
Algorithmica (1995) 13:106-134 Algorithmica
�9 1995 Springer-Verlag New York Inc.

Linear-Space Algorithms that Build
Local Alignments from Fragments 1

K u n - M a o Chao 2 and W. Miller 2

Abstract. This paper presents practical algorithms for building an alignment of two long sequences
from a collection of "alignment fragments," such as all occurrences of identical 5-tuples in each of two
DNA sequences. We first combine a time-efficient algorithm developed by Galil and coworkers
with a space-saving approach of Hirschberg to obtain a local alignment algorithm that uses
O((M + N + F log N) log M) time and O(M + N) space to align sequences of lengths M and N from
a pool of F alignment fragments. Ideas of Huang and Miller are then employed to develop a time- and
space-efficient algorithm that computes n best nonintersecting alignments for any n > 1. An example
illustrates the utility of these methods.

Key Words. Sequence comparison, Local alignment, Dynamic programming, Candidate-list
paradigm, Linear-space algorithm.

1. Introduction. The unfor tunate scarcity of interaction between biologists and
computer scientists is well illustrated by the parallel developments of dynamic-
p rogramming methods for compar ing sequences. Such methods were independ-
ently discovered by biologists (Needleman and Wunsch, 1970), computer scientists
(Wagner and Fischer, 1974), and workers in other fields. (For a survey of the
history, see Sankoff and Kruskal, 1983). The precise relationship between the
methods developed by the two communit ies is somewhat obscured by notat ional
differences, mos t but not all of which are insignificant. Compute r scientists
typically make explicit the relationship between two sequences by producing a list
of editing operat ions that converts one sequence to the other, while biologists
prefer to see an alignment of the sequences. Moreover , mathematical ly oriented
researchers find it natural to compare sequences using a distance "metric," i.e.,
where a sequence is at a distance zero from itself and large values of the measure
correspond to highly divergent sequences. On the other hand, biologists tend to
think in terms of similarity scores, i.e., a sequence has a very high similarity score
when compared with itself, similar sequences have a smaller, but still positive,
similarity score, and a pair of unrelated sequences has a negative score. It is
tempting to believe that there is some kind of "dua l i ty" between minimizing a
distance measure and maximizing a similarity score that makes it immaterial which

1 This work was supported in part by Grant R01 LM05110 from the National Library of Medicine.
2 Department of Computer Science, The Pennsylvania State University, University Park, PA 16802,
USA.

Received June 1, 1992; revised February 18, 1993. Communicated by E. W. Myers.

Linear-Space Algorithms that Build Local Alignments from Fragments 107

one is adopted. Indeed, this is true under certain circumstances (Smith et al., 1981),
though not for "local" alignments (see below).

Biologists need more general measurements of sequence relatedness than are
typically considered by computer scientists. The most popular formulation in the
computer-science literature is the "longest common subsequence problem," which
is equivalent to scoring alignments by simply counting the number of exact
matches. For comparing protein sequences, it is important to permit the bonus
awarded for aligning two symbols to depend on the particular symbol pair (Feng
et al., 1985). For both DNA and protein sequences, it is standard to penalize a
long gap (i.e., deletion from one of the sequences) less than the sum of the penalties
for a set of shorter gaps of the same total length (Fitch and Smith, 1983). This is
usually accomplished by charging g + t • e for a gap of length t. Thus the
"gap-open penalty" g is assessed for every gap, regardless of length, and an
additional "gap-extension penalty" e is charged for every sequence entry in the
gap. Such penalties are called affine gap penalties. Gotoh (1982) showed how to
compute optimal alignments efficiently under such scoring rules.

Even more general models for quantifying sequence relatedness have been
proposed. For example, it is sometimes useful to have the penalty for adding a
symbol to a gap depend on the position of the gap within the sequence (Gribskov
et al., 1990), which is motivated by the observation that insertions in certain regions
of a protein sequence can be much more likely than at other regions. Another
generalization is to let the incremental gap cost 6i = ci+ 1 - ci, where a k-symbol
gap costs ck, be a monotone function of i, e.g., 61 > 62 _-_ (Waterman, 1984;
Miller and Myers, 1988; Galil and Giancarlo, 1989). In this paper we model only
affine gap penalties since we are concerned mainly with DNA sequences (for which
position-dependent penalties are not so useful as for proteins) and since concave
or convex gap penalties have yet to be found truly useful. Indeed, there is some
evidence that monotonic gap-extension penalties incorrectly model nature in
certain circumstances (Pascarella and Argos, 1992).

Besides needing flexible ways of scoring alignments, biologists typically want to
compute kinds of alignments that are not equivalent to the models studied by
computer scientists, who generally consider a problem equivalent to global
alignment, i.e., computing an optimal alignment that is required to extend from
the :starts of the given sequences to their ends. Biologists frequently find it more
useful to seek an alignment that is highest-scoring among all alignments between
an arbitrary section of the first sequence and an arbitrary section of the second
sequence (Smith and Waterman, 1981), which is called the local alignment problem.
Probably the most useful of these variations for aligning biological sequences is
that of computing "n best nonintersecting" local alignments. Care must be taken
to formalize this notion in a way that allows subtle matches lying near much
stronger (but perhaps less interesting) matches to be found, while still permitting
efficient computation (Waterman and Eggert, 1987; Waterman, 1989). Earlier
attempts to define the "n best local alignments problem" in terms of minimizing
a measure of the distance between two sequences led to substantially more
cumbersome algorithms (Goad and Kanehisa, 1982; Sellers, 1984).

On the computer-science side, Hirschberg (1975) discovered a method for

108 Kun-Mao Chao and W. Miller

computing longest common subsequences using only linear space (space propor-
tional to the sum of the sequence lengths) rather than the naive quadratic space
(space proportional to the product of the sequence lengths). Although space, rather
than time, is often the constraining factor when applying dynamic-programming
techniques to biological sequences (e.g., with a DNA sequence of length 50,000, a
quadratic-space method uses billions of computer memory locations), biologists
did not discover the technique for themselves. While Hirschberg's original formula-
tion was for alignment scores that are unrealistically simple for applications in
biology, Myers and Miller (1988) (also Miller and Myers, 1988) extended the
approach to affine gap costs. Moreover, linear-space methods have been developed
for the "n best local alignment problem" (Huang et al., 1990; Huang and Miller,
1991).

To attain greater speed, biologists have employed the strategy of building
alignments from alignment fragments (Wilbur and Lipman, 1983, 1984). For
example, one could specify some fragment length k _> 1 and work with fragments
consisting of a segment of length at least k that occurs in both sequences. With
protein sequences, it might well work better to begin with inexact but high-scoring
matches, such as those used by the blast program (Altschul et al., 1990) for other
purposes. In any case, algorithms that optimize the score over alignments con-
structed from fragments can run faster than algorithms that optimize over all
possible alignments.

Alignments constructed from fragments (or often just the alignments' scores)
have been very successful in initial filtering criteria within programs that search
a sequence database for matches to a query sequence; database sequences whose
alignment score with the query sequence falls below a threshold are ignored, and
the remainder are subjected to a slower but higher-resolution alignment process.
Moreover, the high-resolution process can be made more efficient by restricting
the search to a "neighborhood" of the alignment-from-fragments (Pearson and
Lipman, 1988; Pearson, 1990; Chao et al., 1992).

It is straightforward to construct optimally an alignment from fragments in
O(F 2) time, where F is the total number of fragments (Wilbur and Lipman, 1983).
Eppstein et al. (1992a) develop such an alignment algorithm that runs in O(F log
log F) time. (Strictly speaking, these times should involve the two sequence
lengths as additive terms, and the "log log F" can be improved slightly.) However,
the data structure employed to obtain this theoretical efficiency is unusable in
practice. With a practical data structure, the complexity becomes O(F log F), which
is still a great improvement over O(F 2) for problems of the size we regularly solve.
It should be noted that the basic approach of Eppstein et al. was discovered
independently by Myers and Huang (1992) in solving a different problem; they
present an alternative and very useful graphical description of how the method
works.

By adapting a number of existing ideas and proposing a few new ones, this
paper develops a method for constructing n best nonintersecting local alignments
from given alignment fragments. Moreover, the algorithm runs in linear space and
utilizes alignment scoring schemes that are appropriate for biological problems.
We begin with a review of the algorithm of Eppstein et al., reformulated to compute

Linear-Space Algorithms that Build Local Alignments from Fragments 109

the score of the best local alignment with affine gap costs. The next step, which
is again straightforward, is to utilize Hirschberg's approach to find an optimal
alignment (not merely its score) using only linear space. The final step, and the
one involving a serious extension of what was already known, is to compute n
best local alignments from fragments, following the general outline of Huang and
Miller (1991).

The strength of this paper lies in the utility of the algorithm developed. The
algorithm is central to our plans for dealing with DNA sequences of lengths
between 105 and 1 0 6 , a n area that will soon be important. Whereas alignments
built from, say, exact matches of length 5, are not sufficient, in themselves, for our
studies of gene regulation and molecular evolution (Hardison and Miller, 1993),
this algorithm provides a sensitive filtering procedure for locating regions whose
similarity can then be measured by a more accurate technique, like that of Chao
et aI. (1993). Moreover, its rather considerable algorithmic complexity is appropri-
ate; it is expected to outperform simpler methods substantially.

A useful attribute of the algorithm given here is that its position on the
sensitivity-versus-speed spectrum is tuned by the choice of initial fragments. For
instance, in an example at the end of the paper, using 6-words (exact matches of
length at least 6) permits adequate detection of fairly subtle similarities with a
16-fold speedup compared with full-resolution alignment. Near the other extreme,
Chao et al. (1993) use 8-words to attain a 1000-fold speedup when finding an
alignment of length over 100,000 (between chloroplast genomes of tobacco and
liverwort).

Unfortunately, several desirable topics must be omitted from this report. A
thorough evaluation of the method's effectiveness for its intended uses would
require specification of the accompanying high-resolution alignment technique and
a careful discussion of biological properties of sequences that are only now starting
to become available; hence it lies beyond the scope of this paper. Also, only an
incomplete theoretical analysis is offered since no one has as yet shown how to
give a satisfying performance analysis of even the simplest realist n-best alignment
method (Waterman and Eggert, 1987).

2. The Basic Definitions. Let the given sequences be A = ala 2 " ' a u and B =
bib2" '" bn. The discussion is simplified by specifying a set of alignment fragments
and their scores, though it is straightforward to apply the algorithms described
below to other classes of alignment fragments. With this in mind, define a f r a g m e n t
to be a triple (i , j , k) such that a t = bj, ag+l = bj+l ,a~+k-1 = h i+k- l , and
k > k_min, for a fixed minimum fragment length k_min. Moreover, a fragment is
to be maximal, i.e., not properly contained in another fragment. Fragment
f ' = (i ' , f , k') is said to be above fragment f = (i,j, k) if i' + k' < i a n d f + k' < j ,
and f is then below f ' . Notice that this defines a partial-ordering relation. An
alignment is defined as a sequence of fragments fl, fa ,fl such that f~ is above
f~+ ~ for i = 1, . . . , l - 1. Henceforth, the terms "alignment" and "path" are used
interchangeably. See Figure 1. It should be noted that these definitions originate
from Eppstein et al. (1992a).

110 Kun-Mao Chao and W. Miller

(a)

G

A

C

T

T

G

A

C

T

A

G

A

G

A G C T A C T G T G A A T

, , \
\

\ \

\
\

\

(b)
C T T G A C T - A G A
C T - - A C T G T G A

Fig. 1. (a) Graphical representation of the alignment fragments consisting of exact matches of length
2 or more between GACT1GACTAGAG and AGCTACTGTGAAT. (b) Traditional representation of
the local alignment generated from the three dark diagonal line segments of (a).

The score of fragment f = (i, j, k) is defined as k and denoted sc(f). Penalties
for connecting fragments are needed for scoring alignments. Let the nonnegative
constant g and positive constants e and r be the penalties for opening up a gap
(horizontal or vertical displacement), for extending a gap by one symbol, and for
replacing one symbol by another, respectively. The affine function gap(t) = g + te
is charged for a gap of length t. Define the diagonal of fragment f = (i, j, k)
to be j - i, denoted by Diag(f). Suppose f ' = (i',j', k') is above f = (i,j, k). The
penalty of connecting f ' and f , denoted by Connect(f' , f) , is defined as follows (see

(1) Diag(f) = Diag(f') (2) Diag(f) > Diag(f')

,q ,,4
% %,

Fig. 2. Connecting two fragments.

(a) Diag(f) < Diag(f')

Linear-Space Algorithms that Build Local Alignments from Fragments 111

Figure 2):

Case 1: D i a g (f) = Diao (f ')

C o n n e c t (f ' , f) = (i - i' - k')r.

Case 2: D i a g (f) > D i ao (f ')

C o n n e c t (f ' , f) = gap(Diag(f) - Oiag(f ')) + (i - i' - k')r.

Case 3: D i a g (f) < D i a o (f ')

C o n n e c t (f ' , f) = 9ap(Oiag(f ') - Oiag(f)) + (j - j ' - k')r.

We assume that r < 2e, guaranteeing that the penalty for connecting f ' and f
is the minimum among all possible ways of connection. The score of an alignment
(fl, f2 f~) is defined as the sum of the fragment scores, minus the connection
penalties of adjacent fragments, i.e.,

l l - 1

sc(fi) -- ~ Connect(f~, f i+O.
i = 1 i = 1

For example, if we take g = e = r = 1, then the score of the alignment in Figure
l(b) is 7 - 6 = 1. Notice that all symbol replacements are considered equal; there
are no provisions for utilizing identical or similar sequence elements between
fragments. It is this idealization that permits efficient computation of maximum-
score alignments.

The local alignment problem is thus to find an alignment with the highest score.
For a global alignment problem, it is necessary to assess additional penalties for
connecting the alignment to (0, 0) and (M + 1, N + 1).

Let S c o r e (f) be the maximum score over all alignments ending at f , so that
m a x f { S c o r e (f) } gives the score of the best local alignment. Because alignments
must use whole fragments, the principle of optimality yields the recurrence relation:

Score (f) max{0, maxf, abov~i {Score (f ') - Connec t (f ' , f)}} + sc(f) .

A straightforward dynamic-programming method, essentially just an optimal-path
algorithm for directed acyclic graphs, solves the recurrence in O(F 2) time, where
F is the number of fragments (Wilbur and Lipman, 1984).

3. The Algorithm of Eppstein e t al. The algorithm of Eppstein et al. (1992a) is
based on the "candidate-list paradigm" (Miller and Myers, 1988; Galil and Park,
1992), i.e., we keep lists of all fragments f ' that are candidates for maximizing
S c o r e (f ') - C o n n e c t (f ' , f) for some fragment f at which Score (f) will later be
evaluated. The computation proceeds by rows. When f ' s starting position is

112 Kun-Mao Chao and W. Miller

.

�9 ,,, influence
�9 ~ r e , o n

left "" diagonal
influence",,,'~-- influence
region -,.. regmn

Fig. 3. Influence regions.

reached, the fragment above it that determines Score(f) can be found by searching
through some candidate lists. Once f ' s end position is reached, f is added to any
candidate lists that should contain it.

To facilitate the process, the region below a fragment is divided into three
disjoint subregions, as depicted in Figure 3. Suppose f ' = (i',f,k') is above
f = (i, j, k). Then f is said to be under the right influence of f ' if Diag(f') < Diag(f),
while f is under the left influence of f ' if Diag(f') > Diag(f). The right-influence
region of f ' is defined to be the range consisting of all points (x, y) such that
i' + k' <_ x <_ M,j' + k' <_ y <_ N, and y - x > Diag(f'). Similarly, the left-influence
region of f ' is defined to be the range consisting of all points (x, y) such that
i' + k' < x < M, j ' + k' < y _< N, and y - x < Diag(f'). Let

Rl(f) = max{Score(f') - Connect(f, f) such that f is under
the right influence of f '} ,

LI(f) = max{Score(f') - Connect(f', f) such that f is under
the left influence of f '},

DI(f) = max{Score(f') - Connect(f', f) such that Diag(f) = Diag(f')}.

Then Score(f) = max{0, RI(f), LI(f), DI(f)} + sc(f).
DI(f) can be determined by considering only the nearest previous fragment on

the same diagonal. RI(f) requires more effort, but is similar to, and somewhat
simpler than, LI(f). Thus, we discuss only computation of LI(f); the interested
reader can refer to Eppstein et al. (1992a) for the algorithm's complete description.
Lemma 1 says that if f is superior to f ' for some point in their common
left-influence region (Figure 4), it is superior for all points in that region. Define
Decay(f: x, y) as Score (f) - Connect(f, h), where h is an imaginary fragment
starting at (x, y).

LEMMA 1. I f Decay(f: x, y) >_ Decay(f' : x, y) for some (x, y) in the common left-
influence region of fragments f and f ' , then the inequality holds for all entries
in that region.

Linear-Space Algorithms that Build Local Alignments from Fragments 113

~ -.

. %
i i. "%

Fig. 4. Common left-influence region of f and f ' .

PROOF. I t suffices to show tha t Decay(f: x, y) - Decay(f': x, y) is independen t of
x and y. I f f -- (i,j, k), then

D e c a y (f : x, y) = S c o r e (f) - g a p (D i a g (f) + x - y) - (y - j - k)r,

where r is the symbol-replacement penalty. An analogous equation holds for
f ' = (i', j', k'), so

D e c a y (f : x , y) - - D e c a y (f ' : x , y) = S c o r e (f) - S c o r e (f ')

+ (Diag(f ') -- D iag (f)) e + q + k - j ' - k')r,

where e is the gap-extension penalty. []

A fragment f ' is said to l e f t - d o m i n a t e the region if, for any fragment f starting
in that region, L l (f) = S c o r e (f ') - C o n n e c t (f ' , f) . Figure 5 depicts the regions that
are left-dominated by each fragment. (Ties can be broken arbitrarily.) Each row
is divided into intervals by the vertical and diagonal lines that separate regions,

"-i "r i ",i ",
i i ".~ "4 ~ qt : "..
i , . i ".i, i i" . . , i ..*..,

",.i. "<, ",, "-, .*..",i

""-. E ",4 ".,,j ",,..
",~ %1 %,

Fig, 5. Regions left-dominated by some fragments. Circles indicate the lower end of a fragment, and
solid circles specify those fragments that are still "active" at the last row.

114 Kun-Mao Chao and W. Miller

(1) (2)

" " (' , ? ' , , J ",,.i",., "-, , ",,. ",.,?.,(. . " ".,,.,
c p c d p d'

Fig. 6. Locating the fragment that left-dominates the interval containing p.

and the same fragment can left-dominate more than one of these intervals (e.g.,
fragment f l in Figure 6(2)). Two candidate lists are used for computing LI(f).
One sorted list, denoted by LC, gives the columns where vertical region boundaries
intersect the current row. Given a point p in the current row, LC is searched for
the largest entry strictly less than p, to which is attached a pointer to the "active"
fragment that left-dominates the interval immediately to the entry's right. The
other sorted list, denoted by LD, gives the diagonals where region boundaries
intersect the current row. Given p, LD is searched for the largest entry not
exceeding p's diagonal, to which is attached a pointer to the active fragment that
left-dominates the interval beginning at that diagonal. If p is the initial point of
fragment f , then LI(f) is easily calculated since one of the two fragments found
by the searches determines LI(f).

Figure 6 illustrates the process of searching LC and LD to find the active
fragment that left-dominates the interval containing p. Searching LC finds c and
returns f . In Figure 6(1), p is in the interval left-dominated by f . In Figure 6(2) p
is not under the left influence of f , but searching LD finds d and returns f3 which
left-dominates d. (Notice that d is not in the left-influence region of f2.) Incident-
ally, Figure 6(2) indicates why it will not work to search LD for the first entry
laroer than p's diagonal.

Once Ll(f) has been computed for all f ' s starting at the current row, LC
and LD are updated for the next row as follows. For each fragment f ending
at the current row, first determine if it left-dominates some region. In general
(except when f ends on some column boundary in LC or some diagonal boundary
in LD), this is done by searching LC and LD to find the fragment, say f ' ,
that left-dominates the endpoint of f , and then computing Decay(f: x, y) -
Decay(f: x, y) for any (x, y) in their common left-influence region. If f is superior
to f ' , then modify LC and LD to reflect the new region left-dominated by f .
Several cases arise when f is added to LC and LD. Here we take one case as an
example. Readers can refer to Eppstein et al. for more details.

Suppose that the closest boundary to the left of f ' s endpoint is a diagonal and
the closest boundary to the right is a column (see Figure 7). We keep intersection
lists, denoted by CUT(i), giving the columns where two boundary lines intersect
in row i. In the case at hand, the borders on either side of f ' s endpoint intersect
at a point a in the CUT list for some later row (Figure 7), and a must be removed
from that list. Two new intersection points, b and c, must be added to the

Linear-Space Algorithms that Build Local Alignments from Fragments 115

,,(
"%',~ %

i %% %% ~ *%

%"%%
*%

%%%%%%

"~ a

\

7

i %,%%.~176
*,, "%.

"..i x t l "..

" R '

"o c

Fig. 7. The case when the endpoint of f lies between a diagonal and a column boundary.

appropriate lists (if they fall within the grid). Moreover, f now left-dominates the
region R 2 and f ' left-dominates the regions R1 and R 3. Thus, we add one column
left-dominated by f to LC and one diagonal left-dominated by f ' to LD.

Before leaving row i, points saved in CUT(i) need to be treated. For each
intersection point, we extend either the column or diagonal, in the following sense.
At a given intersection point, three regions come together (see Figure 8). Let fl ,
f2 andf3 be the left-dominating fragments for regions R1, R2, and R3, respectively.
If Decay(f 1 : x, y) > Decay(f 3: x, y) for some (x, y) in their common left-influence
region, then we:

(1) Remove from LC the column where f3 ends.
(2) Change the pointer for diagonal Diag(fl) from f2 to f3.
(3) If the interval just right of the intersection point is terminated by a column

boundary, we add an entry to the CUT list for the row where diagonal Diag(fl)
crosses that column.

Otherwise, we:

(1) Remove diagonal Diag(fl) from LD.
(2) If the interval just left of the intersection point begins at a diagonal boundary,

we add an entry to the appropriate CUT list.

The following pseudocode gives the outline for computing LI(f) and updating
LC, LD, and the CUT lists.

I1

".i. R2"I
R 1 ".. [R3

Fig. 8. An intersection point.

116 Kun-Mao Chao and W. Miller

for i *- 1 to M do
{ for each fragment f starting at row i do

{ f ' ~ SEARCHL(LC, LD, f)
LI(f) ~ Score(if) - Connect(if, f)

}
for each fragment f ending at row i do

UPDATEL(LC, LD, CUT, f)
Handle points in CUT(i).

}
Consider now the running time of the complete alignment algorithm. The

diagonal influence DI(f) can be computed in O(1) time since it involves merely
finding the nearest fragment above f and on f ' s diagonal. RI(f) can be computed
in a simpler way than LI(f) because the right-influence regions are bounded by
rows (instead of columns) and diagonals. Therefore, the intersection lists are no
longer needed. Furthermore, only one list, sorted by diagonals, needs to be
maintained. Suppose that the candidate lists (LC, LD, and the list for the right
influence) are implemented as balanced search trees, so that each search or update
operation takes O(log t) time, where the size of the tree is t ___ N. The fragments
can be generated in O(M + N + F) time using a suffix tree, so the total time for
the above algorithm, ignoring the updating of CUT lists, is O(M + N + F log N).
Note that the total number of CUT points handled is at most 2F, since a fragment
determines at most two boundary lines (Figure 5) and a boundary line dies at
each intersection point. Each CUT point can be handled in O(log N) time, so the
total time for a balanced-tree implementation is O(M + N + F log N).

4. A Linear-Space Algorithm for Local Alignment. When long DNA sequences
are aligned, it may be impractical to store all of the fragments. For example, there
are 3,504,057 maximal fragments of length at least 5 between a 73,326-symbol
DNA sequence containing the human fl-like globin gene cluster and a correspond-
ing 44,594-symbol sequence for a rabbit.

To compute the optimal score of a local alignment, it is sufficient to keep only
those fragments in current candidate lists (e.g., LC and LD). Fragments that start
in row i are generated when the algorithm reaches row i. Also, for each fragment
f , the number of candidate lists containing f is maintained, and f is deleted when
the number reaches zero. Since the size of a candidate list is O(M + N), the total
space requirement for this score-only method is O(M + N).

Explicitly producing a best local alignment in linear space is more difficult. Our
approach works in two phases. In outline, we locate first and last fragments of a
best local alignment, then use a linear-space global alignment algorithm to
compute an optimal global alignment for the sequence segments bounded by these
two fragments. In order to locate the first and last fragments, we compute for each
f the first fragment on a path to f of score Score(f). When Score(f) is determined,
this first fragment is either f itself (if Score(f) = so(f)) or equal to the first fragment
for the f ' determining Score(f). A somewhat more efficient strategy for locating
the first and last fragments can be found in Huang et al. (1990).

Linear-Space Algorithms that Build Local Alignments from Fragments 117

Locating the first and last fragments of a best local alignment reduces the
problem to generating a global alignment in the region bounded by these two
fragments. Specifically, if the first fragment is f ' = (i', j', k') and the last fragment
is f = (i, j, k), then the local alignment we seek consists of f ' , followed by a global
alignment of a r + k' ar + k" + 1' '" a t - 1 and b j, + k'bj' + k' + 1' '" b j_ 1 (discarding fragments
that expand to larger fragments in the complete sequences), followed by f . To
solve the global problem, we use the strategy devised by Hirschberg (1975). Begin
by applying a global, cost-only variant of the algorithm of Eppstein et al.. It differs
from the local alignment algorithm described above in that the 0 term in the
equation

S c o r e (f) = max{0, R I (f) , L I (f) , D I (f) } + sc (f)

is replaced by a penalty for reaching f from the starts of the sequence segments
defining the global problem. Let S c o r e - (f) denote this global "backward" score
at f . The process is stopped after processing the middle row, i.e., row m =
L(i' + k' + i - 1)/21 where i', etc., are as above, and the current candidate lists are
saved. Then an "inverted" version of the algorithm is applied to compute Score +(jr)

defined as the maximum score of an alignment from f to the ends of the segments
defining the global problem. This backward pass is stopped after processing row
m + l .

The goal is now to identify one or two fragments near the middle of an optimal
alignment, then recursively compute the alignment's remaining prefix and suffix.
Several possibilities arise when identifying the middle fragments from the informa-
tion retained in the candidate lists created by the forward and backward passes
to the middle rows (see Figure 9). As is now shown, each possibility can be checked
in O(c) time where there are c = j - j ' - k' columns in the subproblem, so we need
only check them all and pick the one yielding the best alignment.

The first case is that an optimal alignment uses a fragment that includes rows
m and m + 1 (Figure 9(1)). For each such crossing fragment f , S c o r e - (f) +

(1) (2) (3)
X - N~f-

m X m ""o.o" ra ~ ' " ' ' "
"X + "X +

(4a) (4b) ',,(-
f'.i s �9 ,, p ' . . ~

~'~ oo.
\ f §

Fig. 9. Cases that arise when dividing a global alignment problem.

118 Kun-Mao Chao and W. Miller

Score +(f) - sc(f) gives the best score of all (global for the subproblem) alignments
using f , and all of these values can be inspected in O(c) time.

For all the remaining cases, fix an optimal alignment, let f - be the last
fragment on the alignment that lies on or above row m, and let f § be the
first fragment on or after row m + 1. (Actually f - and f§ could be "pseudo-
fragments" corresponding to the upper left or lower right corners of the sub-
problem, which are added to create a global alignment problem.) Our second case
is where f - and f + lie on the same diagonal. In O(c) time we can loop over all
fragments associated with lists for DI in the upper and lower problems, in order
of increasing diagonal, and determine all potential pairs (f - , f+). The optimal
score over all paths that jump from f - to f§ is Score-(f-) + Score+(f +) -
Connect(f-, f +).

Case (3) of Figure 9 is where Diag(f § > Diag(f-). As before, our decision to
compute by rows makes handling right influences simpler than left influences, so
we omit explicit treatment of Case (3).

When Diag(f +) < Diag(f-), it is impossible for both f - to intersect row m and
f§ to intersect row m + 1. (This is because f§ has to start strictly after the column
where f - ends.) Without loss of generality, suppose that f - does not intersect
row m. Project the lower end of f - vertically onto row m, obtaining point
p of Cases (4a) and (4b) of Figure 9. Thus if f - = (i - , j - , k -) , then p =
(m,j- + k- - 1). There are two subcases.

The first subcase is when the diagonal containing p does not exceed Diag(f+).
For each fragment f+ associated with the list for DI of the lower problem, let
f§ diagonal intersect the row m + 1 at point q. Recall that the candidate lists
for the upper problem were updated to be ready for row m + 1 when treating row
m. Point q is under the left influence of f - , so f - can be determined from q in
O(log c) time. The best score for a path jumping from f - to f§ is again
Score-(f-) + Score+(f + - Connect(f-, f+). Better yet, we can arrange that the
possible fragments f§ and the left-influence intervals in row m + 1 can be
enumerated in order of increasing diagonal in O(c) time, which gives a linear-time
treatment of Case (4a).

The other subcase is when the diagonal containing p exceeds Diag(f § Let point
s be the intersection of row m + 1 and the diagonal containing p. Then s is under
the left influence o f f - and p is under the backward left influence o f f § Therefore,
given p, we could determine s, f - , f+ , and the highest score of a global alignment
that jumps from f - to f§ all in O(log c) time. Actually, we can arrange that the
left-influence intervals in row m + 1 and the backward left-influence intervals in
row m can be enumerated from left to right in O(c) time, which covers Case (4b)
in linear time.

The fragments f - and f§ (or f in Case (1)) reduce the problem to two
subproblems (Figure 10), which are solved recursively. Problems with fewer than
k_min rows or columns, where k_min is the minimum fragment length, are handled
by doing nothing. Clearly, an optimal alignment is computed by this method using
only O(M + N) space.

Let T(M, N, F) denote the worst-case time to apply the global "divide-and-
conquer" alignment algorithm to sequences of lengths M and N with F fragments.

Linear-Space Algorithms that Build Local Alignments from Fragments 119

m
+

~.~ ~ ~E~' ~

Fig. IO. The two subproblems.

Our next goal is to show that

T(M, N, F) = O((M + N + F log N) log M).

It then follows immediately that the same time bound holds for the local alignment
algorithm (which performs an additional O(M + N + F log N)-time pass to find
the first and last fragment).

First, consider subproblem sizes when a problem is divided (Figure 10). Both
subproblems have fewer than M/2 rows. If the upper subproblem has N- columns
and F - fragments and the lower subproblem has N § columns and F § fragments,
then N- + N + < N and F- + F + < F. Previous considerations show that the
time to split a problem with size parameters M, N, and F into those subproblems
(not counting the time to solve the subproblems) is bounded by z(M + N + F log N)
for some constant z, where we interpret log x to mean max{log2 x, 1}. Then
T(M, N, F) <_ z(M + N + F log N) log M. To see this, first note that it holds if the
problem is such that no recursive calls are made. For other problems, by induction:

T(M, N, F) < "c(M + N + F log N) + T(M/2, N - , F-) + T(M/2, N +, F +)

< z(M + N + F log N) + z(M/2 + N - + F - log N-) log M/2

+ "c(M/2 + N + + F + log N +) log M/2

< z(M + N + F log N) + "r(M + N + F log N) log M/2

= z(M + N + F log N) log M.

5. The n Best Local Alignments. A pair of long and related sequences will often
exhibit a number of important local similarities. To discover them, it is inadequate
to determine a highest-scoring alignment, a second-highest, a third-highest, and
so on, since trivial perturbations of the highest-scoring alignment will often
dominate the list. The following strategy yields far more useful results. First,
compute a highest-scoring alignment. Remove all fragments in that alignment and

120 Kun-Mao Chao and W. Miller

find a highest-scoring alignment from the remaining fragments. Remove all
fragments in thatsecond alignment and find a highest-scoring alignment from the
remaining fragments, and so on until n alignments have been reported. We refer
to this process as computing n best nonintersecting local alignments. Formally
speaking, two local alignments of sequences A and B intersect if they share a
fragment. A list ~:, ct 2 ~n of alignments of A and B is referred to as n best local
alignments of A and B if ~1 is a highest-scoring local alignment and if 2 < i < n,
then ~i is highest scoring among all local alignments that do not intersect
~ , ~2 , ~i- ~. It should be noted that different tie-breaking rules may result in
different n best local alignments. (See Huang and Miller (1991) for an analogous
example.)

A straightforward implementation of computing n best nonintersecting local
alignments, which starts anew with each reduced set of fragments, is unnecessarily
inefficient. Typically, most or all of the computed alignments will be far shorter
than the underlying sequences, and discarding the alignment's fragments affects
Score(f) only for fragments f lying near the alignment. The idea, then, is to develop
an incremental approach that repeats only those parts of the computation where
results may change. For traditional sequence alignment via dynamic programming,
Waterman and Eggert (1987) developed a quadratic-space algorithm and a
linear-space algorithm was given by Huang and Miller (1991).

We next present a time-efficient, linear-space algorithm for constructing the n
best nonintersecting alignments from fragments, following the strategy of Huang
and Miller (1991). It is assumed that n is known a priori. In outline, the algorithm
works as follows. A forward pass is made through the entire set of fragments to
find the first and last fragments on an optimal alignment. This pass differs from
the earlier procedure in that as paths to fragments f are discovered, they are
divided into equivalence classes according to the first fragment on a highest-scoring
alignment ending at f , and information about the n best pairwise nonequivalent
paths is retained. When fragments of a highest-scoring alignment are discarded,
it is sufficient to recompute scores for fragments in the equivalence class containing
the alignment's fragments (Lemma 2, below).

5.1. Equivalence Classes. In general, we use G to denote a set of fragments.
Specifically, G 1 is the original set of maximal fragments between sequences A and
B, and Gm for m > 1 is obtained from Gin-, by removing the fragments of a
highest-scoring local alignment. Let ScoreR(f) be the maximum score over all
alignments from G~ ending at f , and let < ~ denote any topological order on the
fragments in G1 (relative to the "above" relation). Firstm(f) is defined to be the
last fragment in this ordering such that there is an alignment of score Scorem(f)
from that fragment to f using only fragments in Gm (i.e., the topological order is
used to break ties).

LEMMA 2. Fix m >_ 1 and let u be the fragment such that Gm+ : is formed from
Gm by removing the fragments of an optimal alignment from First,~(u) to u. I f
v is a fragment with Firstm(v)~Firstm(u), then Score~+l(V)=Scorem(v) and
Firstm+ l(v) = First~(v).

Linear-Space Algorithms that Build Local Alignments from Fragments 121

PROOF. The critical observation is that an optimal path (alignment) from Firstr~(V)
to v cannot share a fragment with an optimal path from Firstm(u) to u. To see this,
suppose that f occurred on both paths. Without loss of generality, Firstm(v) follows
Firstm(u) in the chosen topological order, and it follows readily that an optimal
path from First~,(v) to u exists, a contradiction. (For more details, see the proof
Lemma 1 of Huang and Miller (1991)). []

Define a relation Em over the fragments in G,, by uE~v if and only if Firstm(u) =
Firstm(v). Em is an equivalence relation, and hence partitions the fragments
in G,, into equivalence classes. For each equivalence class C of E,,, define
Score,,(C) = max{Scorem(f): f e C}.

Let W be the n - m + l th highest equivalence-class score in G,~. (As alignments
are reported and the equivalence classes are refined, W will in general increase.)
The effective region of f is chosen so that if f ' starts outside of the effective region,
then Score(f) - Connect(f , f ') < W. The following lemma explains how to de-
termine the effective region.

LEMMA 3. Suppose Scorer,(f) > W and define

h = [-max{(Score,,(f) - W - g)/e), (Scorem(f) - W)/r}-],

where g, e, and r are the penalties for connecting fragments . I f f ' is a fragment lying
below f and starting more than h rows or more than h columns after the end of f ,
then Scorer,(f) - Connect(f , f ') < W.

PROOF. First suppose that Diag(f ') = Diag(f). If more than h rows separate f
and f ' , then Connect(f , f ') > hr > Score(f) - W, i.e., Score(f) - Connect(f , f ') <_
W. Otherwise, suppose without loss of generality that f ' is under the left influence
of f . Let f = (i,j, k) and f ' = (i',j', k'). Connect(f , f ') = gap(Diag(f) - Diag(f')) :+
(j' - - j - k)r = g + (j - i - f + i')e + (f - j - k)r = g + hie + hEr, where hi + h2 =
i' - i - k >>_ h. If r _> e, then Connect(f , f ') > g + he >_ g + Score(f) - W - g =
Score(f) - W. Otherwise, Connect(f , f ') >_ g + hr > hr >__ Score(f) - W. []

Let B o x (T , L, B, R) denote the rectangle whose upper left corner is (T, L) and
lower right corner is (B, R). Let f = (i,j, k). If Score(f) > W, then the effective
region of f is the rectangle Box(i + k - 1,j + k - 1, min{M,i + k - 1 + h},
min{N,j + k - 1 + h}) where h is defined in Lemma 3. In general, these regions
are square (see Figure 11), except when truncated at an edge of the dynamic-
programming grid. If Score(f) < W, then f ' s effective region is empty.

Each of the retained equivalence classes C is represented by a 7-tuple:

(S , F , u , T , L , B , R) ,

122 Kun-Mao Chao and W. Miller

Fig. 11. A rectangle containing all effective regions of an equivalence class.

where

S = Scorem(C),
F = First~(f) for all f ~ C,
Firstm(U) = F and Scorem(U) = Scorem(C), and
Box(T, L, B, R) contains all effective regions of fragments in C.

Henceforth, we use tuple to designate such a 7-tuple, and refer to the entries of
tuple C by C. S, C. F , . . . , C. R.

5.2. Algorithm Outline. We are now ready to discuss the algorithm outline of
Huang and Miller (1991) in more detail.

Algorithm outline
1. Compute n best tuples (S, F, u, T, L, B, R) in G 1 in a single sweep

for m ~ 1 to n do
2. { C ~ a maximum-score tuple in Gm
3. Construct an optimal alignment from C. F to C. u

i f m ~ n then
4. { Determine T < C . T and L _ < C . L so that no align-

ment from Gin+ 1 starting outside Box(T, L, C. B, C. R)
and ending inside Box(C. T, C. L, C. B, C. R) has
score greater than W

5. Obtain n - m best tuples in G m+ 1 by recomputing
Box(T, L, C. B, C. R)

}

Once a best class C from Gm has been located and its optimal alignment
reported, we need to discover any high-scoring alignments that were hidden by
that alignment. To do so, perform a backward computation to locate row T and
column L such that it is sufficient to recompute the region Box(T, L, C. B, C. R).
(Any alignment starting outside Box(T, L, C. B, C. R) and ending in Box(C. T,
C. L, C. B, C. R) has score at most W, and hence can be ignored.) That is, a

Linear-Space Algorithms that Build Local Alignments from Fragments 123

forward pass will then be performed inside Box(T, L, C .B , C . R) to look for
fragments where Scorem+l(f) exceeds W, in which case the set of retained
equivalence classes is altered. It should be noted that potentially more efficient
methods exist for delimiting a recomputation region that is not necessarily
rectangular, but keeping to rectangular regions simplifies the discussion.

For step 1, the algorithm of Section 3 is employed to find n best tuples, which
are maintained in a list. When a better-score tuple is found, it replaces a
minimum-score tuple in the list. Step 3 is accomplished by applying the linear-
space method discussed in Section 4. Since the (forward) recomputation in step 5
is straightforward and similar to step 1, we leave it as an exercise to the reader.

Step 4 is more involved. In Section 5.3 we discuss a backward computation to
locate T and L in step 4. Finally, Section 5.4 describes a variant of the algorithm
of Eppstein et al. that is required in the backward computation.

5.3. The Backward Computation. In the following we describe how to locate T
and L in step 4. Let Score(f) denote the maximum score over all alignments starting
at f = (i,j, k) and ending in Box(T, L, C. B, C. R), and let Last(f) be the obvious
analog of First(f). Define

Ext , (f) = max{O, i - Fmax{Score(f)/e, Score(f)~r}-]},

Exh (f) = max{0, j - Fmax{Score(f)/e, Score(f)~r}-]}.

Notice that opening up a gap is not penalized. Roughly speaking, Extt(f) and
Exh(f) are the boundary row and column, respectively, such that extending from
row _< Extt(f) or column _< Exfi(f) to f will not gain any additional score. The
following two lemmas pave the way for termination conditions. (Only the align-
ments ending in Box(T, L, C. B, C. R) are considered.)

LEMMA 4. I f f is a fragment lying above f ' and endin9 above row Extt(f '), such
that the effective region of f does not intersect any row >_ Extt(f '), then the score
of any alionment in which f and f ' are adjacent is at most W.

PROOF. First we show Connect(f, f ') >_ Score(f) - W + Score(f'). Let f = (i,j, k)
and f ' -- (i', j', k').

Case 1." Diag(f') = Diag(f). By definition,

Connect(f, f ') = (i' - i - k)r

= (Extt(f ') - i - k)r + (i' - Exq(f '))r

= Connect(f, f ") + (Fmax{Score(f')/e, Score(f')/r}-])r
(where f " is a pseudofragment starting at
p = (Extt(f ') , Ext t(f ') + diag(f')))

> Score(f) - W + Score(f') (by Lemma 3).

124 Kun-Mao Chao and W. Miller

(1)

(3a)

v,
%.

~ p
111

%.
Ext t (f ')

(2)

".,lip �9
"N~'

Ext t (f ")

X
i
�9 . , p

II
%~

"N~"

Extt (f ')

(3b)

~ >~ Score(f)-W ,
Extt (f)

i ~

"N~;

Fig. 12, Divide Connect(f, f ') at row Ext,(f').

Case 2: Diag(f ') > Diag(f) . The proof for this case is similar to Case 1.

Case 3a." Diag(f ') < Diao (f) and j + k - 1 < E x t t (f ') + Diao(f ') . The proof for
this case is similar to Case 1.

Case 3b: Diag(f ') < D ia o (f) and j + k - 1 > E x t t (f ') + Diag(f ') . Since the effec-
tive region of f does not intersect any row _> Ext t (f ') , it is easy to see that
(Score(f) - W - #)/e < Diag(f) - (j + k - Ext t (f ')) . Thus,

Score (f) - W < 9 + (Diag(f) - - (j + k - Ext t (f '))e .

By definition,

Connec t (f , f ') = 9ap(Diag(f) - Diag(f ')) + (j ' - j - k)r

9 + (Diao(f) - Diao(f ')) e + (j ' - j - k)r

9 § (D iag (f) - - (j + k - Ex t t (f ')) e

+ (j + k - Ext,(f') - Diao(f ')) e + (j ' - j - k)r

>_ S c o r e (f) - W + (j + k - E x t , (f ') - j ' + i'))e + (j ' - j - k)r

= S c o r e (f) - W + h ie + h2 r

(where h 1 + h 2 = i ' - E x t t (f ') = Vmax{Score (f ') / e , S c o r e (f ')/r}-])

>_ S c o r e (f) - W + Score (f ') .

It follows that the score of an optimal alignment in which f and f ' a re adjacent
is Score (f) + Score (f ') - C o n n e c t (f , f ') < W.. []

Linear-Space Algorithms that Build Local Alignments from Fragments 125

C.R

C2~
Fig. 13. Subcase 2 of Lemma 6.

LEMMA 5. If f is a fragment lying above f ' and ending left of column Extl(f'),
such that the effective region of f does not intersect any column >>_ Extl(f'), then
the score of any alignment in which f and f ' are adjacent is at most W.

Now, termination conditions for a backward computation are given. It involves
simultaneously determining an intermediate rectangle Box(T', L', C. B, C. R). The
backward computation is terminated when it meets the following two conditions
(see Figure 13):

(i) If f is still active after we have treated row T and column L, and Last(f) ends
in Box(T', L', C. B; C. R), then Ext,(f) > T and Extl(f) >>_ L. (By "active" we
mean those fragments associated with some candidate list or those ending
closest to T and L on their diagonal.)

(ii) No rectangle for a saved class intersects the F-shaped shaded region. (T < T'
unless T' = 0, and L < L' unless L' = 0.)

The following lemma shows that when the backward computation meets the
termination conditions, it fulfills the need of step 4.

LEMMA 6. Let P be an alignment that starts outside Box(T, L, C . B, C . R) and ends
in Box(C. T, C. L, C. B, C. R). 7hen Score(P) <_ W.

PROOF. Assume T # 0 and L r 0 (cases when T = 0 and/or L---0 can be
handled similarly). Let f be the first fragment of P that ends in Box(T, L,
C. B, C. R). There are two subcases.

Subcase 1: f starts outside Box(T, L, C. B, C. R). By condition (i), it is clear that
Last(f) must end in the shaded region, which implies Score(P) <_ W by condition
(ii).

Subcase 2: f starts in Box(T, L, C. B, C. R) (Figure 13). In this case, some align-
ment P' aligning an active fragment (possibly f itself), say f ' , exists such that f ' is

126 Kun-Mao Chao and W. Miller

the first fragment of P' that starts in Box(T, L, C . B, C . R), and Score(P) <_ Score(P').
We now show that Score(P') <_ W. If Last(f') ends outside Box(T', L', C. B, C. R),
it is easy to show that Score(P') < Score(Last(f')) <_ W. Otherwise, Last(f') must
end in Box(T', L', C.B, C.R), which means Extt(f') >_ T and Extl(f ') >_ L by
condition (i). Together with condition (ii), this guarantees that the effective region
of any fragment in P' that is above f ' does not intersect any row > Ext,(f') or
any column > Exfi(f'). By Lemmas 4 and 5, we have Score(P')<_ W. Thus
Score(P) < W. []

Figure 14 gives the backward computation for locating T and L. Assume that
L I S T stores n - m + 1 best tuples for Gin, and only fragments in G,+I are
considered. When locate stops, the two termination conditions are met. Further-
more, T is guaranteed to be strictly less than T' unless T' = 0, and similarly for
L. Section 5.4 explains how to update lists affected by adding row t and column I.

5.4. Interleaving Computations in the Row and Column Directions. Since earlier
discussions concerned top-to-bottom computations, the following description is
couched in those terms, though in actuality computation of T and L runs in the
reverse direction (Figure 14). Computation of T and L differs from the computa-
tion of the first and last fragments of an optimal local alignment in the following
respects.

1. Fragments contained in alignments reported earlier are not considered.
2. Fragments that cross column C. R or row C. B are ignored.
3. Columns and rows are added to the computed region (in an effort to satisfy

condition (i), above), so row and column lengths vary in an unpredictable
manner.

4. If extending T and/or L causes the region to intersect a rectangle associated
with another equivalence class, C', then T' and L' must be extended to guarantee
T' < C'. T and L' < C'. L (Figure 13).

Additions (1) and (2) do not warrant further discussion here, and the procedure
disjoint of Figure 14 covers condition (4). The only important complication caused
by property (3) is that candidate lists for rows might be affected while computing
in the column direction, and vice versa. For example, in Figure 15, adding more
columns to the region might cause q to right-dominate some interval of row t + 1
(the candidate lists for row t + 1 remain after treating row t), though q is currently
not represented as influencing row t + 1. Note that computation of RI(f) in the
column direction works like computation of LI(f) in the row direction.

5.4.1. Updating the Right-Influence Candidate List for Row t + l when Adding
Column I. Consider the effect upon the right-influence candidate list for row t + 1
from the fragments ending at column l before or at row t. There are two phases
in the updating procedure. The first phase deletes those ignorable fragments. Let
p and q be fragments ending at column l where q ends above p. Fragment q is
said to be ignorable if Decay(p: x, y) > Decay(q: x, y) for some (x, y) in their
common right-influence region (see Figure 15). This is because the right-influence

Linear-Space Algorithms that Build Local Alignments from Fragments 127

Procedure locate
Perform a backward computation in region Box(C. T, C. L, C. B, C. R).
t ~ - T ' ~ C . T
I~-L' , - C . L
T ~-max{0, min{T' - 1, min{Extt(f): f ends in Box(C. T, C. L, C. B, C. R)}}}
L ~-max{0, min{L' -- 1, min{Extt(f): f ends in Box(C. T, C. L, C. B, C. g)}}}
repeat

(w h i l e t > T o r l > L d o
{ w h i l e t > T d o

{ t * - t - 1
for each fragment f ending at row t within columns l and C. R do

{ Compute Score(f)
if Last(f) ends in Box(T, L', C. B, C. R) then

(T*- min{T, Extt(f) }
L ~- min{L, Exh(f)}

}
}

Update lists affected by adding row t

while l > L do
{ l ~ - l - 1

for each fragment f ending at column 1 within rows t and C. B do
{ Compute Score(f)

if Last(f) ends in Box(T', L', C. B, C. R) then
{ T ~- rain{T, Extt(f)}

L *- min(L, Exh(f)}
}

Update lists affected by adding column 1
}

}
} until disjoint(T, L, T', L', C. B, C. R) or T = L = 0

boolean disjoint(vat T, L, T', L '; b, r)
for each c in LISTdo

{ ifc. T<_bandc .L<_randc .B>_Tandc .R>_Land(c .T<T'nrc . T<L') then
{ T '*- min{T', c. T}

L' ~ min{L', c. L}
T-~ max{0, min{T, T' -- 1}}
L , - max{0, min{L, L' -- 1}}
for each active fragment f do

if Last(f) ends in Box(T', L', b, r) then
{ T*- rain{T, Extt(f) }

L ~- rain{L, Exh(f) }
}

return false

return true

Fig. 14. Algorithm for computing T and L.

128 Kun-Mao Chao and W. Miller

"�9 %% %,�9 �9 ~ 0 : ~ "~

~':..... *k---x
_:..='..~::.-�9 ",%%%%%%

"�9 ~'::.i "�9 x ,
"..... "..... ~. ::::::::::::::::::::::::::...

~.?:':-~....b~, ""-�9149 x ". %%,. ::.,...::.., ~'-...
:

"%%%%%% �9 ~ ".. ~ i ~ i ~

%�9

Fig. 15. The effect on Rlist when adding one more column.

region q after row t is contained in p's right-influence region and the inequality
holds for all entries in that region (analogous to Lemma 1). Let cl, c2 , Ch
be the list of the fragments ending at column l before row t + 1 in decreasing
row order. The following pseudocode removes the ignorable fragments from
the list.

u ~ - i
v ~ - - 2

while v < h do
{ if Decay(cu: x, y) >_ Decay(co: x, y) for some (x, y) in their common

right-influence region then
remove co from the list

else
u ~ v

v ~ v + l

After the removal of those ignorable fragments, the remaining fragments have the
property that if one fragment, say f , ends above another, say f ' in column I before
row t + 1, then Decay (f : x , y)> Decay(f ' :x ,y) for all (x,y) in their common
right-influence region.

Phase 2 is to determine which of the remaining fragments in phase 1 could
possibly right-dominate some region after row t. Let Rlist be the right-influence
candidate list, sorted by diagonals, for row t + 1 before adding column I. For each
of the remaining fragments in phase 1, say f , search Rlist with Diag(f) to find the
right-dominating fragment, say f ' . If Decay(f: x, y) > Decay(f: x, y) for some (x, y)
in their common right-influence region, f is added to Rlist. Adding f might cause
the deletion of some fragments in Rlist. Those fragments can be detected by

Linear-Space Algorithms that Build Local Alignments from Fragments 129

sweeping Rlist from Diag(f) to the right until reaching the end of Rlist, or some
fragment, say f", such that Decay(f: x, y) < Decay(f": x, y) for some (x, y) in their
common right-influence region.

The time spent in phase 1 is O(h), which can be charged as 0(1) per fragment.
For each remaining fragment, phase 2 performs one search operation, one possible
insertion, and some possible deletions caused by adding that fragment. Suppose
that the right-influence candidate list is implemented as a balanced search tree, so
that each of the search, insertion, and deletion operations can be done in time
O(log SR), where S R is the maximum size of the right-influence candidate list.
Charge the search and insertion cost to the fragment itself. However, the deletion
cost is charged to the deleted fragment. Since each fragment can be deleted from
the right-influence candidate list at most once, it follows that for each fragment
we charge O(log SR) cost in these two phases.

5.4.2. Updatin9 the Left-Influence Candidate Lists for Row t + 1 when Addin9
Column l. Let LC and LD be the left-influence candidate lists for row t + 1 before
adding column I. Let CUT be the intersection lists for the row direction before
adding column I. There are two phases in updating LC, LD, and the CUT lists
for the row direction. The first phase deletes those ignorable fragments. Let p and
q be fragments ending at column l where q ends above p. Fragment p is said to
be ignorable if Decay(q: x, y) >_ Decay(p: x, y) for some (x, y) in their common
left-influence region (see Figure 16). This is because the left-influence region of p
after row t is contained in q's left-influence region and the inequality holds for all
entries in that region (Lemma 1). The method for this phase is similar to phase 1
in Section 5.4.1. After the removal of those ignorable fragments, the remaining
fragments have the property that if one fragment, say f , ends above another, say
f ' in column 1 before row t + 1, then Decay(f: x, y) < Decay(f': x, y) for all (x, y)
in their common left-influence region.

i" , , i" . .
: "-, qi (il ! " ; , i N

I . . i +',."... i ' , i "., i " , i

i ~ ",, "q i I t ~'q N
i ,A i ",.i i ~".. i .'!., 17,
! i ! ".< ~ "...~ ~ , ,

Fig. 16. The effect on LC, LD, and CUT when adding a column.

130 Kan-Mao Chao and W. Miller

i ~176 o ~ , ~ 1 7 6

"*~ %%, ~176
b

t+l

Fig. 17. Determining the effect of a remaining fragment.

Phase 2 is to update LC, LD, and the CUT lists. Notice that diagonals may be
added to and/or deleted from LD. Also, some left-dominating fragments for
diagonals may be changed. However, at most one column is added to LC and
one intersection point is added to the CUT list.

Process those remaining fragments upward from row t. Let p be the frag-
ment at hand and let b be the intersection of row t + 1 and Diag(p) (see
Figure 17). First, search LC and LD with b to find its left-dominating frag-
ment, say s. If Decay(p: x ,y)> Decay(s: x,y) for some (x,y) in their common
left-influence region, addDiag(p) to LD if it is not already there. Moreover, the
left-dominating fragment for Diag(p) has to be determined. Let q be the nearest
fragment among the remaining fragments that end above p at column I. If
Decay(q: x, y) > Decay(s: x, y) for some (x, y) in their common left-influence region,
q is the left-dominating fragment for Diag(p). Otherwise, s is the one left-
dominating Diag(p).

After adding p, it may be necessary to remove some diagonals from LD and
change the left-dominating fragment for one diagonal. To do so, delete the LD's
diagonal boundaries leftward from Diag(p) - 1 until reaching a diagonal boundary
started by a fragment, say p', such that Decay(p': x, y) > Decay(p: x, y) for some
(x, y) in their common left-influence region, or passing diagonal I - t. In the former
case, change the left-dominating fragment for diagonal Diag(p') to p. In the
latter case, add column l left-dominated by p to LC. Furthermore, if the closest
boundary to the left of (t,/) is a diagonal, add an intersection point to the CUT
list.

Again, in phase 1 we charge O(1) cost for each fragment. For each remaining
fragment, the second phase does two search operations (one for LC and the other
for LD), at most three insertions (one to LC, another to LD, and the other to some
CUT list), and some possible deletions from LD caused by adding that fragment.
Suppose that LC, LD, and the CUT lists are implemented as balanced search trees,
so that each of the search, insertion, and deletion operations can be done in time
O(log SL), where S L is the maximum of the sizes of LC, LD, and the CUT lists.
Charge the search and insertion cost to the fragment itself. However, the deletion
cost will be charged to the fragment ending at the start of the deleted diagonal
boundary. Since each diagonal boundary can be deleted from LD at most
once, it follows that for each fragment we charge O(log SL) cost in these two
phases.

Linear-Space Algorithms that Build Local Alignments from Fragments 131

6. Discussion. We implemented the algorithm for n best local alignments as a C
program, called falign. Fragments are found using hashing (not suffix trees) and
candidate lists are implemented as skip lists (Pugh, 1990)�9

The tests performed onfalign included comparison of a 73,326-symbol sequence
containing the human fl-like globin gene cluster and an analogous 44,595-symbol

(a)

(h)

HS:
Human ~-l ike globin gene cluster:
4 3 2 1 e c y A,y Wq

tit It t [lUt tbl] l] tll tll
/ /
/ / /

0

,,4 v

m
(2)

; / /
�9 �9 . ,

s s �9

O

v

a ~

s ' .

/ /
s �9 r

Z
10000

�9 �9 ~

, / /
"i' /

/ / �9 �9
Xa s S �9

20000 30000 40000 50000

t l l I1 ~ { [- - -) '14594

"" / 30000
/

/ 2"
~.0000

s �9 s o

-10000

s " s ~

f / -30000

20000

�9 .

-10000
s " /

Fig. 18. Graphical representations of the positions of local alignments produced by two alignment pro-
grams. Regions discussed in the text are indicated by circles and an arrow�9 The alignments were drawn
by the laps program (Schwartz et al., 1991; Boguski et al., 1992). (a) Alignments found by sim, scoring
match = 1, mismatch = - 1, gap open = 4.0, gap extension = 0.4. An alignment is shown if and only
if its score exceeds z = 23, which was chosen so that 5% of random sequence-pairs of this length and
composition have a gap-free local alignment of score at least z; 190 local alignments met this criterion.
(b) Positions of alignments computed byfalign with k (the fragment size) set to 7. Matches were scored
1, replacements 0.1, gap open = 3.0, and gap extension = 0.2, and 200 alignments were computed�9 To
getfalion alignments to approximate sire alignments, it is necessary to use more lenient scores, since
falion has no mechanism to award matches that occur in runs of length less than k. For this plot, a
line segment was drawn from the start of each fragment except the last in an alignment until reaching
the row or column of the next fragment. Individual fragments are too small to be seen at this resolution.

44594

1
60000 73326

132 Kun-Mao Chao and W. Miller

sequence from the rabbit. As described by Hardison and Miller (1993), this
comparison is typical of those that we perform to study gene regulation and
molecular evolution. Figure 18(a) shows the positions of alignments computed by
our "highest-resolution" alignment program, called sire (Huang et al., 1990; Huang
and Miller, 1991). (Alignments are drawn from lower left to upper right so that
features displayed on the vertical axis follow biological conventions.) Sire computes
n best local alignments for traditional sequence comparison (not fragment-based).
Figure 18(b) shows the positions of alignments computed byfalign with fragment
length k = 7. Two regions of particular interest for us are indicated on Figures 18
and 19; they play prominent roles in regulating these genes. Table 1 reports
execution times for falion, with three values of k, and for sire.

We investigated how well falign would have worked as a substitute for sirn in
two of our recent projects. A study of regulation of the e-globin gene (Hardison
et al., 1993b) dealt exclusively with a region of length about 400 in each species,
which is indicated by the arrows in Figures 18 and 19. As shown in Figure 19,
falion detects this region even with k = 8. Hardison et al. (1993b) used sim
alignments to delimit the sequence regions that were then submitted to a program
that simultaneously aligned sequences from five species, and thefalign alignments
with k = 8 would have sufficed for that purpose. The region indicated by the larger
circle at the very bottom of Figure 18 is part of the Locus Control Region, or
LCR, which was studied in Hardison et al. (1993a). In the portion of the LCR
encompassed by the rabbit sequence used here, namely, the region denoted HS1
in Figures 18 and 19, falion output was inadequate with k = 7. However, with
k = 6, the alignments produced by falign agree very closely with sire alignments
in the two regions discussed here (Figure 19). Thus, with that fragment size, falion
(perhaps coupled with the program of Chao et al., 1993) would work about as
well as sire for studies of gene regulation in that region, while running 16 times
faster (Table 1).

We close this paper by mentioning a few open problems. First, the method
might be extended from affine gap penalties to concave or convex penalties.
More interesting to us would be the removal of the "log M" factor from the
F log N log M term of our time bound for linear-space alignment. The factor arises
in our analysis because in theory the two subproblems (Figure 10) could contain
almost all fragments of the parent problem. It might be shown that the log M factor

Human: Human:
HS1 e HS1 e

WI tb [I 11 [I

12001 22000

Human: Human:
HS1 e HS1 e

Fig. 19. Closeups offalign and sim alignments in the regularory region at the lower left of Figure 18.
The first three plots depictfalign alignments with k set at 8, 7, and 6, respectively, and the last shows
sire alignments. Alignment scores were as described in the legend of Figure 18.

Linear-Space Algorithms that Build Local Alignments from Fragments 133

Table 1. Statistics concerning falign and sire for computing 200 non-
intersecting alignments of the sequences shown in Figure 18.*

k Fragments Pass 1 Total

8 79,708 0.66 1.65
7 276,725 2.06 4.41
6 974,316 7.72 34.5

sim - - - - 569

* The third column gives execution times for the initial pass, as described in
Section 3. The fourth column gives the time to compute 200 best local alignments.
Times were measured in minutes on a Sun SPARCstation 2 workstation.

disappears in an expected-time analysis. Better yet, it might be possible, with an
algorithm modification, to prove such a worst-case bound. Finally, we would like
to see a tight time analysis for the n best local alignments problem.

Acknowledgment. We thank the referees for two of the most thorough and
insightful reviews that we have seen recently. Their comments resulted in numerous
improvements in the presentation.

References

Altschul, S., W. Gish, W. Miller, E. Myers, and D. Lipman (1990). A basic local alignment search tool.
.I. Mol Biol., 215, 403410.

Boguski, M., R. C. Hardison, S. Schwartz, and W. Miller (1992). Analysis of conserved domains and
sequence motifs in cellular regulatory proteins and locus control regions using new software tools
for multiple alignment and visualization. The New Biologist, 4, 247-260.

Chao, K.-M., W. R. Pearson, and W. Miller (1992). Aligning two sequences within a specified diagonal
band. CABIOS, 8, 481487.

Chao, K.-M, R. C. Hardison, and W. Miller (1993). Constrained sequence alignment~ Bull. Math. Biol.,
55, 503-524.

Doolittle, R. F., ed. (1990). Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequences. Methods in Enzymology, Vol. 183. Academic Press, New York.

Eppstein, D., Z. Galil, R. Giancarlo, and G. F. Italiano (1992a). Sparse dynamic programming. I:
Linear cost functions. J. Assoc. Comput. Mach., 39, 519-545.

Eppstein, D., Z. Galil, R. Giancarlo, and G. F. Italiano (1992b). Sparse dynamic programming. II:
Convex and concave cost functions. J. Assoc. Comput. Mach., 39, 546-567.

Feng, D. F., M. S. Johnson, and R. F. Doolittle (1985). Aligning amino acid sequences: comparison
commonly used methods. J. Mol. Evol., 21, 112-125.

Fitch, W. M., and T. F. Smith (1983). Optimal sequence alignments, Proc Nat. Acad Sci. USA, 80,
1382-1386.

Galil, Z., and R. Giancarlo (1989). Speeding up dynamic programming with applications to molecular
biology. Theor. Comput. ScL, 64, 107-118.

Galil, Z., and K. Park (1992). Dynamic programming with convexity, concavity, and sparsity. Theoret.
Comput. Sci., 92, 49-76.

Goad, W. B., and M. I. Kanehisa (1982). Pattern recognition in nucleic acid sequences. I: A general
method for finding local homologies and symmetries. Nucleic Acids Res., 10, 247-263.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. J. Mol. Biol., 162,
705-708.

134 Kun-Mao Chao and W. Miller

Gribskov, M., R. Luthy, and D. Eisenberg (1990). Profile analysis. In R. F. Doolittle (ed.), Molecular
Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Methods in Enzymology,
Vol. 183. Academic Press, New York, pp. 146-159.

Hardison, R. C., and W. Miller (1993). Use of long sequence alignments to study the evolution and
regulation of mammalian globin gene clusters. Mol. Biol. Evol., 10, 73-102.

Hardison, R. C., J. Xu, J. Jackson, J. Mansberger, O. Selifonova, B. Grotch, H. Petrykowska, J.
Biesecker, and W. Miller (1993a). Comparative analysis of the locus control region of the rabbit
fl-like globin gene cluster. HS3 increases transient expression of an embryonic e-globin gene.
Nucleic Acids Res., 21, 1265-1272.

Hardison, R. C., K.-M. Chao, M. Adamkiewicz, D. Price, J. Jackson, T. Zeigler, N. Stojanovic, and
W. Miller (1993b). Positive and negative regulatory elements of the rabbit e-globin gene revealed
by an improved multiple alignment program and functional analysis. DNA Sequence--J. DNA
Sequencing and Mapping, 4, 163-176.

Hirsehberg, D. S. (1975). A linear space algorithm for computing maximal common subsequences.
Comm. ACM, 28, 341-343.

Huang, X., and W. Miller (1991). A time-efficient, linear-space local similarity algorithm. Adv. in Appl.
Math., 12, 337-357.

Huang, X., R. C. Hardison, and W. Miller (1990). A space-efficient algorithm for local similarities.
CABIOS 6, 373-381.

Miller, W., and E. Myers (1988). Sequence comparison with concave weighting functions. Bull. Math.
Biol., .50, 97-120.

Myers, E., and X. Huang (1992). An O(N 2 log N) restriction map comparison and search algorithm.
Bull. Math. Biol., 54, 599-618.

Myers, E., and W. Miller (1988). Optimal alignments in linear space. CABIOS, 4, 11-17.
Needleman, S. B., and C. D. Wunsch (1970). A general method applicable to the search for similarities

in the amino acid sequences of two proteins. J. Mol. Biol., 48, 443-453.
Pascarella, S., and P. Argos (1992). Analysis of insertions/deletions in protein structures. J. Mol. Biol.,

224, 461-471.
Pearson, W. R. (1990). Rapid and sensitive synthesis comparison with FASTP and FASTA. In R. F.

Doolittle (ed.), Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences.
Methods in Enzymology, Vol. 183. Academic Press, New York, pp. 63-95.

Pearson, W. R., and D. Lipman (1988). Improved tool or biological sequence comparison. Proc. Nat.
Acad. Sci. USA, 85, 2444--2448.

Pugh, W. (1990). Slip lists: a probabilistic alternative to balanced trees. Comm. ACM., 33, 668-676.
Sankoff, D., and J. B. Kruskal (eds.) (1983). Time Warps, String Edits, andMacromolecules: the Theory

and Practice of Sequence Comparisons. Addison-Wesley, Reading, MA.
Schwartz, S., W. Miller, C.-M. Yang, and R. C. Hardison (1991). Software tools for analyzing pairwise

sequence alignments. Nucleic Acids Res., 19, 4663-4667.
Sellers, P. H. (1984). Pattern recognition in genetic sequences by mismatch density. Bull. Math. Biol.,

46, 501-514.
Smith, T. F., and M. S. Waterman (1981), Identification of common molecular sequences. J. Mol. Biol.,

147, 195-197.
Smith, T. F., M. S. Waterman, and W. M. Fitch (1981). Comparative biosequence metrics. J. Mol.

Evol., 18, 38-46.
Wagner, R. A., and M. J. Fischer (1974). The string-to-string correction problem. J. Assoc. Comput.

Mach. 21, 168-173.
Waterman, M. S. (1984). Efficient sequence alignment algorithms. J. Theoret. Biol., 108, 333-337.
Waterman, M. S. (1989). Sequence alignments. In M. S. Waterman, ed.,-Mathematical Methods for

DNA Sequences. CRC Press, Boca Raton, FL, pp. 53-92.
Waterman, M. S., and M. Eggert (1987). A new algorithm for best subsequence alignments with

application to tRNA-rRNA comparisons. J. Mol. Biol., 197, 723-728.
Wilbur, W., and D. Lipman (1983). Rapid similarity searches of nucleic acid and protein data banks.

Proc. Nat. Acad. Sci. USA, 80, 726-730.
Wilbur, W., and D. Lipman (1984). The context dependent comparison of biological sequences. SlAM

J. Appl. Math., 44, 557-567.

