
A Tight Analysis of the Katriel-Bodlaender Algorithm for

Online Topological Ordering

Hsiao-Fei Liu1 and Kun-Mao Chao1,2,∗
1Department of Computer Science and Information Engineering

2Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

August 24, 2007

Abstract

Katriel and Bodlaender [7] modify the algorithm proposed by Alpern et al. [2]
for maintaining the topological order of the n nodes of a directed acyclic graph while
inserting m edges and prove that their algorithm runs in O(min{m3/2 log n,m3/2 +
n2 log n}) time and has an Ω(m3/2) lower bound. In this paper, we give a tight
analysis of their algorithm by showing that it runs in time Θ(m3/2 + mn1/2 log n)1.

General Terms: Algorithms
Additional Key Words and Phrases: Topological Order, Online Algorithms, Tight
Analysis

1 Introduction

A topological order ord of a directed acyclic graph (DAG) G = (V, E) is a linear order

of all its vertices such that if G contains an edge (u, v), then ord(u) < ord(v). In this

paper we study an online variant of the topological ordering problem in which the edges

of the DAG are given one at a time and we have to update the order ord each time an

edge is added.

When dealing with DAGs, the topological order of vertices often provides very crucial

information for further algorithm development. Thus online topological ordering is of

interests because it is very likely to be required when one has to develop online algorithms

on DAGs. For example, the online topological ordering has appeared in the following

contexts.

- Incremental Evaluation of Computational Circuits [2].
∗corresponding author, kmchao@csie.ntu.edu.tw
1In this paper, we assume m = Ω(n). In fact, our analysis can be easily extended to prove that the

algorithm runs in time Θ(min{m3/2 + mn1/2 log n, m3/2 log m + n}) without the assumption m = Ω(n).

1

- Incremental Compilation [8, 11], where dependencies between modules are main-

tained to reduce the amount of recompilation performed when an update occurs.

- Local Search [10]. Local search is one of the main approaches to combinatorial

optimization and often requires sophisticated incremental algorithms.

- Online Computation of Strongly Connected Components [12].

- Online Cycle Detection [7, 12, 13]. Currently the best online cycle detection

algorithm for sparse directed graphs is built upon the Katriel-Bodlaender algo-

rithm and has the same complexity as the Katriel-Bodlaender algorithm. Thus

our analysis improves the upper bound of the online cycle detection problem to

O(m3/2 + mn1/2 log n).

- Source Code Analysis [12, 13], where the aim is to determine the target set for all

pointer variables in a program, without executing it.

Alpern et al. [2] give an algorithm which takes O(||δ|| log ||δ||) time for each edge

insertion, where ||δ|| measures the number of edges and nodes of a minimal subgraph

that needs to be updated. (For a formal definition of ||δ||, please see [2, 14, 15].) Pearce

and Kelly [14] propose a different algorithm which needs slightly more time to process

an edge insertion in the worst case than the algorithm given by Alpern et al. [2], but

show experimentally their algorithm perform well on sparse graphs.

Marchetti-Spaccamela et al. [9] give an algorithm which takes O(mn) time for in-

serting m edges. Katriel [6] shows that the analysis is tight. Recently, Katriel and

Bodlaender [7] modify the algorithm proposed by Alpern et al. [2], which is referred to

as the Katriel-Bodlaender algorithm in this paper. They prove that their algorithm has

both an O(min{m3/2 log n,m3/2 + n2 log n}) upper bound and an Ω(m3/2) lower bound

on runtime for m edge insertions. This is the best amortized result for sparse graphs

so far. They also analyze the complexity of their algorithm on structured graphs. They

show that it runs in time O(mk log2 n) where k is the treewidth of the underlying undi-

rected graph and can be implemented to run in O(n log n) time on trees. On the other

hand, Ajwani et al. [1] proposed an O(n2.75)-time algorithm, independent of the number

of edges inserted. This is the best amortized result for dense graphs so far.

In this paper, we prove that the Katriel-Bodlaender algorithm takes Θ(m3/2+mn1/2 log n)

time for inserting m edges. By combining this with Ajwani et al.’s result [1], we get an

upper bound of O(min{m3/2 + mn1/2 log n, n2.75}) for online topological ordering. It

2

is an improvement over the previous best upper bound of O(min{m3/2 log n,m3/2 +

n2 log n, n2.75}).
The rest of this paper is organized as follows. In Section 2, we describe how the

Katriel-Bodlaender algorithm works, define notation and introduce some theorems proved

in [7]. Section 3 proves that the Katriel-Bodlaender algorithm runs in O(m3/2+mn1/2 log n)

time, and Section 4 shows it needs Ω(m3/2 + mn1/2 log n) time. Since the upper bound

matches the lower bound, our analysis is tight. Section 5 summarizes our results and

discusses future work.

2 The Katriel-Bodlaender Algorithm

The pseudo code of the Katriel-Bodlaender algorithm is given in Figure 1.2 The algorithm

works as follows. The topological order of nodes is maintained by an order data structure

ORD, which can maintain a total order and support the following operations in constant

time [4, 3]:

- InsertAfter(x, y) (InsertBefore(x, y)): Inserts x immediately after (before) y in

the total order.

- Delete(x): Removes x from the total order.

- >ord (x, y): Returns true if and only if x follows y in the total order.

- Next(x) (Prev(x)): Returns the element that appears immediately after (before)

x in the total order.

Initially the nodes are inserted into ORD in an arbitrary order. Each time a new

edge (Source, Target) arrives, AddEdge(Source, Target) is called to insert the edge

(Source, Target) into the graph and update the total order maintained by ORD to a

valid topological order for the modified graph.

It remains to describe how AddEdge(Source, Target) operates. In each iteration of

the first while loop, there is one node s which is a candidate for insertion into stack ToS

(the node with maximal rank in the current topological order which reaches a node in ToS

but is not in ToS) and one node t which is a candidate for insertion into stack FromT (the

node with minimal rank in the current topological order which can be reached from a node

in FromT but is not in FromT). The algorithm always adds at least one of them into the
2For the sake of exposition, we slightly modify the way Katriel and Bodlaender present their algorithm.

The only nontrivial modifications are the conditions in lines 8 and 14. However, by Lemma 2.3 in [7],
one can verify that the conditions are equivalent to the ones in [7].

3

relevant set. The way in which it decides which candidate(s) to add aims to balanced the

number of edges outgoing from nodes in FromT and the number of edges entering into

nodes in ToS. That is, the algorithm always chooses a candidate so that the increase

of max{∑v∈ToS Indegree[v],
∑

v∈FromeT Outdegree[v]} will be fewer after adding the

candidate into its relevant set. If a tie occurs, then both s and t will be added into their

relevant sets. If s is added to its relevant set ToS, all nodes which can reach s by one

edge will be inserted into ToSNeighbors and then s will be reset to the max element in

ToSNeighbors. ToSNeighbors is a priority queue maintaining all nodes which can reach

nodes in ToS by one edges but is not in ToS. ToSNeighbors is implemented by Fibonacci

heaps [5] which can support insertions and extractions in O(1) and O(log n) amortized

time respectively. ToSNeighbors determine the ranks of its elements according to the

total order maintained by ORD. Similarly, if t is added to FromT , then all nodes which

are reachable from t by one edge will be inserted into FromTNeighbors and then t will

be reset to the min element in FromTNeighbors. FromTNeighbors is a priority queue

maintaining all nodes which can be reached from nodes in FromT by one edge but is not

in FromT . FromTNeighbors is also implemented by Fibonacci heaps and determine

the ranks of its elements according to the total order maintained by ORD. The first

while loop stops when t >ord s or any one of ToSNeighbors and FromTNeighbors is

empty. If ToSNeighbors (FromTNeighbors) is empty when the first while loop stops

then s (t) will be reset to ORD.Prev(Target) (ORD.Next(Source)) before we update

ORD. The update of ORD is carried out by fulfilling the following two tasks. First,

delete all nodes in ToS from ORD and then insert them, in the same relative order

among themselves, immediately after s. Secondly, delete all nodes in FromT from ORD

and then insert them, in the same relative order among themselves, immediately before

t. After the update of ORD, the edge (Source, Target) is inserted into the graph.

In the following, we shall define some notation. Let n and m be the number of nodes

and edges in the DAG G = (V, E) respectively. Let Gi = (V, Ei) be the graph after

the ith edge insertion. Let Indegreei[v] (Outdegreei[v]) be the indegree (outdegree) of

v in Gi. Let FromTi (ToSi) denote the set of nodes in the stack FromT (ToS) at the

end of the first while loop upon the insertion of the ith edge. Let si (ti) denote the

value of the variable s (t) at the end of the first while loop upon the insertion of the

ith edge. Let Ti =
∑

v∈FromTi
Outdegreei−1[v] and Si =

∑
v∈ToSi

Indegreei−1[v]. Let xi

denote max{Ti, Si} and yi denote max{|ToSi|, |FromTi|}. Let >ordi be the total order

4

maintained by ORD after the ith edge insertion. The following three theorems are proved

in [7].

Theorem 1: The Katriel-Bodlaender algorithm needs O(m3/2 +
∑

1≤i≤m yi log n) time

to insert m edges into an initially empty n-node graph.

Theorem 2: The Katriel-Bodlaender algorithm needs Ω(m3/2) time to insert m edges

into an initially empty n-node graph.

Theorem 3: Indegreei−1[si] + Si ≥ xi and Outegreei−1[ti] + Ti ≥ xi, for all i in [1,m].

3 The O(m3/2 + mn1/2 log n) Upper Bound

In this section, we shall prove that the algorithm runs in time O(m3/2 + mn1/2 log n).

By Theorem 1, we know the algorithm runs in time O(m3/2 +
∑

1≤i≤m yi log n), so we

only have to show that
∑

1≤i≤m yi is O(mn1/2). For simplicity, we assume that xi ≥ yi

for all i in [1, m], although it should be xi ≥ yi − 1 for all i in [1,m].

An edge e = (u, v) is called to be in front of (behind) a node w in Gi if and only if

there is a path from v (w) to w (u) in Gi. A pair (e, w) ∈ E × V is called to be ordered

in Gi if and only if e is either in front of or behind w in Gi. In the following proofs,

we adopt one of the potential functions defined in [7]: The number of ordered pairs in

E × V . Let Φi denote the set {(e, w) ∈ E × V | (e, w) is ordered in Gi}, φi denote |Φi|
and 4φi denote φi − φi−1.

Lemma 4: For all edges e incoming into ToSi in Gi−1 and for all nodes w in FromTi,

e is not in front of w in Gi−1.

Proof: Let e = (u, v). Suppose for the contradiction that there is a path from v to

w in Gi−1. It implies that w >ordi−1
v. There are three cases to consider. Case 1: The

iteration in which variable s was assigned v is before the iteration in which variable t

was assigned w in the ith call of AddEdge. Since the nodes were assigned to variable s

in decreasing order, we had t >ordi−1
s after variable t was assigned w and then left the

loop. It contradicts to the assumption that w is in FromTi. Case 2: The iteration in

which variable t was assigned w is before the iteration in which variable s was assigned

v in the ith call of AddEdge. Since the nodes were assigned to variable t in increasing

5

Function AddEdge(Source, Target)
1 ToS ← []; FromT ← [];
2 ToSNeighbors ← []; FromTNeighbors ← [];
3 ToSIndegree ← 0; FromTOutdegree ← 0;
4 s ← Source; t ← Target;
5 while s >ord t and s 6= nil and t 6= nil do
6 ms ← ToSIndegree; `s ← Indegree[s];
7 mt ← FromTOutdegree; `t ← Outdegree[t];
8 if ms + `s ≤ mt + `t then
9 ToS.Push(s);
10 foreach (w, s) ∈ E do ToSNeighbors.Insert(w);
11 ToSIndegree ← ToSIndegree + Indegree[s];
12 s ← ToSNeighbors.ExtractMax;
13 end if
14 if ms + `s ≥ mt + `t then
15 FromT.Push(t);
16 foreach (t, w) ∈ E do FromTNeighbors.Insert(w);
17 FromTOutdegree ← FromTOutdegree + Outdegree[t];
18 t ← FromTNeighbors.ExtractMin;
19 end if
20 end while
21 if s = nil then s ← ORD.Prev(Target);
22 if t = nil then t ← ORD.Next(Source);
23 while ToS.NotEmpty do
24 s′ ← ToS.Pop;
25 ORD.Delete(s′); ORD.InsertAfter(s′, s); s ← s′;
26 end while
27 while FromT.NotEmpty do
28 t′ ← FromT.Pop;
29 ORD.Delete(t′); ORD.InsertBefore(t′, t); t ← t′;
30 end while
31 E ← E ∪ (Source, Target); Outdegeree[Source]++; Indegree[Target]++;

Figure 1: The algorithm proposed by Katriel and Bodlaender [7].

order, we had t >ordi−1 s after the variable s was assigned v and then left the loop. It

contradicts to the assumption that v is in ToSi. Case 3: Variable s and variable t was

assigned v and w respectively at the same iteration in the ith call of AddEdge. Since

w >ordi−1 v, we had t >ordi−1 s after variable t was assigned w and then left the loop. It

contradicts to the assumption that w is in FromTi and v is in ToSi.

Lemma 4 states that all the Si edges incoming into ToSi are not in front of FromTi in

Gi−1. Because all these Si edges became in front of FromTi after the ith edge insertion,

6

we know 4φi ≥ Si × |FromTi|. To pave the way for proving Lemma 8, we have to

show y2
i ≤ 4φi when yi = |FromTi|. If Si was always larger than or equal to yi when

yi = |FromTi|, then we could jump to prove Lemma 8 directly. Since it is not the case,

we need more lemmas. There are two cases to consider: First, w <ordi−1
si for all w

in FromTi, i.e., si is after FromTi in the total order <ordi−1
. Second, some nodes in

FromTi are after si in the total order <ordi−1
. The following lemma deals with the first

case.

Lemma 5: If w <ordi−1 si for all w in FromTi and yi = |FromTi|, then y2
i ≤ 4φi.

Proof: Since w <ordi−1 si for all w in FromTi, we can deduce that all edges inci-

dent to si in Gi−1 are not in front of w in Gi−1 for all w in FromTi. By combining

this result with Lemma 4, we know there are at least Indegreei−1[si] + Si edges not in

front of w in Gi−1 for all w in FromTi. Because all these Indegreei−1[si] + Si edges

are in front of w in Gi for all w in FromTi and yi = |FromTi|, we can deduce that

(Indegreei−1[si] + Si)× yi ≤ 4φi. By Theorem 3 and the assumption yi ≤ xi, we have

y2
i ≤ xi × yi ≤ (Indegreei−1[si] + Si)× yi ≤ 4φi.

The following lemma is used in the proof of Lemma 7 which deals with the second

case.

Lemma 6: If there exists w in FromTi such that w >ordi−1 si, then, in the ith call of

AddEdge, the iteration in which variable t was assigned ti is not after the iteration in

which variable s was assigned si.

Proof: Suppose for the contradiction that the iteration in which variable s was as-

signed si is before the iteration in which variable t was assigned ti. Let t̂ be the last

element pushed into FromTi. Consider the iteration in which variable t was assigned ti.

At the beginning, the value of variable s was si and the value of variable t was t̂. Since

t̂ >ordi−1 si, we failed in the test condition and left the loop. Thus, t̂ was not pushed

into FromTi, a contradiction.

Lemma 7: If there exists w in FromTi such that w >ordi−1 si and yi = |FromTi|, then

y2
i ≤ 4φi.

7

Proof: Consider the iteration in which variable t was assigned value ti in the ith call

of AddEdge. The value of mt + `t was equal to Ti. By Lemma 6, we know the value

of variable s was not si when line 6 was executed, so ms + `s ≤ Si. Since variable t

was selected to be assigned a new value, we know mt + `t ≤ ms + `s. By combining the

results above, we get Ti ≤ Si. It implies that Si = xi. By Lemma 4, we know there are

at least Si = xi edges not in front of w in Gi−1 for all w in FromTi. Because all these

xi edges are in front of w in Gi for all w in FromTi and yi = |FromTi|, we can deduce

that xiyi ≤ 4φi. By the assumption xi ≥ yi, we have y2
i ≤ 4φi.

Lemma 8:
∑

yi=|FromTi| y2
i ≤ mn.

Proof: By Lemma 5 and Lemma 7, we know y2
i ≤ 4φi if yi = |FromTi|. Since

φ0 = 0, φm ≤ mn, 4φi ≥ 0, and y2
i ≤ 4φi if yi = |FromTi|, we can deduce that

∑
yi=|FromTi| y2

i ≤
∑

1≤i≤m4φi ≤ mn.

The following lemma can be proved by an argument similar to the one for proving

Lemma 8.

Lemma 9:
∑

yi=|ToSi| y2
i ≤ mn.

Theorem 10:
∑

1≤i≤m yi is O(mn1/2).

Proof: By Lemma 8 and Lemma 9, we know
∑

1≤i≤m y2
i ≤ 2mn. Since

∑
yi<n1/2 yi ≤

mn1/2, we only have to show
∑

yi≥n1/2 yi is O(mn1/2). Since n1/2
∑

yi≥n1/2 yi ≤
∑

yi≥n1/2 y2
i ≤

∑
1≤i≤m y2

i ≤ 2mn, we have
∑

yi≥n1/2 yi ≤ 2mn1/2 = O(mn1/2).

Theorem 11: The Katriel-Bodlaender algorithm needs O(m3/2 + mn1/2 log n) time to

insert m edges into an initially empty n-node graph.

Proof: Theorem 1 states that the Katriel-Bodlaender algorithm needs O(m3/2 +
∑

1≤i≤m yi log n) time to insert m edges into an initially empty n-node graph. Theo-

rem 10 states that
∑

1≤i≤m yi is O(mn1/2). By combining these two results, we know

that the Katriel-Bodlaender algorithm needs O(m3/2 + mn1/2 log n) time to insert m

edges into an initially empty n-node graph.

8

4 The Ω(m3/2 + mn1/2 log n) Lower Bound

In this section, we shall prove that the algorithm runs in time Ω(m3/2 + mn1/2 log n).

Theorem 12: The Katriel-Bodlaender algorithm needs Ω(m3/2 + mn1/2 log n) time to

insert m edges into an initially empty n-node graph.

Proof: It is equivalent to show that the algorithm needs Ω(max{m3/2 +mn1/2 log n})
time to insert m edges into an initially empty n-node graph. Theorem 2 states that the

algorithm needs Ω(m3/2) time to insert m edges into an initially empty n-node graph.

Since m3/2 ≥ mn1/2 log n if and only if m ≥ n log2 n, we only have to show that the

algorithm needs Ω(mn1/2 log n) time if m ≤ n log2 n. Without loss of generality we

assume that m ≥ n. In the following, we describe an input which takes the algorithm

Ω(mn1/2 log n) time to process if n ≤ m ≤ n log2 n. For simplicity, we assume that both

n and m are exact powers of 16.

Let {v0, v2, . . . , vn−1} be the nodes of the DAG sorted by the order maintained by

ORD before edge insertions. Let ui = vn
4
+i for i = 0, . . . , 3n

4 − 1. Define Pi to be

(v (i−1)n1/2

4

, v (i−1)n1/2

4
+1

, . . . , v in1/2

4
−1

), for i = 1, . . . , n1/2. Define Qi to be (u(i−1)n1/4 ,

u(i−1)n1/4+1, . . .,uin1/4−1), for i = 1, . . . , m
2n1/2 . Let Sourcei = uin1/4−1, i.e., the last

node of Qi, for i = 1, . . . , m
2n1/2 . Let Targeti = v (i−1)n1/2

4

, i.e., the first node of Pi, for

i = 1, . . . , n1/2.

The input is composed of four parts.

Part 1. Construct n1/2 identical subgraphs as in Figure 2(a) by inserting the edge

(v (i−1)n1/2

4

, v (i−1)n1/2

4
+j

) for all i = 1, . . . , n1/2 and j = 1, . . . , n1/2

4 − 1. There are

n/4− n1/2 < n/4 ≤ m/4 edge insertions in this part.

Part 2. Construct m
2n1/2 identical subgraphs as in Figure 2(b) by inserting the edge

(u(i−1)n1/4+j , uk) for all i ∈ [1, m
2n1/2], j ∈ [0, n1/4−2] and k ∈ ((i−1)n1/4+j, in1/4).

There are m
2n1/2 × n1/2−n1/4

2 < m/4 edge insertions in this part.

Part 3. This part is composed of n1/2 rounds and there are m
2n1/2 edge insertions in

each round. In the ith round, the following edges are inserted in their listed or-

der: {(Source1, Targeti) , (Source2, Targeti),. . .,(Source m

2n1/2
, Targeti)}. There

are m/2 edge insertions in this part. Figure 2(c) illustrates how the total order

maintained by ORD will change when Part 3 arrives.

9

Part 4. Insert edges without causing cycles until there are m edges in the DAG.

Upon the insertion of edge (Sourcei, Targetj) in Part 3 for all i and j, all nodes in Pj

will be inserted into FromTNeighbors at the same iteration and then extracted. Since

there are n1/2/4 nodes in Pj for all j, each edge insertion in Part 3 takes the algorithm

Ω(n1/2 log n) time to process. Because there are m/2 edges in Part 3, the total complex-

ity is Ω(mn1/2 log n).

Theorem 13: The Katriel-Bodlaender algorithm needs Θ(m3/2 + mn1/2 log n) time to

insert m edges into an initially empty n-node graph..

Proof: It follows directly from Theorem 11 and Theorem 12.

5 Concluding Remarks

We give a tight analysis of the Katriel-Bodlaender algorithm by proving that it runs

in Θ(m3/2 + mn1/2 log n) time. By combining this with the result in [1], we get an

upper bound of O(min{m3/2 + mn1/2 log n, n2.75}) for online topological ordering. It

is an improvement upon the previous best upper bound of O(min{m3/2 log n,m3/2 +

n2 log n, n2.75}). The only non-trivial lower bound is due to Ramalingam and Reps [15],

who show that any algorithm need Ω(n log n) time while inserting n − 1 edges in the

worst case if all labels are maintained explicitly. Bridging the large gap between the

lower bound and the upper bound remains an open problem.

Acknowledgments. We thank Irit Katriel for reading our manuscript carefully and

providing numerous valuable comments. We thank Chia-Jung Chang for verifying our

proof.

References

[1] Deepak Ajwani, Tobias Friedrich, and Ulrich Meyer. An O(n2.75) Algorithm for

Online Topological Ordering. In Proceedings of the 10th Scandinavian Workshop on

Algorithm Theory (SWAT), 53-64, 2006.

10

edges. 1
4

 and nodes
4

2/12/1

−nn
edges. 1

4
 and nodes

4

2/12/1

−nn

1/2n
P1P

edges.
2

 and nodes
4/12/1

4/1 nn
n

−

 subgraphs. identical
2

anotherConstruct
2/1n

m

2/12n

mQ
1Q

edges.
2

 and nodes
4/12/1

4/1 nn
n

−

1P 2P L 2/1n
P

1Q 2Q L
2/12n

mQ

1P2P L 2/1n
P

1Q 2Q L
2/12n

mQ

1P2P L 2/1n
P

1Q 2Q L
2/12n

mQ

1P2P L 2/1n
P

1Q 2Q L
2/12n

mQ

1P
2P L 2/1n

P
1Q 2Q L

2/12n

mQ

M
1P12/1 −n

P L2/1n
P 1Q 2Q L

2/12n

mQ

1Q 2Q L
2/12n

mQ

M
2/1n

P
1P12/1 −n

P L
1Q 2Q L

2/12n

mQ
2/1n

P
12/1 −n

P L
1Q 2Q L

2/12n

mQ
2/1n

P
1P12/1 −n

P L
1Q 2Q L

2/12n

mQ
2/1n

P
1P12/1 −n

P L

1 Round 2/1 Round n

 subgraphs. identical Construct 2/1n

1P

Figure 2: An input which requires Ω(mn1/2 log n) time if n ≤ m ≤ n log2 n.

11

[2] Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F. Sweeney, and F. Kenneth

Zadeck. Incremental Evaluation of Computational Circuits. In Proceedings of the

First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 32-42, 1990.

[3] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack

Zito. Two Simplified Algorithms for Maintaining Order in a List. In Proceedings of

the 10th Annual European Symposium on Algorithms (ESA), 152-164, 2002.

[4] Paul F. Dietz and Daniel D. Sleator. Two Algorithms for Maintaining Order in a

List. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing

(STOC), 365-372, 1987.

[5] Michael L. Fredman, Robert E. Tarjan. Fibonacci Heaps and their Uses in Improved

Network Optimization Algorithms. Journal of the ACM, 34(3): 596-615, 1987.

[6] Irit Katriel. On Algorithms for Online Topological Ordering and Sorting. Research

Report MPI-I-2004-1-003, Max-Planck-Institut für Informatik, Saarbrücken, Ger-

many, 2004.

[7] Irit Katriel and Hans L. Bodlaender. Online Topological Ordering. ACM Transac-

tions on Algorithms, 2(3): 364-379, 2006.

[8] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. On-Line Graph

Algorithms for Incremental Compilation. In Proceeding of International Workshop

on Graph-Theoretic Concepts in Computer Science (WG), 70-86, 1993.

[9] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. Maintaining

a Topological Order Under Edge Insertions. Information Processing Letters 59(1):

53-58, 1996.

[10] Laurent Michel and Pascal Van Hentenryck. A constraint-based Architecture for

Local Search. In Proceedings of the 17th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA), 83-100,

2002.

[11] Stephen M. Omohundro, Chu-Cheow Lim, and Jeff Bilmes. The Sather Language

Compiler/Debugger Implementation. Technical Report TR-92-017, International

Computer Science Institute, Berkley, 1992.

12

[12] David J. Peace. Some Directed Graph Algorithms and Their Application to Pointer

Analysis. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, Uni-

versity of London, 2005.

[13] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Online Cycle Detection and

Difference Propagation: Applications to Pointer Analysis. Software Quality Journal,

12(4): 309–335, 2004.

[14] David J. Pearce and Paul H. J. Kelly. A Dynamic Algorithm for Topologically

Sorting Directed Acyclic Graphs. ACM Journal of Experimental Algorithms, 11(1.7):

1-24, 2007.

[15] Ganesan Ramalingam and Thomas W. Reps. On Competitive On-Line Algorithms

for the Dynamic Priority-Ordering Problem. Information Processing Letters, 51(3):

155-161, 1994.

13

