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Linear-Space Algorithms that Build 
Local Alignments from Fragments 1 

K u n - M a o  Chao  2 and W. Miller 2 

Abstract. This paper presents practical algorithms for building an alignment of two long sequences 
from a collection of "alignment fragments," such as all occurrences of identical 5-tuples in each of two 
DNA sequences. We first combine a time-efficient algorithm developed by Galil and coworkers 
with a space-saving approach of Hirschberg to obtain a local alignment algorithm that uses 
O((M + N + F log N) log M) time and O(M + N) space to align sequences of lengths M and N from 
a pool of F alignment fragments. Ideas of Huang and Miller are then employed to develop a time- and 
space-efficient algorithm that computes n best nonintersecting alignments for any n > 1. An example 
illustrates the utility of these methods. 

Key Words. Sequence comparison, Local alignment, Dynamic programming, Candidate-list 
paradigm, Linear-space algorithm. 

1. Introduction. The unfor tunate  scarcity of  interaction between biologists and 
computer  scientists is well illustrated by the parallel developments of  dynamic-  
p rogramming  methods  for compar ing  sequences. Such methods  were independ- 
ently discovered by biologists (Needleman and Wunsch,  1970), computer  scientists 
(Wagner  and Fischer, 1974), and workers in other  fields. (For  a survey of  the 
history, see Sankoff  and Kruskal,  1983). The precise relationship between the 
methods  developed by the two communit ies  is somewhat  obscured by notat ional  
differences, mos t  but not  all of  which are insignificant. Compute r  scientists 
typically make  explicit the relationship between two sequences by producing a list 
of  editing operat ions that  converts one sequence to the other, while biologists 
prefer to see an alignment of  the sequences. Moreover ,  mathematical ly  oriented 
researchers find it natural  to compare  sequences using a distance "metric,"  i.e., 
where a sequence is at a distance zero from itself and large values of  the measure 
correspond to highly divergent sequences. On  the other  hand, biologists tend to 
think in terms of  similarity scores, i.e., a sequence has a very high similarity score 
when compared  with itself, similar sequences have a smaller, but  still positive, 
similarity score, and a pair  of  unrelated sequences has a negative score. It is 
tempting to believe that  there is some kind of  "dua l i ty"  between minimizing a 
distance measure and maximizing a similarity score that makes it immaterial  which 
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one is adopted. Indeed, this is true under certain circumstances (Smith et al., 1981), 
though not for "local" alignments (see below). 

Biologists need more general measurements of sequence relatedness than are 
typically considered by computer scientists. The most popular formulation in the 
computer-science literature is the "longest common subsequence problem," which 
is equivalent to scoring alignments by simply counting the number of exact 
matches. For comparing protein sequences, it is important to permit the bonus 
awarded for aligning two symbols to depend on the particular symbol pair (Feng 
et al., 1985). For both DNA and protein sequences, it is standard to penalize a 
long gap (i.e., deletion from one of the sequences) less than the sum of the penalties 
for a set of shorter gaps of the same total length (Fitch and Smith, 1983). This is 
usually accomplished by charging g + t • e for a gap of length t. Thus the 
"gap-open penalty" g is assessed for every gap, regardless of length, and an 
additional "gap-extension penalty" e is charged for every sequence entry in the 
gap. Such penalties are called affine gap penalties. Gotoh (1982) showed how to 
compute optimal alignments efficiently under such scoring rules. 

Even more general models for quantifying sequence relatedness have been 
proposed. For example, it is sometimes useful to have the penalty for adding a 
symbol to a gap depend on the position of the gap within the sequence (Gribskov 
et al., 1990), which is motivated by the observation that insertions in certain regions 
of a protein sequence can be much more likely than at other regions. Another 
generalization is to let the incremental gap cost 6i = ci+ 1 - ci, where a k-symbol 
gap costs ck, be a monotone function of i, e.g., 61 > 62 _-_ .... (Waterman, 1984; 
Miller and Myers, 1988; Galil and Giancarlo, 1989). In this paper we model only 
affine gap penalties since we are concerned mainly with DNA sequences (for which 
position-dependent penalties are not so useful as for proteins) and since concave 
or convex gap penalties have yet to be found truly useful. Indeed, there is some 
evidence that monotonic gap-extension penalties incorrectly model nature in 
certain circumstances (Pascarella and Argos, 1992). 

Besides needing flexible ways of scoring alignments, biologists typically want to 
compute kinds of alignments that are not equivalent to the models studied by 
computer scientists, who generally consider a problem equivalent to global 
alignment, i.e., computing an optimal alignment that is required to extend from 
the :starts of the given sequences to their ends. Biologists frequently find it more 
useful to seek an alignment that is highest-scoring among all alignments between 
an arbitrary section of the first sequence and an arbitrary section of the second 
sequence (Smith and Waterman, 1981), which is called the local alignment problem. 
Probably the most useful of these variations for aligning biological sequences is 
that of computing "n best nonintersecting" local alignments. Care must be taken 
to formalize this notion in a way that allows subtle matches lying near much 
stronger (but perhaps less interesting) matches to be found, while still permitting 
efficient computation (Waterman and Eggert, 1987; Waterman, 1989). Earlier 
attempts to define the "n best local alignments problem" in terms of minimizing 
a measure of the distance between two sequences led to substantially more 
cumbersome algorithms (Goad and Kanehisa, 1982; Sellers, 1984). 

On the computer-science side, Hirschberg (1975) discovered a method for 
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computing longest common subsequences using only linear space (space propor- 
tional to the sum of the sequence lengths) rather than the naive quadratic space 
(space proportional to the product of the sequence lengths). Although space, rather 
than time, is often the constraining factor when applying dynamic-programming 
techniques to biological sequences (e.g., with a DNA sequence of length 50,000, a 
quadratic-space method uses billions of computer memory locations), biologists 
did not discover the technique for themselves. While Hirschberg's original formula- 
tion was for alignment scores that are unrealistically simple for applications in 
biology, Myers and Miller (1988) (also Miller and Myers, 1988) extended the 
approach to affine gap costs. Moreover, linear-space methods have been developed 
for the "n best local alignment problem" (Huang et al., 1990; Huang and Miller, 
1991). 

To attain greater speed, biologists have employed the strategy of building 
alignments from alignment fragments (Wilbur and Lipman, 1983, 1984). For 
example, one could specify some fragment length k _> 1 and work with fragments 
consisting of a segment of length at least k that occurs in both sequences. With 
protein sequences, it might well work better to begin with inexact but high-scoring 
matches, such as those used by the blast program (Altschul et al., 1990) for other 
purposes. In any case, algorithms that optimize the score over alignments con- 
structed from fragments can run faster than algorithms that optimize over all 
possible alignments. 

Alignments constructed from fragments (or often just the alignments' scores) 
have been very successful in initial filtering criteria within programs that search 
a sequence database for matches to a query sequence; database sequences whose 
alignment score with the query sequence falls below a threshold are ignored, and 
the remainder are subjected to a slower but higher-resolution alignment process. 
Moreover, the high-resolution process can be made more efficient by restricting 
the search to a "neighborhood" of the alignment-from-fragments (Pearson and 
Lipman, 1988; Pearson, 1990; Chao et al., 1992). 

It is straightforward to construct optimally an alignment from fragments in 
O(F 2) time, where F is the total number of fragments (Wilbur and Lipman, 1983). 
Eppstein et al. (1992a) develop such an alignment algorithm that runs in O(F log 
log F) time. (Strictly speaking, these times should involve the two sequence 
lengths as additive terms, and the "log log F" can be improved slightly.) However, 
the data structure employed to obtain this theoretical efficiency is unusable in 
practice. With a practical data structure, the complexity becomes O(F log F), which 
is still a great improvement over O(F 2) for problems of the size we regularly solve. 
It should be noted that the basic approach of Eppstein et al. was discovered 
independently by Myers and Huang (1992) in solving a different problem; they 
present an alternative and very useful graphical description of how the method 
works. 

By adapting a number of existing ideas and proposing a few new ones, this 
paper develops a method for constructing n best nonintersecting local alignments 
from given alignment fragments. Moreover, the algorithm runs in linear space and 
utilizes alignment scoring schemes that are appropriate for biological problems. 
We begin with a review of the algorithm of Eppstein et al., reformulated to compute 
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the score of the best local alignment with affine gap costs. The next step, which 
is again straightforward, is to utilize Hirschberg's approach to find an optimal 
alignment (not merely its score) using only linear space. The final step, and the 
one involving a serious extension of what was already known, is to compute n 
best local alignments from fragments, following the general outline of Huang and 
Miller (1991). 

The strength of this paper lies in the utility of the algorithm developed. The 
algorithm is central to our plans for dealing with DNA sequences of lengths 
between 105 and 1 0  6 , a n  area that will soon be important. Whereas alignments 
built from, say, exact matches of length 5, are not sufficient, in themselves, for our 
studies of gene regulation and molecular evolution (Hardison and Miller, 1993), 
this algorithm provides a sensitive filtering procedure for locating regions whose 
similarity can then be measured by a more accurate technique, like that of Chao 
et aI. (1993). Moreover, its rather considerable algorithmic complexity is appropri- 
ate; it is expected to outperform simpler methods substantially. 

A useful attribute of the algorithm given here is that its position on the 
sensitivity-versus-speed spectrum is tuned by the choice of initial fragments. For 
instance, in an example at the end of the paper, using 6-words (exact matches of 
length at least 6) permits adequate detection of fairly subtle similarities with a 
16-fold speedup compared with full-resolution alignment. Near the other extreme, 
Chao et al. (1993) use 8-words to attain a 1000-fold speedup when finding an 
alignment of length over 100,000 (between chloroplast genomes of tobacco and 
liverwort). 

Unfortunately, several desirable topics must be omitted from this report. A 
thorough evaluation of the method's effectiveness for its intended uses would 
require specification of the accompanying high-resolution alignment technique and 
a careful discussion of biological properties of sequences that are only now starting 
to become available; hence it lies beyond the scope of this paper. Also, only an 
incomplete theoretical analysis is offered since no one has as yet shown how to 
give a satisfying performance analysis of even the simplest realist n-best alignment 
method (Waterman and Eggert, 1987). 

2. The Basic Definitions. Let the given sequences be A = ala  2 " ' a  u and B = 
bib2" '"  bn. The discussion is simplified by specifying a set of alignment fragments 
and their scores, though it is straightforward to apply the algorithms described 
below to other classes of alignment fragments. With this in mind, define a f r a g m e n t  
to be a triple ( i , j , k )  such that a t = bj, ag+l = bj+l . . . .  ,a~+k-1 = h i+k- l ,  and 
k > k_min, for a fixed minimum fragment length k_min. Moreover, a fragment is 
to be maximal, i.e., not properly contained in another fragment. Fragment 
f '  = ( i ' , f ,  k') is said to be above fragment f = (i,j, k) if i' + k' < i a n d f  + k' < j ,  
and f is then below f ' .  Notice that this defines a partial-ordering relation. An 
alignment is defined as a sequence of fragments fl, fa . . . .  ,fl such that f~ is above 
f~+ ~ for i = 1, . . . ,  l - 1. Henceforth, the terms "alignment" and "path" are used 
interchangeably. See Figure 1. It should be noted that these definitions originate 
from Eppstein et al. (1992a). 
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Fig. 1. (a) Graphical representation of the alignment fragments consisting of exact matches of length 
2 or more between GACT1GACTAGAG and AGCTACTGTGAAT. (b) Traditional representation of 
the local alignment generated from the three dark diagonal line segments of (a). 

The score of fragment f = (i, j, k) is defined as k and denoted sc(f). Penalties 
for connecting fragments are needed for scoring alignments. Let the nonnegative 
constant g and positive constants e and r be the penalties for opening up a gap 
(horizontal or vertical displacement), for extending a gap by one symbol, and for 
replacing one symbol by another, respectively. The affine function gap(t) = g + te 
is charged for a gap of length t. Define the diagonal of fragment f = (i, j, k )  
to be j - i, denoted by Diag(f). Suppose f '  = (i',j', k') is above f = (i,j, k). The 
penalty of connecting f '  and f ,  denoted by Connect(f' ,  f ) ,  is defined as follows (see 

(1) Diag(f) = Diag(f') (2) Diag(f) > Diag(f') 

,q ,,4 
% %, 

Fig. 2. Connecting two fragments. 

(a) Diag(f ) < Diag(f') 
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Figure 2): 

Case 1: D i a g ( f )  = Diao ( f ' )  

C o n n e c t ( f ' ,  f )  = (i - i' - k')r. 

Case 2: D i a g ( f )  > D i ao ( f ' )  

C o n n e c t ( f ' ,  f )  = gap(Diag( f )  - Oiag( f ' ) )  + (i - i' - k')r. 

Case 3: D i a g ( f )  < D i a o ( f ' )  

C o n n e c t ( f ' ,  f )  = 9ap(Oiag( f ' )  - Oiag( f ) )  + ( j  - j '  - k')r. 

We assume that r < 2e, guaranteeing that the penalty for connecting f '  and f 
is the minimum among all possible ways of connection. The score of an alignment 
(fl, f2 . . . . .  f~) is defined as the sum of the fragment scores, minus the connection 
penalties of adjacent fragments, i.e., 

l l - 1  

sc(fi) -- ~ Connect(f~,  f i+O.  
i = 1  i = 1  

For example, if we take g = e = r = 1, then the score of the alignment in Figure 
l(b) is 7 - 6 = 1. Notice that all symbol replacements are considered equal; there 
are no provisions for utilizing identical or similar sequence elements between 
fragments. It is this idealization that permits efficient computation of maximum- 
score alignments. 

The local alignment problem is thus to find an alignment with the highest score. 
For a global alignment problem, it is necessary to assess additional penalties for 
connecting the alignment to (0, 0) and (M + 1, N + 1). 

Let S c o r e ( f )  be the maximum score over all alignments ending at f ,  so that 
m a x f { S c o r e ( f ) }  gives the score of the best local alignment. Because alignments 
must use whole fragments, the principle of optimality yields the recurrence relation: 

Score ( f )  max{0, maxf, abov~i {Score ( f ' )  - Connec t ( f ' ,  f)}} + sc( f ) .  

A straightforward dynamic-programming method, essentially just an optimal-path 
algorithm for directed acyclic graphs, solves the recurrence in O(F 2) time, where 
F is the number of fragments (Wilbur and Lipman, 1984). 

3. The Algorithm of Eppstein e t  al. The algorithm of Eppstein et al. (1992a) is 
based on the "candidate-list paradigm" (Miller and Myers, 1988; Galil and Park, 
1992), i.e., we keep lists of all fragments f '  that are candidates for maximizing 
S c o r e ( f ' ) -  C o n n e c t ( f  ' , f )  for some fragment f at which Score ( f )  will later be 
evaluated. The computation proceeds by rows. When f ' s  starting position is 



112 Kun-Mao Chao and W. Miller 

. . . . . . .  . . . .  

�9 ,,, influence 
�9 ~ r e , o n  

left "" diagonal 
influence",,,'~-- influence 
region -,.. regmn 

Fig. 3. Influence regions. 

reached, the fragment above it that determines Score(f) can be found by searching 
through some candidate lists. Once f ' s  end position is reached, f is added to any 
candidate lists that should contain it. 

To facilitate the process, the region below a fragment is divided into three 
disjoint subregions, as depicted in Figure 3. Suppose f ' =  (i',f,k') is above 
f = (i, j, k). Then f is said to be under the right influence of f '  if Diag(f') < Diag(f), 
while f is under the left influence of f '  if Diag(f') > Diag(f). The right-influence 
region of f '  is defined to be the range consisting of all points (x, y) such that 
i' + k' <_ x <_ M,j'  + k' <_ y <_ N, and y - x > Diag(f'). Similarly, the left-influence 
region of f '  is defined to be the range consisting of all points (x, y) such that 
i' + k' < x < M, j '  + k' < y _< N, and y - x < Diag(f'). Let 

Rl( f )  = max{Score(f') - Connect(f,  f )  such that f is under 
the right influence of f '} ,  

LI( f )  = max{Score(f') - Connect(f', f )  such that f is under 
the left influence of f '},  

DI(f)  = max{Score(f') - Connect(f', f )  such that Diag(f) = Diag(f')}. 

Then Score(f) = max{0, RI(f),  LI(f), DI(f)} + sc(f). 
DI(f) can be determined by considering only the nearest previous fragment on 

the same diagonal. RI(f)  requires more effort, but is similar to, and somewhat 
simpler than, LI(f). Thus, we discuss only computation of LI(f); the interested 
reader can refer to Eppstein et al. (1992a) for the algorithm's complete description. 
Lemma 1 says that if f is superior to f '  for some point in their common 
left-influence region (Figure 4), it is superior for all points in that region. Define 
Decay(f: x, y) as Score ( f ) -  Connect(f, h), where h is an imaginary fragment 
starting at (x, y). 

LEMMA 1. I f  Decay(f: x, y) >_ Decay(f' : x, y) for some (x, y) in the common left- 
influence region of fragments f and f ' ,  then the inequality holds for all entries 
in that region. 
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Fig. 4. Common left-influence region of f and f ' .  

PROOF. I t  suffices to  show tha t  Decay(f: x, y) - Decay(f': x, y) is independen t  of 
x and  y. I f  f --  (i,j, k), then 

D e c a y ( f :  x,  y) = S c o r e ( f )  - g a p ( D i a g ( f )  + x - y) - (y - j  - k)r, 

where r is the symbol-replacement penalty. An analogous equation holds for 
f '  = (i', j', k'), so 

D e c a y ( f :  x ,  y) - -  D e c a y ( f ' :  x ,  y) = S c o r e ( f )  - S c o r e ( f ' )  

+ (Diag( f ' )  --  D iag ( f ) ) e  + q + k - j '  - k')r, 

where e is the gap-extension penalty. []  

A fragment f '  is said to l e f t - d o m i n a t e  the region if, for any fragment f starting 
in that region, L l ( f )  = S c o r e ( f ' )  - C o n n e c t ( f ' ,  f ) .  Figure 5 depicts the regions that 
are left-dominated by each fragment. (Ties can be broken arbitrarily.) Each row 
is divided into intervals by the vertical and diagonal lines that separate regions, 

"-i "r i ",i ",  
i i ".~ "4 ~ qt : ".. 
i , .  i ".i, i i" . . , i  ..*.., 

",.i. "<, ",, "-, .*..",i 

""-. E ",4 ".,,j ",,.. 
",~ %1 %, 

Fig, 5. Regions left-dominated by some fragments. Circles indicate the lower end of a fragment, and 
solid circles specify those fragments that are still "active" at the last row. 



114 Kun-Mao Chao and W. Miller 

(1) (2) 

" " ( ' , ? ' , ,  J ",,.i",., "-, ,  ",,. ",.,?.,( . .  " ".,,., 
c p c d p d'  

Fig. 6. Locating the fragment that left-dominates the interval containing p. 

and the same fragment can left-dominate more than one of these intervals (e.g., 
fragment f l  in Figure 6(2)). Two candidate lists are used for computing LI(f). 
One sorted list, denoted by LC, gives the columns where vertical region boundaries 
intersect the current row. Given a point p in the current row, LC is searched for 
the largest entry strictly less than p, to which is attached a pointer to the "active" 
fragment that left-dominates the interval immediately to the entry's right. The 
other sorted list, denoted by LD, gives the diagonals where region boundaries 
intersect the current row. Given p, LD is searched for  the largest entry not 
exceeding p's diagonal, to which is attached a pointer to the active fragment that 
left-dominates the interval beginning at that diagonal. If p is the initial point of 
fragment f ,  then LI(f) is easily calculated since one of the two fragments found 
by the searches determines LI(f). 

Figure 6 illustrates the process of searching LC and LD to find the active 
fragment that left-dominates the interval containing p. Searching LC finds c and 
returns f .  In Figure 6(1), p is in the interval left-dominated by f .  In Figure 6(2) p 
is not under the left influence of f ,  but searching LD finds d and returns f3 which 
left-dominates d. (Notice that d is not in the left-influence region of f2.) Incident- 
ally, Figure 6(2) indicates why it will not work to search LD for the first entry 
laroer than p's diagonal. 

Once Ll(f)  has been computed for all f ' s  starting at the current row, LC 
and LD are updated for the next row as follows. For each fragment f ending 
at the current row, first determine if it left-dominates some region. In general 
(except when f ends on some column boundary in LC or some diagonal boundary 
in LD), this is done by searching LC and LD to find the fragment, say f ' ,  
that left-dominates the endpoint of f ,  and then computing Decay(f: x, y ) -  
Decay(f: x, y) for any (x, y) in their common left-influence region. If f is superior 
to f ' ,  then modify LC and LD to reflect the new region left-dominated by f .  
Several cases arise when f is added to LC and LD. Here we take one case as an 
example. Readers can refer to Eppstein et al. for more details. 

Suppose that the closest boundary to the left of f ' s  endpoint is a diagonal and 
the closest boundary to the right is a column (see Figure 7). We keep intersection 
lists, denoted by CUT(i), giving the columns where two boundary lines intersect 
in row i. In the case at hand, the borders on either side of f ' s  endpoint intersect 
at a point a in the CUT list for some later row (Figure 7), and a must be removed 
from that list. Two new intersection points, b and c, must be added to the 
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Fig. 7. The case when the endpoint of f lies between a diagonal and a column boundary. 

appropriate lists (if they fall within the grid). Moreover, f now left-dominates the 
region R 2 and f '  left-dominates the regions R1 and R 3. Thus, we add one column 
left-dominated by f to LC and one diagonal left-dominated by f '  to LD. 

Before leaving row i, points saved in CUT(i) need to be treated. For  each 
intersection point, we extend either the column or diagonal, in the following sense. 
At a given intersection point, three regions come together (see Figure 8). Let fl ,  
f2 andf3 be the left-dominating fragments for regions R1, R2, and R3, respectively. 
If Decay(f 1 : x, y) > Decay(f 3: x, y) for some (x, y) in their common left-influence 
region, then we: 

(1) Remove from LC the column where f3  ends. 
(2) Change the pointer for diagonal Diag(fl) from f2 to f3. 
(3) If the interval just right of the intersection point is terminated by a column 

boundary, we add an entry to the CUT list for the row where diagonal Diag(fl) 
crosses that column.  

Otherwise, we: 

(1) Remove diagonal Diag(fl) from LD. 
(2) If the interval just left of the intersection point begins at a diagonal boundary, 

we add an entry to the appropriate CUT list. 

The following pseudocode gives the outline for computing LI(f) and updating 
LC, LD, and the CUT lists. 

I1 

".i. R2"I 
R 1 ".. [ R3 

Fig. 8. An intersection point. 
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for i *- 1 to M do 
{ for each fragment f starting at row i do 

{ f '  ~ SEARCHL(LC, LD, f )  
LI(f) ~ Score(if) - Connect(if, f )  

} 
for each fragment f ending at row i do 

UPDATEL(LC, LD, CUT, f )  
Handle points in CUT(i). 

} 
Consider now the running time of the complete alignment algorithm. The 

diagonal influence DI(f) can be computed in O(1) time since it involves merely 
finding the nearest fragment above f and on f ' s  diagonal. RI(f) can be computed 
in a simpler way than LI(f) because the right-influence regions are bounded by 
rows (instead of columns) and diagonals. Therefore, the intersection lists are no 
longer needed. Furthermore, only one list, sorted by diagonals, needs to be 
maintained. Suppose that the candidate lists (LC, LD, and the list for the right 
influence) are implemented as balanced search trees, so that each search or update 
operation takes O(log t) time, where the size of the tree is t ___ N. The fragments 
can be generated in O(M + N + F) time using a suffix tree, so the total time for 
the above algorithm, ignoring the updating of CUT lists, is O(M + N + F log N). 
Note that the total number of CUT points handled is at most 2F, since a fragment 
determines at most two boundary lines (Figure 5) and a boundary line dies at 
each intersection point. Each CUT point can be handled in O(log N) time, so the 
total time for a balanced-tree implementation is O(M + N + F log N). 

4. A Linear-Space Algorithm for Local Alignment. When long DNA sequences 
are aligned, it may be impractical to store all of the fragments. For example, there 
are 3,504,057 maximal fragments of length at least 5 between a 73,326-symbol 
DNA sequence containing the human fl-like globin gene cluster and a correspond- 
ing 44,594-symbol sequence for a rabbit. 

To compute the optimal score of a local alignment, it is sufficient to keep only 
those fragments in current candidate lists (e.g., LC and LD). Fragments that start 
in row i are generated when the algorithm reaches row i. Also, for each fragment 
f ,  the number of candidate lists containing f is maintained, and f is deleted when 
the number reaches zero. Since the size of a candidate list is O(M + N), the total 
space requirement for this score-only method is O(M + N). 

Explicitly producing a best local alignment in linear space is more difficult. Our 
approach works in two phases. In outline, we locate first and last fragments of a 
best local alignment, then use a linear-space global alignment algorithm to 
compute an optimal global alignment for the sequence segments bounded by these 
two fragments. In order to locate the first and last fragments, we compute for each 
f the first fragment on a path to f of score Score(f). When Score(f) is determined, 
this first fragment is either f itself (if Score(f) = so(f)) or equal to the first fragment 
for the f '  determining Score(f). A somewhat more efficient strategy for locating 
the first and last fragments can be found in Huang et al. (1990). 
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Locating the first and last fragments of a best local alignment reduces the 
problem to generating a global alignment in the region bounded by these two 
fragments. Specifically, if the first fragment is f '  = (i', j', k') and the last fragment 
is f = (i, j, k), then the local alignment we seek consists of f ' ,  followed by a global 
alignment of a r + k' ar + k" + 1' '"  a t -  1 and b j, + k'bj' + k' + 1' '"  b j_  1 (discarding fragments 
that expand to larger fragments in the complete sequences), followed by f .  To 
solve the global problem, we use the strategy devised by Hirschberg (1975). Begin 
by applying a global, cost-only variant of the algorithm of Eppstein et  al.. It differs 
from the local alignment algorithm described above in that the 0 term in the 
equation 

S c o r e ( f )  = max{0, R I ( f ) ,  L I ( f ) ,  D I ( f ) }  + sc ( f )  

is replaced by a penalty for reaching f from the starts of the sequence segments 
defining the global problem. Let S c o r e - ( f )  denote this global "backward" score 
at f .  The process is stopped after processing the middle row, i.e., row m = 
L(i' + k' + i - 1)/21 where i', etc., are as above, and the current candidate lists are 
saved. Then an "inverted" version of the algorithm is applied to compute Score +(jr) 

defined as the maximum score of an alignment from f to the ends of the segments 
defining the global problem. This backward pass is stopped after processing row 
m + l .  

The goal is now to identify one or two fragments near the middle of an optimal 
alignment, then recursively compute the alignment's remaining prefix and suffix. 
Several possibilities arise when identifying the middle fragments from the informa- 
tion retained in the candidate lists created by the forward and backward passes 
to the middle rows (see Figure 9). As is now shown, each possibility can be checked 
in O(c) time where there are c = j - j '  - k' columns in the subproblem, so we need 
only check them all and pick the one yielding the best alignment. 

The first case is that an optimal alignment uses a fragment that includes rows 
m and m + 1 (Figure 9(1)). For each such crossing fragment f ,  S c o r e - ( f ) +  

(1) (2) (3) 
X -  N~f- 

m X m ""o.o" ra ~ ' " ' ' "  
"X + "X + 

(4a) (4b) ',,(- 
f'.i s �9 ,,  p ' . . ~  

~'~ oo. 
\ f §  

Fig. 9. Cases that arise when dividing a global alignment problem. 
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Score +(f) - sc(f) gives the best score of all (global for the subproblem) alignments 
using f ,  and all of these values can be inspected in O(c) time. 

For all the remaining cases, fix an optimal alignment, let f -  be the last 
fragment on the alignment that lies on or above row m, and let f §  be the 
first fragment on or after row m + 1. (Actually f -  and f§  could be "pseudo- 
fragments" corresponding to the upper left or lower right corners of the sub- 
problem, which are added to create a global alignment problem.) Our second case 
is where f -  and f +  lie on the same diagonal. In O(c) time we can loop over all 
fragments associated with lists for DI in the upper and lower problems, in order 
of increasing diagonal, and determine all potential pairs ( f - ,  f+). The optimal 
score over all paths that jump from f -  to f§  is Score-(f-)  + Score+(f +) - 
Connect(f-, f +). 

Case (3) of Figure 9 is where Diag(f § > Diag(f-). As before, our decision to 
compute by rows makes handling right influences simpler than left influences, so 
we omit explicit treatment of Case (3). 

When Diag(f +) < Diag(f-), it is impossible for both f -  to intersect row m and 
f§  to intersect row m + 1. (This is because f§  has to start strictly after the column 
where f -  ends.) Without loss of generality, suppose that f -  does not intersect 
row m. Project the lower end of f -  vertically onto row m, obtaining point 
p of Cases (4a) and (4b) of Figure 9. Thus if f - = ( i - , j - , k - ) ,  then p = 
(m,j- + k-  - 1). There are two subcases. 

The first subcase is when the diagonal containing p does not exceed Diag(f+). 
For each fragment f+  associated with the list for DI of the lower problem, let 
f§  diagonal intersect the row m + 1 at point q. Recall that the candidate lists 
for the upper problem were updated to be ready for row m + 1 when treating row 
m. Point q is under the left influence of f - ,  so f -  can be determined from q in 
O(log c) time. The best score for a path jumping from f -  to f§  is again 
Score-(f-)  + Score+(f + - Connect(f-, f+). Better yet, we can arrange that the 
possible fragments f§  and the left-influence intervals in row m + 1 can be 
enumerated in order of increasing diagonal in O(c) time, which gives a linear-time 
treatment of Case (4a). 

The other subcase is when the diagonal containing p exceeds Diag(f § Let point 
s be the intersection of row m + 1 and the diagonal containing p. Then s is under 
the left influence o f f -  and p is under the backward left influence o f f  § Therefore, 
given p, we could determine s, f - ,  f+ ,  and the highest score of a global alignment 
that jumps from f -  to f§  all in O(log c) time. Actually, we can arrange that the 
left-influence intervals in row m + 1 and the backward left-influence intervals in 
row m can be enumerated from left to right in O(c) time, which covers Case (4b) 
in linear time. 

The fragments f -  and f§  (or f in Case (1)) reduce the problem to two 
subproblems (Figure 10), which are solved recursively. Problems with fewer than 
k_min rows or columns, where k_min is the minimum fragment length, are handled 
by doing nothing. Clearly, an optimal alignment is computed by this method using 
only O(M + N) space. 

Let T(M, N, F) denote the worst-case time to apply the global "divide-and- 
conquer" alignment algorithm to sequences of lengths M and N with F fragments. 
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m 
+ 

~.~ ~ ~E~' ~ 

Fig. IO. The two subproblems. 

Our next goal is to show that 

T(M, N, F) = O((M + N + F log N) log M). 

It then follows immediately that the same time bound holds for the local alignment 
algorithm (which performs an additional O(M + N + F log N)-time pass to find 
the first and last fragment). 

First, consider subproblem sizes when a problem is divided (Figure 10). Both 
subproblems have fewer than M/2 rows. If the upper subproblem has N-  columns 
and F -  fragments and the lower subproblem has N § columns and F § fragments, 
then N-  + N + < N and F-  + F + < F. Previous considerations show that the 
time to split a problem with size parameters M, N, and F into those subproblems 
(not counting the time to solve the subproblems) is bounded by z(M + N + F log N) 
for some constant z, where we interpret log x to mean max{log2 x, 1}. Then 
T(M, N, F) <_ z(M + N + F log N) log M. To see this, first note that it holds if the 
problem is such that no recursive calls are made. For other problems, by induction: 

T(M, N, F) < "c(M + N + F log N) + T(M/2, N - ,  F- )  + T(M/2, N +, F +) 

< z(M + N + F log N) + z(M/2 + N -  + F -  log N-) log M/2 

+ "c(M/2 + N + + F + log N +) log M/2 

< z(M + N + F log N) + "r(M + N + F log N) log M/2 

= z(M + N + F log N) log M. 

5. The n Best Local Alignments. A pair of long and related sequences will often 
exhibit a number of important local similarities. To discover them, it is inadequate 
to determine a highest-scoring alignment, a second-highest, a third-highest, and 
so on, since trivial perturbations of the highest-scoring alignment will often 
dominate the list. The following strategy yields far more useful results. First, 
compute a highest-scoring alignment. Remove all fragments in that alignment and 
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find a highest-scoring alignment from the remaining fragments. Remove all 
fragments in thatsecond alignment and find a highest-scoring alignment from the 
remaining fragments, and so on until n alignments have been reported. We refer 
to this process as computing n best nonintersecting local alignments. Formally 
speaking, two local alignments of sequences A and B intersect if they share a 
fragment. A list ~:, ct 2 . . . . .  ~n of alignments of A and B is referred to as n best local 
alignments of A and B if ~1 is a highest-scoring local alignment and if 2 < i < n, 
then ~i is highest scoring among all local alignments that do not intersect 
~ ,  ~2 . . . .  , ~i- ~. It should be noted that different tie-breaking rules may result in 
different n best local alignments. (See Huang and Miller (1991) for an analogous 
example.) 

A straightforward implementation of computing n best nonintersecting local 
alignments, which starts anew with each reduced set of fragments, is unnecessarily 
inefficient. Typically, most or all of the computed alignments will be far shorter 
than the underlying sequences, and discarding the alignment's fragments affects 
Score(f) only for fragments f lying near the alignment. The idea, then, is to develop 
an incremental approach that repeats only those parts of the computation where 
results may change. For traditional sequence alignment via dynamic programming, 
Waterman and Eggert (1987) developed a quadratic-space algorithm and a 
linear-space algorithm was given by Huang and Miller (1991). 

We next present a time-efficient, linear-space algorithm for constructing the n 
best nonintersecting alignments from fragments, following the strategy of Huang 
and Miller (1991). It is assumed that n is known a priori. In outline, the algorithm 
works as follows. A forward pass is made through the entire set of fragments to 
find the first and last fragments on an optimal alignment. This pass differs from 
the earlier procedure in that as paths to fragments f are discovered, they are 
divided into equivalence classes according to the first fragment on a highest-scoring 
alignment ending at f ,  and information about the n best pairwise nonequivalent 
paths is retained. When fragments of a highest-scoring alignment are discarded, 
it is sufficient to recompute scores for fragments in the equivalence class containing 
the alignment's fragments (Lemma 2, below). 

5.1. Equivalence Classes. In general, we use G to denote a set of fragments. 
Specifically, G 1 is the original set of maximal fragments between sequences A and 
B, and Gm for m > 1 is obtained from Gin-, by removing the fragments of a 
highest-scoring local alignment. Let ScoreR(f) be the maximum score over all 
alignments from G~ ending at f ,  and let < ~ denote any topological order on the 
fragments in G1 (relative to the "above" relation). Firstm(f) is defined to be the 
last fragment in this ordering such that there is an alignment of score Scorem(f) 
from that fragment to f using only fragments in Gm (i.e., the topological order is 
used to break ties). 

LEMMA 2. Fix m >_ 1 and let u be the fragment such that Gm+ : is formed from 
Gm by removing the fragments of an optimal alignment from First,~(u) to u. I f  
v is a fragment with Firstm(v)~Firstm(u), then Score~+l(V)=Scorem(v) and 
Firstm+ l(v) = First~(v). 
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PROOF. The critical observation is that an optimal path (alignment) from Firstr~(V) 
to v cannot share a fragment with an optimal path from Firstm(u) to u. To see this, 
suppose that f occurred on both paths. Without loss of generality, Firstm(v) follows 
Firstm(u) in the chosen topological order, and it follows readily that an optimal 
path from First~,(v) to u exists, a contradiction. (For more details, see the proof 
Lemma 1 of Huang and Miller (1991)). [] 

Define a relation Em over the fragments in G,, by uE~v if and only if Firstm(u ) = 
Firstm(v). Em is an equivalence relation, and hence partitions the fragments 
in G,, into equivalence classes. For each equivalence class C of E,,, define 
Score,,(C) = max{Scorem(f):  f e C}. 

Let W be the n - m + l th  highest equivalence-class score in G,~. (As alignments 
are reported and the equivalence classes are refined, W will in general increase.) 
The effective region of f is chosen so that if f '  starts outside of the effective region, 
then Score(f)  - Connect( f ,  f ' )  < W.  The following lemma explains how to de- 
termine the effective region. 

LEMMA 3. Suppose Scorer,(f) > W and define 

h = [-max{(Score,,(f) - W - g)/e), (Scorem(f) - W)/r}-], 

where g, e, and r are the penalties for  connecting fragments .  I f  f '  is a fragment  lying 
below f and starting more than h rows or more than h columns after the end of  f ,  
then Scorer,(f) - Connect( f ,  f ' )  < W. 

PROOF. First suppose that Diag(f ')  = Diag(f).  If more than h rows separate f 
and f ' ,  then Connect( f ,  f ' )  > hr > Score(f)  - W,  i.e., Score(f)  - Connect( f ,  f ' )  <_ 
W. Otherwise, suppose without loss of generality that f '  is under the left influence 
of f .  Let f = (i,j, k) and f '  = (i',j', k'). Connect( f ,  f ' )  = gap(Diag(f) - Diag(f')) :+ 
(j' - - j  - k)r = g + ( j  - i - f + i')e + ( f  - j  - k)r = g + hie  + hEr, where hi + h2 = 
i' - i - k >>_ h. If r _> e, then Connect( f ,  f ' )  > g + he >_ g + Score(f)  - W - g = 
Score(f)  - W. Otherwise, Connect( f ,  f ' )  >_ g + hr > hr >__ Score(f)  - W.  [] 

Let B o x ( T ,  L,  B, R) denote the rectangle whose upper left corner is (T, L) and 
lower right corner is (B, R). Let f = (i,j, k). If Score(f)  > W,  then the effective 
region of f is the rectangle Box(i + k -  1,j + k -  1, min{M,i + k -  1 + h}, 
min{N,j + k - 1 + h}) where h is defined in Lemma 3. In general, these regions 
are square (see Figure 11), except when truncated at an edge of the dynamic- 
programming grid. If Score(f)  < W,  then f ' s  effective region is empty. 

Each of the retained equivalence classes C is represented by a 7-tuple: 

( S , F , u ,  T , L , B , R ) ,  
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Fig. 11. A rectangle containing all effective regions of an equivalence class. 

where 

S = Scorem(C), 
F = First~(f) for all f ~ C, 
Firstm(U ) = F and Scorem(U ) = Scorem(C), and 
Box(T, L, B, R) contains all effective regions of fragments in C. 

Henceforth, we use tuple to designate such a 7-tuple, and refer to the entries of 
tuple C by C. S, C. F , . . . ,  C. R. 

5.2. Algorithm Outline. We are now ready to discuss the algorithm outline of 
Huang and Miller (1991) in more detail. 

Algorithm outline 
1. Compute n best tuples (S, F, u, T, L, B, R )  in G 1 in a single sweep 

for m ~  1 to n do 
2. { C ~ a maximum-score tuple in Gm 
3. Construct an optimal alignment from C. F to C. u 

i f  m ~ n then 
4. { Determine T < C . T  and L _ < C . L  so that no align- 

ment from Gin+ 1 starting outside Box(T, L, C. B, C. R) 
and ending inside Box(C. T, C. L, C. B, C. R) has 
score greater than W 

5. Obtain n - m best tuples in G m+ 1 by recomputing 
Box(T, L, C. B, C. R) 

} 

Once a best class C from Gm has been located and its optimal alignment 
reported, we need to discover any high-scoring alignments that were hidden by 
that alignment. To do so, perform a backward computation to locate row T and 
column L such that it is sufficient to recompute the region Box(T, L, C. B, C. R). 
(Any alignment starting outside Box(T, L, C. B, C. R) and ending in Box(C. T, 
C. L, C. B, C. R) has score at most W, and hence can be ignored.) That is, a 
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forward pass will then be performed inside Box(T,  L, C .B ,  C . R )  to look for 
fragments where Scorem+l(f) exceeds W, in which case the set of retained 
equivalence classes is altered. It should be noted that potentially more efficient 
methods exist for delimiting a recomputation region that is not necessarily 
rectangular, but keeping to rectangular regions simplifies the discussion. 

For step 1, the algorithm of Section 3 is employed to find n best tuples, which 
are maintained in a list. When a better-score tuple is found, it replaces a 
minimum-score tuple in the list. Step 3 is accomplished by applying the linear- 
space method discussed in Section 4. Since the (forward) recomputation in step 5 
is straightforward and similar to step 1, we leave it as an exercise to the reader. 

Step 4 is more involved. In Section 5.3 we discuss a backward computation to 
locate T and L in step 4. Finally, Section 5.4 describes a variant of the algorithm 
of Eppstein et al. that is required in the backward computation. 

5.3. The Backward Computation. In the following we describe how to locate T 
and L in step 4. Let Score(f) denote the maximum score over all alignments starting 
at f = (i,j, k) and ending in Box(T,  L, C. B, C. R), and let Last( f)  be the obvious 
analog of First(f). Define 

Ext , ( f )  = max{O, i - Fmax{Score(f)/e, Score(f  )~r}-]}, 

Exh ( f )  = max{0, j - Fmax{Score(f)/e, Score(f  )~r}-]}. 

Notice that opening up a gap is not penalized. Roughly speaking, Extt( f)  and 
Exh( f )  are the boundary row and column, respectively, such that extending from 
row _< Extt( f)  or column _< Exfi(f)  to f will not gain any additional score. The 
following two lemmas pave the way for termination conditions. (Only the align- 
ments ending in Box(T,  L, C. B, C. R) are considered.) 

LEMMA 4. I f  f is a fragment lying above f '  and endin9 above row Extt(f '), such 
that the effective region of f does not intersect any row >_ Extt( f '  ), then the score 
of any alionment in which f and f '  are adjacent is at most W. 

PROOF. First we show Connect(f,  f ' )  >_ Score(f) - W + Score(f'). Let f = (i,j, k) 
and f '  -- (i', j', k'). 

Case 1." Diag(f') = Diag(f). By definition, 

Connect(f, f ' )  = (i' - i - k)r 

= (Extt(f ')  - i - k)r + (i' - Exq(f ' ))r  

= Connect(f, f " )  + (Fmax{Score(f')/e, Score(f')/r}-])r 
(where f "  is a pseudofragment starting at 
p = (Extt(f ') ,  Ext t( f ' )  + diag(f'))) 

> Score(f) - W + Score(f') (by Lemma 3). 
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Fig. 12, Divide Connect(f, f ' )  at row Ext,(f'). 

Case 2:  Diag( f ' )  > Diag( f ) .  The proof  for this case is similar to Case 1. 

Case 3a." Diag( f ' )  < Diao ( f )  and j + k - 1 < E x t t ( f ' )  + Diao( f ' ) .  The proof for 
this case is similar to Case 1. 

Case 3b:  Diag( f ' )  < D ia o ( f )  and j + k - 1 > E x t t ( f '  ) + Diag(f ' ) .  Since the effec- 
tive region of f does not intersect any row _> Ext t ( f ' ) ,  it is easy to see that 
(Score( f )  - W - #)/e < Diag( f )  - ( j  + k - Ext t ( f ' ) ) .  Thus, 

Score ( f )  - W < 9 + (Diag( f )  - -  ( j  + k - Ext t ( f ' ) )e .  

By definition, 

Connec t ( f ,  f ' )  = 9ap(Diag( f )  - Diag( f ' ) )  + ( j '  - j  - k)r 

9 + (Diao( f )  - Diao( f ' ) ) e  + (j '  - j  - k)r 

9 § (D iag ( f )  - -  ( j  + k - Ex t t ( f ' ) ) e  

+ (j + k - Ext,(f') - Diao( f ' ) ) e  + (j '  - j  - k)r 

>_ S c o r e ( f )  - W + ( j  + k - E x t , ( f ' )  - j '  + i'))e + (j '  - j  - k)r 

= S c o r e ( f )  - W + h ie  + h2 r 

(where h 1 + h 2 = i ' -  E x t t ( f ' )  = Vmax{Score ( f ' ) / e ,  S c o r e ( f  ')/r}-]) 

>_ S c o r e ( f )  - W + Score ( f ' ) .  

It follows that the score of an optimal alignment in which f and f '  a re  adjacent 
is Score ( f )  + Score ( f ' )  - C o n n e c t ( f ,  f ' )  < W.. [] 
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C.R 

C2~ 
Fig. 13. Subcase 2 of Lemma 6. 

LEMMA 5. If f is a fragment lying above f '  and ending left of column Extl(f' ), 
such that the effective region of f does not intersect any column >>_ Extl(f'), then 
the score of any alignment in which f and f '  are adjacent is at most W. 

Now, termination conditions for a backward computation are given. It involves 
simultaneously determining an intermediate rectangle Box( T', L', C. B, C. R). The 
backward computation is terminated when it meets the following two conditions 
(see Figure 13): 

(i) If f is still active after we have treated row T and column L, and Last(f) ends 
in Box(T', L', C. B; C. R), then Ext,(f) > T and Extl(f) >>_ L. (By "active" we 
mean those fragments associated with some candidate list or those ending 
closest to T and L on their diagonal.) 

(ii) No rectangle for a saved class intersects the F-shaped shaded region. (T < T' 
unless T' = 0, and L < L' unless L' = 0.) 

The following lemma shows that when the backward computation meets the 
termination conditions, it fulfills the need of step 4. 

LEMMA 6. Let  P be an alignment that starts outside Box(T, L, C . B, C . R) and ends 
in Box(C. T, C. L, C. B, C. R). 7hen Score(P) <_ W. 

PROOF. Assume T # 0 and L r 0 (cases when T = 0 and/or L---0 can be 
handled similarly). Let f be the first fragment of P that ends in Box(T, L, 
C. B, C. R). There are two subcases. 

Subcase 1: f starts outside Box(T, L, C. B, C. R ). By condition (i), it is clear that 
Last(f) must end in the shaded region, which implies Score(P) <_ W by condition 
(ii). 

Subcase 2: f starts in Box(T, L, C. B, C. R) (Figure 13). In this case, some align- 
ment P' aligning an active fragment (possibly f itself), say f ' ,  exists such that f '  is 
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the first fragment of P' that starts in Box(T, L, C . B, C . R), and Score(P) <_ Score(P'). 
We now show that Score(P') <_ W. If Last(f') ends outside Box(T', L', C. B, C. R), 
it is easy to show that Score(P') < Score(Last(f')) <_ W. Otherwise, Last(f') must 
end in Box(T', L', C.B,  C.R), which means Extt(f' ) >_ T and Extl(f '  ) >_ L by 
condition (i). Together with condition (ii), this guarantees that the effective region 
of any fragment in P' that is above f '  does not intersect any row > Ext,(f') or 
any column > Exfi(f'). By Lemmas 4 and 5, we have Score(P')<_ W. Thus 
Score(P) < W. [] 

Figure 14 gives the backward computation for locating T and L. Assume that 
L I S T  stores n -  m + 1 best tuples for Gin, and only fragments in G,+I  are 
considered. When locate stops, the two termination conditions are met. Further- 
more, T is guaranteed to be strictly less than T' unless T' = 0, and similarly for 
L. Section 5.4 explains how to update lists affected by adding row t and column I. 

5.4. Interleaving Computations in the Row and Column Directions. Since earlier 
discussions concerned top-to-bottom computations, the following description is 
couched in those terms, though in actuality computation of T and L runs in the 
reverse direction (Figure 14). Computation of T and L differs from the computa- 
tion of the first and last fragments of an optimal local alignment in the following 
respects. 

1. Fragments contained in alignments reported earlier are not considered. 
2. Fragments that cross column C. R or row C. B are ignored. 
3. Columns and rows are added to the computed region (in an effort to satisfy 

condition (i), above), so row and column lengths vary in an unpredictable 
manner. 

4. If extending T and/or L causes the region to intersect a rectangle associated 
with another equivalence class, C', then T' and L' must be extended to guarantee 
T' < C'. T and L' < C'. L (Figure 13). 

Additions (1) and (2) do not warrant further discussion here, and the procedure 
disjoint of Figure 14 covers condition (4). The only important complication caused 
by property (3) is that candidate lists for rows might be affected while computing 
in the column direction, and vice versa. For example, in Figure 15, adding more 
columns to the region might cause q to right-dominate some interval of row t + 1 
(the candidate lists for row t + 1 remain after treating row t), though q is currently 
not represented as influencing row t + 1. Note that computation of RI(f)  in the 
column direction works like computation of LI(f)  in the row direction. 

5.4.1. Updating the Right-Influence Candidate List for Row t + l  when Adding 
Column I. Consider the effect upon the right-influence candidate list for row t + 1 
from the fragments ending at column l before or at row t. There are two phases 
in the updating procedure. The first phase deletes those ignorable fragments. Let 
p and q be fragments ending at column l where q ends above p. Fragment q is 
said to be ignorable if Decay(p: x, y ) >  Decay(q: x, y) for some (x, y) in their 
common right-influence region (see Figure 15). This is because the right-influence 
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Procedure locate 
Perform a backward computation in region Box(C. T, C. L, C. B, C. R). 
t ~ - T ' ~ C . T  
I~-L' , - C . L  
T ~-max{0, min{T' - 1, min{Extt(f): f ends in Box(C. T, C. L, C. B, C. R)}}} 
L ~-max{0, min{L' -- 1, min{Extt(f): f ends in Box(C. T, C. L, C. B, C. g)}}} 
repeat 

( w h i l e t >  T o r l > L d o  
{ w h i l e t > T d o  

{ t * - t -  1 
for each fragment f ending at row t within columns l and C. R do 

{ Compute Score(f) 
if Last(f) ends in Box(T, L', C. B, C. R) then 

( T*-  min{T, Extt(f) } 
L ~- min{L, Exh(f)} 

} 
} 

Update lists affected by adding row t 

while l > L do 
{ l ~ - l -  1 

for each fragment f ending at column 1 within rows t and C. B do 
{ Compute Score(f) 

if  Last(f) ends in Box(T', L', C. B, C. R) then 
{ T ~- rain{T, Extt(f)} 

L *- min(L, Exh(f)} 
} 

Update lists affected by adding column 1 
} 

} 
} until disjoint(T, L, T', L', C. B, C. R) or T = L = 0 

boolean disjoint(vat T, L, T', L '; b, r) 
for each c in LISTdo 

{ ifc. T<_bandc .L<_randc .B>_Tandc .R>_Land(c .T<T'nrc .  T<L') then 
{ T '*-  min{T', c. T} 

L' ~ min{L', c. L} 
T-~ max{0, min{T, T' -- 1}} 
L , -  max{0, min{L, L' -- 1}} 
for each active fragment f do 

if Last(f) ends in Box(T', L', b, r) then 
{ T*- rain{T, Extt(f) } 

L ~- rain{L, Exh(f) } 
} 

return false 

return true 

Fig. 14. Algorithm for computing T and L. 
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Fig. 15. The effect on Rlist when adding one more column. 

region q after row t is contained in p's right-influence region and the inequality 
holds for all entries in that region (analogous to Lemma 1). Let cl, c2 . . . .  , Ch 
be the list of the fragments ending at column l before row t + 1 in decreasing 
row order. The following pseudocode removes the ignorable fragments from 
the list. 

u ~ - i  
v ~ - - 2  

while v < h do 
{ if Decay(cu: x, y) >_ Decay(co: x, y) for some (x, y) in their common 

right-influence region then 
remove co from the list 

else 
u ~ v  

v ~ v +  l 

After the removal of those ignorable fragments, the remaining fragments have the 
property that if one fragment, say f ,  ends above another, say f '  in column I before 
row t + 1, then Decay ( f : x , y )>  Decay(f ' :x ,y)  for all (x,y) in their common 
right-influence region. 

Phase 2 is to determine which of the remaining fragments in phase 1 could 
possibly right-dominate some region after row t. Let Rlist be the right-influence 
candidate list, sorted by diagonals, for row t + 1 before adding column I. For each 
of the remaining fragments in phase 1, say f ,  search Rlist with Diag(f) to find the 
right-dominating fragment, say f ' .  If Decay(f: x, y) > Decay(f:  x, y) for some (x, y) 
in their common right-influence region, f is added to Rlist. Adding f might cause 
the deletion of some fragments in Rlist. Those fragments can be detected by 



Linear-Space Algorithms that Build Local Alignments from Fragments 129 

sweeping Rlist from Diag(f) to the right until reaching the end of Rlist, or some 
fragment, say f", such that Decay(f: x, y) < Decay(f": x, y) for some (x, y) in their 
common right-influence region. 

The time spent in phase 1 is O(h), which can be charged as 0(1) per fragment. 
For each remaining fragment, phase 2 performs one search operation, one possible 
insertion, and some possible deletions caused by adding that fragment. Suppose 
that the right-influence candidate list is implemented as a balanced search tree, so 
that each of the search, insertion, and deletion operations can be done in time 
O(log SR), where S R is the maximum size of the right-influence candidate list. 
Charge the search and insertion cost to the fragment itself. However, the deletion 
cost is charged to the deleted fragment. Since each fragment can be deleted from 
the right-influence candidate list at most once, it follows that for each fragment 
we charge O(log SR) cost in these two phases. 

5.4.2. Updatin9 the Left-Influence Candidate Lists for Row t + 1 when Addin9 
Column l. Let LC and LD be the left-influence candidate lists for row t + 1 before 
adding column I. Let CUT be the intersection lists for the row direction before 
adding column I. There are two phases in updating LC, LD, and the CUT lists 
for the row direction. The first phase deletes those ignorable fragments. Let p and 
q be fragments ending at column l where q ends above p. Fragment p is said to 
be ignorable if Decay(q: x, y) >_ Decay(p: x, y) for some (x, y) in their common 
left-influence region (see Figure 16). This is because the left-influence region of p 
after row t is contained in q's left-influence region and the inequality holds for all 
entries in that region (Lemma 1). The method for this phase is similar to phase 1 
in Section 5.4.1. After the removal of those ignorable fragments, the remaining 
fragments have the property that if one fragment, say f ,  ends above another, say 
f '  in column 1 before row t + 1, then Decay(f: x, y) < Decay(f': x, y) for all (x, y) 
in their common left-influence region. 

i" , ,  i" . .  
: "-, qi (il ! " ;  , i N  

I . . i  +',."... i ' , i  "., i " , i  

i ~ ",, "q i I t  ~'q N 
i ,A i ",.i i ~".. i .'!., 17, 
! i . . . .  ! ".< ~ "...~ ~ , ,  

Fig. 16. The effect on LC, LD, and CUT when adding a column. 
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Fig. 17. Determining the effect of a remaining fragment. 

Phase 2 is to update LC, LD, and the CUT lists. Notice that diagonals may be 
added to and/or deleted from LD. Also, some left-dominating fragments for 
diagonals may be changed. However, at most one column is added to LC and 
one intersection point is added to the CUT list. 

Process those remaining fragments upward from row t. Let p be the frag- 
ment at hand and let b be the intersection of row t + 1 and Diag(p) (see 
Figure 17). First, search LC and LD with b to find its left-dominating frag- 
ment, say s. If Decay(p: x ,y )> Decay(s: x,y) for some (x,y) in their common 
left-influence region, addDiag(p) to LD if it is not already there. Moreover, the 
left-dominating fragment for Diag(p) has to be determined. Let q be the nearest 
fragment among the remaining fragments that end above p at column I. If 
Decay(q: x, y) > Decay(s: x, y) for some (x, y) in their common left-influence region, 
q is the left-dominating fragment for Diag(p). Otherwise, s is the one left- 
dominating Diag(p). 

After adding p, it may be necessary to remove some diagonals from LD and 
change the left-dominating fragment for one diagonal. To do so, delete the LD's 
diagonal boundaries leftward from Diag(p) - 1 until reaching a diagonal boundary 
started by a fragment, say p', such that Decay(p': x, y) > Decay(p: x, y) for some 
(x, y) in their common left-influence region, or passing diagonal I - t. In the former 
case, change the left-dominating fragment for diagonal Diag(p') to p. In the 
latter case, add column l left-dominated by p to LC. Furthermore, if the closest 
boundary to the left of (t,/) is a diagonal, add an intersection point to the CUT 
list. 

Again, in phase 1 we charge O(1) cost for each fragment. For each remaining 
fragment, the second phase does two search operations (one for LC and the other 
for LD), at most three insertions (one to LC, another to LD, and the other to some 
CUT list), and some possible deletions from LD caused by adding that fragment. 
Suppose that LC, LD, and the CUT lists are implemented as balanced search trees, 
so that each of the search, insertion, and deletion operations can be done in time 
O(log SL), where S L is the maximum of the sizes of LC, LD, and the CUT lists. 
Charge the search and insertion cost to the fragment itself. However, the deletion 
cost will be charged to the fragment ending at the start of the deleted diagonal 
boundary. Since each diagonal boundary can be deleted from LD at most 
once, it follows that for each fragment we charge O(log SL) cost in these two 
phases. 
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6. Discussion. We implemented the algorithm for n best local alignments as a C 
program, called falign. Fragments are found using hashing (not suffix trees) and 
candidate lists are implemented as skip lists (Pugh, 1990)�9 

The tests performed onfalign included comparison of a 73,326-symbol sequence 
containing the human fl-like globin gene cluster and an analogous 44,595-symbol 
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Fig. 18. Graphical representations of the positions of local alignments produced by two alignment pro- 
grams. Regions discussed in the text are indicated by circles and an arrow�9 The alignments were drawn 
by the laps program (Schwartz et al., 1991; Boguski et al., 1992). (a) Alignments found by sim, scoring 
match = 1, mismatch = - 1, gap open = 4.0, gap extension = 0.4. An alignment is shown if and only 
if its score exceeds z = 23, which was chosen so that 5% of random sequence-pairs of this length and 
composition have a gap-free local alignment of score at least z; 190 local alignments met this criterion. 
(b) Positions of alignments computed byfalign with k (the fragment size) set to 7. Matches were scored 
1, replacements 0.1, gap open = 3.0, and gap extension = 0.2, and 200 alignments were computed�9 To 
getfalion alignments to approximate sire alignments, it is necessary to use more lenient scores, since 
falion has no mechanism to award matches that occur in runs of length less than k. For this plot, a 
line segment was drawn from the start of each fragment except the last in an alignment until reaching 
the row or column of the next fragment. Individual fragments are too small to be seen at this resolution. 
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sequence from the rabbit. As described by Hardison and Miller (1993), this 
comparison is typical of those that we perform to study gene regulation and 
molecular evolution. Figure 18(a) shows the positions of alignments computed by 
our "highest-resolution" alignment program, called sire (Huang et al., 1990; Huang 
and Miller, 1991). (Alignments are drawn from lower left to upper right so that 
features displayed on the vertical axis follow biological conventions.) Sire computes 
n best local alignments for traditional sequence comparison (not fragment-based). 
Figure 18(b) shows the positions of alignments computed byfalign with fragment 
length k = 7. Two regions of particular interest for us are indicated on Figures 18 
and 19; they play prominent roles in regulating these genes. Table 1 reports 
execution times for falion, with three values of k, and for sire. 

We investigated how well falign would have worked as a substitute for sirn in 
two of our recent projects. A study of regulation of the e-globin gene (Hardison 
et al., 1993b) dealt exclusively with a region of length about 400 in each species, 
which is indicated by the arrows in Figures 18 and 19. As shown in Figure 19, 
falion detects this region even with k = 8. Hardison et al. (1993b) used sim 
alignments to delimit the sequence regions that were then submitted to a program 
that simultaneously aligned sequences from five species, and thefalign alignments 
with k = 8 would have sufficed for that purpose. The region indicated by the larger 
circle at the very bottom of Figure 18 is part of the Locus Control Region, or 
LCR, which was studied in Hardison et al. (1993a). In the portion of the LCR 
encompassed by the rabbit sequence used here, namely, the region denoted HS1 
in Figures 18 and 19, falion output was inadequate with k = 7. However, with 
k = 6, the alignments produced by falign agree very closely with sire alignments 
in the two regions discussed here (Figure 19). Thus, with that fragment size, falion 
(perhaps coupled with the program of Chao et al., 1993) would work about as 
well as sire for studies of gene regulation in that region, while running 16 times 
faster (Table 1). 

We close this paper by mentioning a few open problems. First, the method 
might be extended from affine gap penalties to concave or convex penalties. 
More interesting to us would be the removal of the "log M" factor from the 
F log N log M term of our time bound for linear-space alignment. The factor arises 
in our analysis because in theory the two subproblems (Figure 10) could contain 
almost all fragments of the parent problem. It might be shown that the log M factor 

Human:  Human:  
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12001 22000 

Human: Human: 
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Fig. 19. Closeups offalign and sim alignments in the regularory region at the lower left of Figure 18. 
The first three plots depictfalign alignments with k set at 8, 7, and 6, respectively, and the last shows 
sire alignments. Alignment scores were as described in the legend of Figure 18. 
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Table 1. Statistics concerning falign and sire for computing 200 non- 
intersecting alignments of the sequences shown in Figure 18.* 

k Fragments Pass 1 Total 

8 79,708 0.66 1.65 
7 276,725 2.06 4.41 
6 974,316 7.72 34.5 

sim - -  - -  569 

* The third column gives execution times for the initial pass, as described in 
Section 3. The fourth column gives the time to compute 200 best local alignments. 
Times were measured in minutes on a Sun SPARCstation 2 workstation. 

disappears in an expected-time analysis. Better yet, it might be possible, with an 
algorithm modification, to prove such a worst-case bound. Finally, we would like 
to see a tight time analysis for the n best local alignments problem. 

Acknowledgment. We thank the referees for two of the most thorough and 
insightful reviews that we have seen recently. Their comments resulted in numerous 
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