algorithm that decomposes a long alignment into
sub-alignments to avoid the mosaic effect. Our method for computing the length-
constrained maximum average consecutive subsequences can be used to locate within
an alignment the region that is sufficiently long and has the maximum degree of
normalized similarity. It is expected that this would turn out to be a useful technique
for alignment decomposition.

2.3. Annotating multiple sequence alignments

As mentioned above, conserved regions in biomolecular sequences are strong
candidates for functional elements. The most popular methods to compute
conserved regions all start with a given multiple sequence alignment. Stojanovic
et al. [20] gave several methods for finding highly conserved regions within
previously computed multiple alignments. Three of the methods are based on
assigning a numerical score to each column of a multiple alignment and then looking
for runs of columns with high cumulative scores. Since the assigned scores may be all
positive (e.g. in the information content case), each examined column could increase
the cumulative score. It follows that the entire alignment could be reported
erroneously as a conserved region. Therefore, it is imperative that each column score
is adjusted by subtracting a positive anchor value [20]. Determining such an anchor
value appropriately for each dataset could make the use of a program based on the
above approach very complicated.
A solution to the above problem is to look for runs of sufficiently many columns

in the multiple alignment with the maximum average (or normalized) score instead.
This can be efficiently computed by our Oðn log LÞ-time algorithm for the length-
constrained maximum average consecutive subsequence problem.

2.4. Computing ungapped local alignments with length constraints

Consider a two-dimensional matrix where each entry ði; jÞ is filled with the
similarity score between the ith element of one sequence and the jth element
of another sequence. Our algorithms can be used to compute the length-constrained
segment of each diagonal in the matrix with the largest sum (or average) of
scores. As a consequence, we have an OðmnÞ-time algorithm for constructing
an ungapped local alignment of length at most U with the largest total score,
where m; n are the length of the input sequences and U is the length upper bound.
We also have an Oðmn log LÞ-time algorithm for constructing an ungapped
local alignment of length at least L with the largest normalized (i.e. average)
score, where the normalized score of an alignment is defined as its score divided
by its length. Ungapped local alignment is an important and well-studied
variant of local sequence alignment and has applications in motif identification
(see, e.g. [1]).
It should be noticed that the best-known algorithms for the general (i.e. gapped)

length-constrained local alignment problems with the standard (sum) score and
normalized score run in time OðmnUÞ and OðmnLÞ; respectively. Arslan et al. have
recently reported an OðmnÞ time approximation algorithm for computing a length-
constrained local alignment with the largest score [2] and an Oðmn log nÞ-time
algorithm for computing a local alignment with the optimal length-adjusted
normalized score [3], which is closely related to the problem of constructing a
length-constrained local alignment with the largest normalized score.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586574

3. Maximum sum consecutive subsequence with length constraints

Given a sequence of real numbers, A ¼ /a1; a2;y; anS; and a positive integer
Upn; the goal is to find a consecutive subsequence of A of length at most U such
that the sum of the numbers in the subsequence is maximized. It is straightforward to
design a dynamic programming algorithm for the problem with running time OðnUÞ:
We also note in passing that since there is an Oðn log2 nÞ-time algorithm for finding
the maximum sum path on a tree with length at most U [22], the above problem can
also be solved in Oðn log2 nÞ time. Here, we present an algorithm running in OðnÞ:
Let A1;A2;y;Ak be disjoint (consecutive) subsequences of A forming a partition

of A; i.e. A ¼ A1A2yAk: Ai is called the ith segment of the partition. Denote wðAÞ ¼P
aiAA ai as the sum of the sequence. The following definition is a key of our linear-

time construction.

Definition 1. A real sequence A ¼ /a1; a2;y; anS is left-negative if and only if the
sum of each proper prefix /a1; a2;y; aiS is negative or zero for all 1pipn � 1; that
is, wð/a1; a2;y; aiSÞp0 for all 1pipn � 1: A partition of the sequence A ¼
A1A2yAk is minimal left-negative if each Ai; 1pipk; is left-negative, and, for each
1pipk � 1; the sum of Ai is positive, i.e. wðAiÞ > 0:

For example, the sequence /� 4; 1;�2; 3S is left-negative while the sequence
/5;�3; 4;�1; 2;�6S is not. On the other hand, the partition /5S/� 3; 4S
/� 1; 2S/� 6S of the latter sequence is minimal left-negative. Note that any
singleton sequence is trivially left-negative by definition. Furthermore, it can be shown
that any sequence can be uniquely partitioned into minimal left-negative segments.

Lemma 1. Every sequence of real numbers can be uniquely partitioned into minimal

left-negative segments.

Proof. Let A ¼ /a1; a2;y; anS: The statement obviously holds if n ¼ 1: By
induction, assume that a sequence B; where jBj ¼ n; is uniquely partitioned into
minimal left-negative segments as B ¼ A1A2yAk: Now consider the sequence A ¼
/a;BS; where a is a real number.
The lemma is true if a > 0 since /aSA1A2yAk would form a minimal left-

negative partition by induction. Otherwise, let i be the smallest index such that
ða þ

Pi
j¼1

P
xAAj

xÞ > 0: It is easily verified that the sequence /a;A1;y;AiS is left-
negative. Thus, /a;A1yAiSAiþ1yAk forms a uniquely minimal left-negative
partition of A: &

For any sequence A ¼ /a1; a2;y; anS; each suffix sequence of A; /ai;y; anS;
defines a minimal left-negative partition, denoted as A

ðiÞ
1 A

ðiÞ
2 yA

ðiÞ
k ; for some kX1:

Suppose that A
ðiÞ
1 ¼ /ai;y; ap½i
S: Then, p½i
 is called the left-negative pointer of

index i: Note that the left-negative pointers of A implicitly encode the minimal left-
negative partition of each suffix /ai;y; anS of A: An efficient algorithm for
computing the left-negative pointers as well as the minimal left-negative partition of
each suffix of A is illustrated in Figs. 1 and 2.

Lemma 2. The algorithm MLN-Point given in Fig. 1 finds all left-negative pointers

for a length n sequence in OðnÞ time.

Proof. Consider the algorithm MLN-PointðAÞ shown in Fig. 1. The variable i is the
current working pointer scanning elements of A from right to left. The pair ði; p½i
Þ

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 575

represents a consecutive subsequence (or segment) of A; /ai;y; ap½i
S; while variable
w½i
 represents the sum of the segment ði; p½i
Þ:
An example run of MLN-PointðAÞ on a 15-element sequence is illustrated

in Fig. 3. Note that the pair ði; p½i
Þ always represents a left-negative segment
of A throughout the entire algorithm. This invariant is true because a left-negative
segment with negative sum can be grouped with another adjacent left-negative
segment into a longer left-negative segment. The grouping and checking of the
involved condition are done by Steps 3 and 5 of the algorithm.
The correctness of the algorithm follows from the fact that, after the execution of

Steps 1–5, each pair ði; p½i
Þ represents a left-negative segment with a positive sum,
except the last pair. Furthermore, by Lemma 1, the left-negative pointers found by
the algorithm encode the unique minimal left-negative partition of each suffix of A:
The OðnÞ-time complexity of MLN-PointðAÞ can be shown by a simple amortized

analysis [8]. The total number of operations of the algorithm is clearly bounded by
OðnÞ except for the while-loop body of Steps 3–5. In the following, we show that the
amortized cost of the while-loop is a constant. Therefore, the overall time required
by the loop is OðnÞ:

Fig. 1. Set up the left-negative pointers.

Fig. 2. Computing the minimal left-negative partition of a suffix sequence.

Fig. 3. The left-negative pointers of a 15-element sequence.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586576

We define the potential function of A after the jth iteration of the for-loop (i.e.
Steps 1–5) to be Fðn � j þ 1Þ; i.e. the numbers of left-negative segments within the
minimal left-negative partition of the suffix sequence An�jþ1 ¼ /an�jþ1;y; anS
considered at the jth iteration of the for-loop. Note that the loop variable i is just
n � j þ 1 in the jth iteration. Let us compute the amortized cost of the operations
done by Steps 3–5 in this jth iteration. Suppose that the pointer p½�
 is advanced cj

times in this period. Then the actual cost of the operations is cj þ 1: Observing that
Fðn � j þ 1Þ ¼ Fðn � j þ 2Þ � cj þ 1; the change of the potential of A during the jth
iteration is

Fðn � j þ 1Þ � Fðn � j þ 2Þ ¼ Fðn � j þ 2Þ � cj þ 1� Fðn � j þ 2Þ ¼ 1� cj :

The amortized cost is therefore calculated as

ĉj ¼ cj þ 1þ Fðn � j þ 1Þ � Fðn � j þ 2Þ ¼ 2:

In other words, we deposit a credit (as a unit of the potential of A) whenever a
correct value of the left-negative pointer p½�
 is found. Later on, when the algorithm
needs to advance the p½�
 pointer in the while-loop, the cost can be charged to the pre-
deposited credits. Since exactly n credits would be deposited in the entire process, the
while-loop spends at most overall OðnÞ time. &

We are ready to show that the length-constrained maximum sum consecutive
subsequence problem can be solved in linear time.

Theorem 1. Given a length n real sequence, finding the consecutive subsequence of

length at most U with the maximum sum can be done in OðnÞ time.

Proof. We propose an OðnÞ time algorithm, MSLCðA;UÞ; as shown in Fig. 4. In the
algorithm, the variable i is the current working pointer scanning elements of A from

Fig. 4. Finding the maximum sum consecutive subsequence with length constraint.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 577

left to right. The pair ði; jÞ represents a consecutive subsequence of A; /ai;y; ajS;
currently being considered as a candidate maximum sum consecutive subsequence
satisfying the length constraint. The algorithm essentially looks at every positive ai

and identifies its corresponding good partner, aj ; such that ði; jÞ constitutes a
candidate solution.
Note that the sum of any proper prefix of a left-negative segment is negative by

definition. The correctness of the algorithm then follows from the fact that a left-
negative segment is atomic in the sense that when it is combined with preceding left-
negative segments, it is always combined as a whole; for otherwise the addition of
any proper prefix of the segment would only decrease the sum of the combined
segment. This observation justifies the condition checking and grouping in Step 10 of
the algorithm.
The time complexity of the algorithm is OðnÞ because the good-partner pointer j

only advances forward as the scanning pointer i advances. It follows that the total
work spent on Step 10 is bounded by OðnÞ: It is not hard to verify that the remaining
part of the algorithm spends at most OðnÞ time. &

The algorithm MSLC can be easily combined with Huang’s technique [13] to yield
a linear-time algorithm that is able to handle a length upper bound and a length
lower bound simultaneously.

Corollary 2. Given a length n real sequence and positive integers LpU ; finding the

consecutive subsequence of length between L and U with the maximum sum can be done

in OðnÞ time.

Proof. We modify algorithm MSLC to obtain an algorithm MSLU that finds a
consecutive subsequence of length between L and U with the maximum sum. The
algorithm is shown in Fig. 5.
The idea of the algorithm is similar to MSLCðA;UÞ in Fig. 4. Again, the variable i

is the current working pointer scanning elements of A from left to right. The
algorithm essentially looks at every positive ai and identifies its corresponding good

partner, aj ; such that ði; jÞ constitutes a candidate solution. The correctness of the
algorithm then follows from the fact that a left-negative segment is atomic, similar to
the proof of Theorem 1. The time complexity of the algorithm is OðnÞ because the
good-partner pointer j only advances forward as the scanning pointer i advances. It
follows that the total work spent on Step 5 is bounded by OðnÞ: &

Fig. 5. Finding the maximum sum consecutive subsequence with length between given lower and upper

bounds.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586578

4. Maximum average consecutive subsequence with length constraints

Given a sequence of real numbers, A ¼ /a1; a2;y; anS; and a positive integer L;
1pLpn; our goal is now to find a consecutive subsequence of A with length at least
L such that the average value of the numbers in the subsequence is maximized.
Recall that wðAÞ ¼

Pn
i¼1 ai is the sum of elements of A: Furthermore, let dðAÞ ¼

jAj ¼ n; be the length of the sequence A: The average of A is defined as mðAÞ ¼
wðAÞ=dðAÞ: The definition below is the key to our construction.

Definition 2. A sequence A ¼ /a1; a2;y; anS is right-skew if and only if the average
of any prefix /a1; a2;y; aiS is always less than or equal to the average of the
remaining suffix subsequence /aiþ1; aiþ2;y; anS: A partition A ¼ A1A2yAk is
decreasingly right-skew if each segment Ai of the partition is right-skew and mðAiÞ >
mðAjÞ for any ioj:

The following are some useful properties of right-skew segments and their
averages.

Lemma 3 (Combination). Let A;B be two sequences with mðAÞomðBÞ: Then

mðAÞomðABÞomðBÞ:

Proof. Let l ¼ dðAÞ=dðABÞ: We have mðABÞ ¼ lmðAÞ þ ð1� lÞmðBÞ: The result is
true because 0olo1: &

Lemma 4. Let A;B be two right-skew sequences with mðAÞpmðBÞ: Then the sequence

AB is also right-skew.

Proof. Consider a prefix P of AB: Clearly, mðPÞpmðBÞ if P ¼ A: If P is a proper
prefix of A; i.e. A ¼ PY for some nonempty sequence Y ; then we have
mðPÞpmðAÞpmðY Þ by the last lemma. Hence, mðPÞpmðYBÞ since mðPÞpmðBÞ:
On the other hand, if P contains a proper prefix of B; i.e. B ¼ CD and P ¼ AC for

some nonempty sequences C and D; then mðCÞpmðBÞpmðDÞ: Hence, mðPÞ ¼
mðACÞpmðDÞ since mðAÞpmðBÞpmðDÞ: &

Lemma 5. Every real sequence A ¼ /a1; a2;y; anS has a unique decreasingly right-

skew partition.

Proof. We prove the lemma by induction. The lemma obviously holds if n ¼ 1:
Assume that Q is a sequence of length n and Q ¼ A1A2yAk is the unique
decreasingly right-skew partition of Q: Now consider sequence A ¼ /Q; aS:
The lemma is proven if mðaÞomðAkÞ: Otherwise, we find the largest i such that

mðAiAiþ1yAkaÞomðAi�1Þ; let i ¼ 1 if such i cannot be found. It suffices to show that
/AiAiþ1yAkaS is right-skew. This can be easily done by observing that the single
segment /aS is right-skew and by applying Lemma 4 repeatedly to the segments
Ai;Aiþ1;y;Ak;/aS from right to left. That is, /AkaS is right-skew because
mðAkÞpmðaÞ;/Ak�1AkaS is right-skew because mðAk�1ÞpmðAkaÞ; etc. Clearly, the
partition is unique because other choices of i would not result in a decreasingly right-
skew partition of A: &

For a sequence A ¼ /a1; a2;y; anS; each suffix of A; /ai;y; anS; defines a
decreasingly right-skew partition, denoted as A

ðiÞ
1 A

ðiÞ
2 ?A

ðiÞ
k ; for some kX1: Suppose

that A
ðiÞ
1 ¼ /ai;y; ap½i
S; where p½i
 is called the right-skew pointer of index i: Note

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 579

that the right-skew pointers of A implicitly encode the decreasingly right-skew
partitions for each suffix /ai;y; anS of A: Given the right-skew pointers, one can
easily report the decreasingly right-skew partitions of a suffix as illustrated in Fig. 6.
Interestingly, we can compute all right-skew pointers in linear time.

Lemma 6. The algorithm DRS-POINT given in Fig. 7 computes all right-skew

pointers for a length n sequence in OðnÞ time.

Proof. Consider the algorithm DRS-POINT shown in Fig. 7. The working pointer i

scans the elements of A from right to left. By Lemma 4, two increasingly right-skew
segment can be grouped into one right-skew segment and hence, the pair ði; p½i
Þ
always represents a segment of A that is right-skew throughout the entire algorithm.
The correctness of the algorithm follows from the fact that the right-skew pointers
found by the algorithm encode a partition of each suffix of A with strictly decreasing
averages.
We can analyze the time complexity of the algorithm by an amortized argument

similar to that in Lemma 2. We conclude that the amortized cost of each iteration of
the for-loop is just a constant.
In short, we deposit a credit whenever a correct value of the right-skew pointer p½�

is found. Later on, when the algorithm needs to advance the p½�
 pointer in the while-
loop, the skipping cost can be charged to the pre-deposited credits. Since exactly n

credits are deposited in the entire process, the while-loop spends at most overall OðnÞ
time. &

The next lemma is first presented in [13]. We include it here for completeness.

Lemma 7. Given a real sequence A; let B denote the shortest consecutive subsequence

of A with length at least L such that the average is maximized. Then the length of B is

at most 2L � 1:

Fig. 7. Setting up the right-skew pointers in OðnÞ time.

Fig. 6. Reporting the decreasingly right-skew partition of a suffix sequence.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586580

Proof. Suppose that jBjX2L: Then B can be bisected into two segments, C and D;
such that jCjXL and jDjXL: Without loss of generality, assume that mðCÞXmðDÞ:
However, by Lemma 3, mðCÞXmðCDÞ ¼ mðBÞ; a contradiction! &

In searching for the maximum average consecutive subsequence, our construction
will need to locate, for each element ai; its corresponding partner, aj ; such that the
segment /ai;y; ajS constitutes a candidate solution. Suppose that segment A ¼
/aiyajS is being currently considered a candidate solution, where j � i þ 1XL; and
B ¼ /ajþ1;y; ap½jþ1
S is the first right-skew segment to the right of A:We consider if
the segment A should be extended to include some prefix (or the whole) of the
segment B: The following lemma shows that A should be combined with the segment
B as a whole if and only if mðAÞomðBÞ: In other words, the segment B ¼
/ajþ1;y; ap½jþ1
S is atomic (for A).

Lemma 8 (Atomic). Let A;B;C be three real sequences with mðAÞomðBÞomðCÞ: Then

mðABÞomðABCÞ:

Proof. By Lemma 3, we must have mðAÞomðABÞomðBÞ: Furthermore, since
mðBÞomðCÞ; we have mðABÞomðCÞ: It follows that mðABÞomðABCÞomðCÞ again by
Lemma 3. &

The next lemma allows us to perform binary search in the decreasingly right-skew
partition of a suffix sequence when trying to find the ‘‘optimal’’ extension from a
candidate solution segment.

Lemma 9 (Bitonic). Let P be a (prefix) real sequence, and A1A2yAm the

decreasingly right-skew partition of a sequence A: Suppose that mðPA1yAkÞ ¼
maxfmðPA1yAiÞj0pipmg: Then mðPA1yAiÞ > mðAiþ1Þ if and only if iXk:

Proof. First, we show that mðPA1yAiÞ > mðAiþ1Þ implies iXk: Assume that
mðPA1yAiÞ > mðAiþ1Þ for some i: Since A1A2yAm is the decreasingly right-skew
partition, we have mðA1Þ > mðA2Þ > ? > mðAmÞ: Thus, mðPA1yAiÞ > mðAiþ1Þ > ? >
mðAmÞ: By Lemma 3, mðPA1yAiÞ > mðPA1yAiAiþ1yAjÞ for any j > i: Therefore,
kpi:
In the second part, we show that iXk implies mðPA1yAiÞ > mðAiþ1Þ: Observe that

mðPA1yAkÞ > mðAkþ1Þ > ? > mðAmÞ: By repeatedly applying Lemma 3, we have
mðPA1yAiÞ > mðAiþ1Þ for any iXk: &

Now we are ready to state the main result of this section.

Theorem 3. Given a length n real sequence, finding the consecutive subsequence of

length at least L with the maximum average can be done in Oðn log LÞ time.

Proof. We propose an Oðn log LÞ time algorithm, MAXAVGSEQðA;LÞ; as shown in
Fig. 8. The pointer i scans elements of A from left to right. The pair ði; jÞ represents a
segment of A/ai;y; ajS; currently being considered as the candidate solution (see
Fig. 9). For each element ai; the algorithm finds its corresponding good partner, aj ;
such that ði; jÞ constitutes a candidate solution.
Observe that right-skew segments are atomic in the sense that it is always better to

add a whole right-skew segment in an extension process than to add a proper prefix,
as shown in Lemma 8. Thus, the possible good partners will be the right endpoints of

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 581

the right-skew segments in the decreasingly right-skew partition of the suffix
sequence /ajþ1;y; anS:
Let jðkÞ denote the right endpoint of the kth right-skew segment in the suffix

sequence /ajþ1;y; anS: Note that jðkÞ can be defined recursively using the formula:
jð0Þ ¼ j and jðkÞ ¼ minfp½jðk�1Þ þ 1
; ng: By Lemma 7, there exists a maximum average
segment whose length is at most 2L � 1: Thus, the correctness of algorithm
MAXAVGSEQðA;LÞ follows if LOCATEði; jÞ correctly computes the optimal jn

such that mði; jnÞ ¼ maxfmði; jðkÞÞj0pkpLg; where mði; jÞ denotes the average of
segment /ai;y; ajS: This is explained along with the following time complexity
analysis of algorithm LOCATE.
To prove that the algorithm MAXAVGSEQ runs in Oðn log LÞ time, it suffices to

prove that algorithm LOCATE finds the (restricted) good partner jn of i in Oðlog LÞ
time. The key idea used in the algorithm is as follows. Although exploring the entire
list /jð1Þ;y; jðLÞS to find the (restricted) good partner requires OðLÞ time, Lemma 9
suggests that we may be able to find jn by a binary search without having to generate
the entire list /jð1Þ;y; jðLÞS: To do so, we need maintain Jlog Ln pointer-jumping

tables pðkÞ½1::n
; 1pkpJlog Ln: Let pð0Þ½i
 ¼ p½i
 and pðkþ1Þ½i
 ¼ minfpðkÞ½pðkÞ½i
 þ
1
; ng be defined recursively. Intuitively, one pointer jump from j to pðkÞ½j þ 1
 is
equivalent to 2k original pointer jumps from j to jð2

kÞ:Note that, these pðkÞ½1::n
 tables
can be pre-computed with an overall time complexity of Oðn log LÞ:

Fig. 8. Finding the maximum average consecutive subsequence with length constraint.

Fig. 9. Finding the maximum average consecutive subsequence with prefix /ai;y; ajS and length at most

2L � 1:

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586582

Now we explain how the binary search performed in Steps 1–3 of LOCATEði; jÞ
for finding jn works. Let jn ¼ jðcÞ for some 0pcpL: Then the problem of finding jn

can be thought of identifying an unknown binary string (the binary encoding of c) of
at most Jlog Ln bits. In the algorithm, we identify the bits one by one from the
ðJlogn� 1Þth (the most significant bit) down to the 0th (the lowest) bit, and for each
kth bit, we check if mði; pðkÞ½j þ 1
ÞomðpðkÞ½j þ 1
 þ 1; p½pðkÞ½j þ 1
 þ 1
Þ using the
pointer-jumping tables. The bitonicity property in Lemma 9 can be used to
determine whether the current index jðcÞ under consideration has surpassed the
desired jn: Note that, Step 4 of LOCATEði; jÞ makes a final check on the result
since the value of index j at the moment can be one step short of the optimal index
value jn ¼ jðcÞ for some even number c:
Therefore, LOCATEði; jÞ finds a (restricted) good partner of i in Oð log LÞ time. It

follows that the algorithm MAXAVGSEQðA;LÞ runs in at most Oðn log LÞ time
since Step 4 of the algorithm takes Oðlog LÞ time, and the pre-computation of the
jumping tables also takes at most Oðn log LÞ time. &

5. Implementation and preliminary experiments

We have implemented a family of programs for locating the length-constrained
heaviest segments, based on the algorithms described in this paper. Specifically, five
programs are discussed below:

* mslc: Given a real sequence of length n and an upper bound U ; this program
locates the maximum-sum subsequence of length at most U in OðnÞ-time.

* mslc slow: A brute-force OðnUÞ-time version of mslc.
* mavs: Given a real sequence of length n and a lower bound L; this program

locates the maximum-average subsequence of length at least L in Oðn log LÞ:
* mavs slow: A brute-force OðnLÞ-time version of mavs.
* mavs linear: Instead of finding a good partner by binary search, as done in

mavs, this program linearly scan right-skew segments for the good partnership.
In the worst case, the time complexity is OðnLÞ: However, our empirical tests
showed that it ran faster than mavs in most cases.

Table 1 summarizes the comparative evaluation of the five programs on a random
integer sequence ranged from �50 to 50 of length 1,000,000. These experiments
were carried out on a Sun Enterprise 3000 UltraSPARC-based system. Several
length lower and upper bounds were used to illustrate their performance. For
example, with L ¼ U ¼ 5000; mslc ran in 1:08 s; while mslc slow took 578:45 s:
It is not surprising to see that the running time of mslc was independent of U ; and
the running time of mavs increased slightly for larger L; whereas mslc slow and
mavs slow grew proportionally to U and L; respectively. It is worth mentioning
that mavs linear, which scans right-skew segments linearly, ran even faster than
mavs, which performs binary search among right-skew segments. The main reason
was that the length of the maximum average consecutive subsequence seems usually
quite close to L: Thus, mavs linear could quickly locate the good partners by a linear
scan.
We have also used the programs to analyze the Homo sapiens 4q sequence contig

of size 459 kb from position 114,130 to 114; 589 kb (sequenced by YMGC and
WUGSC, GenBank accession number NT 003253). For instance, we found that the
regions with the highest C+G ratio of length at least 200, 5000, and 10,000 are
390,396–390,604 (C+G ratio 0.866), 389,382–394,381 (C+G ratio 0.513), and

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 583

153,519–163,520 (C+G ratio 0.475), respectively. This might suggest further
biological experiments to better understand these GC-rich regions.
Huang’s LCP program [13] is very efficient in finding in a sequence all GC-rich

regions of length at least L: These GC-rich regions can be refined by locating their
subregions with the highest C+G ratio by using our programs mavs or mavs linear.
To illustrate this approach, we studied the rabbit a-like globin gene cluster sequence
of 10; 621 bp; which is available from GenBank by accession number M35026 [11].
The length cutoff L considered was 50, and the minimum ratio p was chosen at 0.7.
Table 2 summarizes the empirical results. LCP found six interesting GC-rich regions.
Take the region starting from position 6355 and ending at position 6713 for example.
The length of this region is 359 bp; and its C+G ratio is 0.805. Using the program
mavs, we were able to find a subregion (of length 53 bp) with the highest C+G ratio,
which starts from position 6619 and ends at position 6671 with C+G ratio 0.943.
Table 2 presents more examples of such refinements.

6. Concluding remarks

In this paper, two fundamental problems concerning the search for the heaviest
segment of a sequence with length constraints are considered. The first problem is to
find a consecutive subsequence of length at most U with the maximum sum and the
second is to find a consecutive subsequence of length at least L with the maximum
average. We presented a linear-time algorithm for the first and an Oðn log LÞ-time
algorithm for the second. Our results also imply efficient solutions for finding a
maximum sum consecutive subsequence of length within a certain range and

Table 1

Comparative evaluation of the five methods on a random integer sequence ranged from �50 to 50 of

length 1,000,000

Maximum sum Maximum average

n L;U mslc mslc slow mavs mavs slow mavs linear

1,000,000 100 1.14 12.67 8.55 46.72 3.15

1,000,000 500 1.12 57.36 9.63 232.17 3.29

1,000,000 1000 1.15 122.97 9.11 471.64 3.06

1,000,000 5000 1.08 578.45 10.92 2331.52 3.36

1,000,000 10,000 1.12 1270.11 11.92 4822.25 3.13

The time unit is second.

Table 2

Refining the regions found by program LCP

LCP mavs

Start End Length C+G ratio Start End Length C+G ratio

3372 3444 73 0.740 3395 3444 50 0.740

6355 6713 359 0.805 6619 6671 53 0.943

7830 7933 104 0.779 7861 7912 52 0.808

8029 8080 52 0.769 8029 8081 52 0.769

8483 8578 96 0.760 8483 8532 50 0.800

9557 10167 611 0.782 9644 9695 52 0.981

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586584

length-constrained ungapped local alignment. The algorithms have applications to
several important problems in biomolecular sequence analysis.
It would be interesting to know if there is a linear-time algorithm to find a

maximum average consecutive subsequence of length at least L: It also remains open
to develop an efficient algorithm for locating the maximum average consecutive
subsequence of length between bounds L and U :

Acknowledgments

We thank Xiaoqiu Huang for his freely available program LCP. We would also
like to thank Wen-Lian Hsu, Ming-Yang Kao, Ming-Tat Ko, and Hsueh-I Lu for
helpful conversations, and the anonymous referees for their helpful comments and
corrections. Y.-L. Lin was supported in part by Grant NSC 89-2218-E-126-006 from
the National Science Council, Taiwan. T. Jiang was supported in part by a UCR
startup grant and NSF Grants CCR-9988353 and ITR-0085910. K.-M. Chao was
supported in part by Grant NSC 90-2213-E-010-003 from the National Science
Council, Taiwan, and by the Medical Research and Advancement Foundation in
Memory of Dr. Chi-Shuen Tsou.

References

[1] N.N. Alexandrov, V.V. Solovyev, Statistical significance of ungapped alignments. Pacific Symposium

on Biocomputing (PSB-98), Hawaii, 1998, pp. 463–472.

[2] A. Arslan, .O. E$gecio$glu, Algorithms for local alignments with length constraints, Preceedings of

Latin American Theoretical Informatics (LATIN 02), Cancun, Mexico, April, 2002, pp. 38–51.

[3] A. Arslan, Ö. E$gecio$glu, P. Pevzner, A new approach to sequence comparison: normalized sequence

alignment, Bioinformatics 17 (2001) 327–337.

[4] V. Bafna, D.H. Huson, The conserved exon method for gene finding, Proceedings of the Inter-

national Conference on Intelligent Systems in Molecular Biology (ISMB), Vol. 8, 2000,

pp. 3–12.

[5] S. Batzoglou, L. Pachter, J. Mesirov, B. Berger, E. Lander, Comparative analysis of mouse and

human DNA and applications to exon prediction, Proceedings of the International Conference on

Computers in Molecular Biology (RECOMB), Vol. 4, 2000.

[6] J. Bentley, Programming Pearls, Addison-Wesley, Reading, MA, 1986.

[7] M.S. Boguski, R.C. Hardison, S. Schwartz, W. Miller, Analysis of conserved domains and sequence

motifs in cellular regulatory proteins and locus control regions using new software tools for multiple

alignment and visualization, New Biol. 4 (1992) 247–260.

[8] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT Press, Cambridge, 1990.

[9] M. Gardiner-Garden, M. Frommer, CpG islands in vertebrate genomes, J. Mol. Biol. 196 (1987)

261–282.

[10] S. Hannenhalli, S. Levy, Promoter prediction in the human genome, Bioinformatics 17 (2001)

S90–S96.

[11] R.C. Hardison, D. Krane, C. Vandenbergh, J.-F.F. Cheng, J. Mansberger, J. Taddie, S. Schwartz, X.

Huang, W. Miller, Sequence and comparative analysis of the rabbit alpha-like globin gene cluster

reveals a rapid mode of evolution in a G+C rich region of mammalian genomes, J. Mol. Biol. 222

(1991) 233–249.

[12] R.C. Hardison, J.L. Slighton, D.L. Gumucio, M. Goodman, N. Stojanovic, W. Miller, Locus control

regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental

results to gain functional insights, Gene 205 (1997) 73–94.

[13] X. Huang, An algorithm for identifying regions of a DNA sequence that satisfy a content

requirement, CABIOS 10 (1994) 219–225.

[14] F. Larsen, R. Gundersen, R. Lopez, H. Prydz, CpG islands as gene marker in the human genome,

Genomics 13 (1992) 1095–1107.

[15] A. Nekrutenko, W.-H. Li, Assessment of compositional heterogeneity within and between eukaryotic

genomes, Genome Res. 10 (2000) 1986–1995.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586 585

[16] P.S. Novichkov, M.S. Gelfand, A.A. Mironov, Prediction of the exon–intron structure by

comparison sequences, Mol. Biol. 34 (2000) 200–206.

[17] P. Rice, I. Longden, A. Bleasby, EMBOSS: the European molecular biology open software suite,

Trends Genet. 16 (2000) 276–277.

[18] P.H. Sellers, Pattern recognition in genetic sequences by mismatch density, Bull. Math. Biol. 46 (1984)

501–514.

[19] T.F. Smith, M.S. Waterman, The identification of common molecular subsequences, J. Mol. Biol. 147

(1981) 195–197.

[20] N. Stojanov!ıc, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Goodman, W. Miller, R.

Hardison, Comparison of five method for finding conserved sequences in multiple alignments of gene

regulatory regions, Nucl. Acids Res. 27 (1999) 3899–3910.

[21] M.S. Waterman, M. Eggert, A new algorithm for best sequence alignments with application to

tRNA–rRNA comparisons, J. Mol. Biol. 197 (1987) 723–728.

[22] B.Y. Wu, K.-M. Chao, C.Y. Tang, An efficient algorithm for the length-constrained heaviest path

problem on a tree, Inform. Process. Lett. 69 (1999) 63–67.

[23] Z. Zhang, P. Berman, W. Miller, Alignments without low-scoring regions, J. Comput. Biol. 5 (1998)

197–200.

[24] Z. Zhang, P. Berman, T. Wiehe, W. Miller, Post-processing long pair-wise alignments, Bioinformatics

15 (1999) 1012–1019.

Y.-L. Lin et al. / Journal of Computer and System Sciences 65 (2002) 570–586586

	Efficient algorithms for locating the length-constrained heaviest segments with applications to biomolecular sequence analysis
	Introduction
	Applications to biomolecular sequence analysis
	Locating GC-rich regions
	Post-processing sequence alignments
	Annotating multiple sequence alignments
	Computing ungapped local alignments with length constraints

	Maximum sum consecutive subsequence with length constraints
	Maximum average consecutive subsequence with length constraints
	Combination
	Atomic
	Bitonic
	Implementation and preliminary experiments
	Concluding remarks
	Acknowledgements
	References

