
Pattern Identification in a Haplotype Block

Kun-Mao Chao1,2,3

1Graduate Institute of Biomedical Electronics and Bioinformatics
2Department of Computer Science and Information Engineering

3Graduate Institute of Networking and Multimedia
National Taiwan University, Taipei, Taiwan 106

Email: kmchao@csie.ntu.edu.tw

May 24, 2011

Abstract

A Single Nucleotide Polymorphism (SNP, pronounced snip) is a
single nucleotide variation in the genome that recurs in a significant
proportion of the population of a species. In recent years, the patterns
of Linkage Disequilibrium (LD) observed in the human population re-
veal a block-like structure. The entire chromosome can be partitioned
into high LD regions, referred to as haplotype blocks, interspersed
by low LD regions, referred to as recombination hotspots. Within a
haplotype block, there is little or no recombination and the SNPs are
highly correlated. Consequently, a small subset of SNPs, called tag
SNPs, is sufficient to distinguish the haplotype patterns of the block.
Using tag SNPs for association studies can greatly reduce the geno-
typing cost since it does not require genotyping all SNPs. We illus-
trate how to recast the tag SNP selection problem as the set-covering
problem and the integer-programming problem – two well-known op-
timization problems in computer science. Greedy algorithms and LP-
relaxation techniques are then employed to tackle such optimization
problems. We conclude the chapter by mentioning a few extensions.

Keywords: SNP, haplotype block, set cover, integer programming, greedy
algorithm, approximation.

1

1 Introduction

A DNA sequence is a string of the four nucleotide “letters” A (adenine), C
(cytosine), G (guanine), and T (thymine). The genetic variations in DNA se-
quences have a major impact on genetic diseases and phenotypic differences.
Among various genetic variations, the Single Nucleotide Polymorphism (SNP,
pronounced snip) is one of the most frequent forms and has fundamental im-
portance for disease association and drug design. A SNP is a single nucleotide
variation in the genome that recurs in a significant proportion of the popu-
lation of a species. Specifically, a single nucleotide mutation is called a SNP
if its minor allele frequency is no less than a given threshold, say 1%. For
example, a mutation in the genome in which 85% of the population have a G

and the remaining 15% have an A is a SNP. Since tri-allelic and tetra-allelic
SNPs are very rare, we often refer to a SNP as a bi-allelic marker: major al-
lele vs. minor allele. Millions of SNPs have been identified and made publicly
available.

In recent years, the patterns of Linkage Disequilibrium (LD) observed
in the human population reveal a block-like structure. LD refers to the
association that particular alleles at nearby sites are more likely to occur
together than would be predicted by chance. The entire chromosome can
be partitioned into high LD regions interspersed by low LD regions. The
high LD regions are usually called “haplotype blocks,” and the low LD ones
are referred to as “recombination hotspots.” Since there is little or no re-
combination within a haplotype block, these SNPs are highly correlated.
Consequently, a small subset of SNPs, called tag SNPs or haplotype tagging
SNPs, is sufficient to categorize the haplotype patterns of the block. It is
thus possible to identify genetic variation without genotyping every SNP in
a given haplotype block. This can greatly reduce the genotyping cost for
genome-wide association studies.

In this study we assume that the haplotype blocks have been delimited
in advance, and our objective is to find a minimum set of SNPs which can
distinguish all pairs of haplotype patterns in a given block. Figure 1 depicts
a haplotype block containing five SNPs and four haplotype patterns. To
determine which haplotype pattern category a sample belongs to, we may
genotype all five SNPs in this block. However, it works just as well if we only
genotype SNPs S1 and S4 since their combinations can distinguish all pairs
of haplotype patterns. For example, if both S1 and S4 are major alleles, the
sample is categorized as haplotype pattern P3.

2

P1 P3P2 P4

S4

S1

S2

S3

S5

Figure 1: A haplotype block containing five SNPs and four haplotype pat-
terns. In this figure, a black square stands for a major allele and a gray
square stands for a minor allele.

We show that the tag SNP selection problem is analogous to the mini-
mum test collection problem. We then illustrate how to recast the tag SNP
selection problem as the set-covering problem and solve it approximately
by a greedy algorithm. Furthermore, it can be formulated as an integer-
programming problem, and a simple rounding algorithm can be employed to
find its near-optimal solutions. We conclude this chapter by mentioning a
few extensions.

2 The Tag SNP Selection Problem

Assume that we are given a haplotype block containing n SNPs and h
haplotype patterns. Let S = {S1, S2, ..., Sn} denote the SNP set and let
P = {P1, P2, ..., Ph} denote the pattern set. A haplotype block is represented
by an n × h binary matrix M whose entries are either a black square or a
gray square, representing the major and minor alleles, respectively. Figure 1
depicts a 5× 4 haplotype block.

We say that SNP Si can distinguish the pattern pair Pj and Pk ifM [i, j] ̸=
M [i, k], where 1 ≤ i ≤ n and 1 ≤ j < k ≤ h. In other words, if one pattern
contains a major allele of SNP Si, and the other contains a minor allele of
SNP Si, then the two patterns can be distinguished by Si. For instance, in
Figure 1, SNP S1 can distinguish patterns P1 and P4 from P2 and P3 since P1

and P4 contain a minor allele of S1, and P2 and P3 contain a major allele of
S1. The goal of the tag SNP selection problem is to find a minimum number
of SNPs that can distinguish all possible pairwise combinations of patterns.
In Figure 2, S1 and S4 form a set of tag SNPs since they can distinguish all

3

P1 P3P2 P4

S4

S1

S2

S3

S5

P1 P3P2 P4

S4

S1

S2

S3

S5

(a) (b)

Figure 2: Selecting tag SNPs that can distinguish all pairs of haplotype
patterns. (a) SNPs S1 and S4 form a minimum set of tag SNPs. (b) SNPs
S1, S2, and S5 do not form a set of tag SNPs since they cannot distinguish
the pair P1 and P4.

pairs in P whereas S1, S2, and S5 do not form a set of tag SNPs since they
cannot distinguish the pair P1 and P4.

In fact, the tag SNP selection problem is analogous to the minimum
test collection problem, which arises naturally in fault diagnosis and pattern
identification. Given a collection C of subsets of a finite set A of “possible
diagnoses,” the minimum test collection problem is to ask for a subcollection
C ′ ⊆ C such that |C′| is minimized and, for each pair aj, ak ∈ A, there exists
some set (i.e., a test) in C ′ that contains exactly one of them. In other
words, such a test can distinguish the pair aj, ak. Take Figure 1 for example.
SNP S1 can distinguish patterns P1 and P4 from others, thus we include
{P1, P4} in C. Similarly, each of SNPs S2, S3, S4, and S5 can distinguish
a particular set of patterns from others. It follows that the instance of the
minimum test collection problem for Figure 1 is A = {P1, P2, P3, P4} and
C = {{P1, P4}, {P2}, {P3, P4}, {P2, P4}, {P3}}. Its minimum subcollection C ′
is {{P1, P4}, {P2, P4}} since |C′| = 2 is minimal and C ′ can distinguish all
pairs in A. The corresponding set of tag SNPs for C ′ is {S1, S4}.

Unfortunately, the minimum test collection problem has been proved to
be NP-hard, which is a technical term that stands for a class of intractable
problems for which no efficient algorithms have been found. Nevertheless,
we may employ some algorithmic strategies to tackle NP-hard problems by
finding near-optimal solutions; in practice, these solutions are often good
enough. In the next section, we show that the tag SNP selection problem
can be reformulated as the set-covering problem, which is well-studied in the

4

field of approximation algorithms. By this reformulation, a simple greedy
method for the set-covering problem can be employed for solving the tag
SNP selection problem. The algorithm may not always deliver an optimal
solution, but we will show that the ratio of its heuristic solution to an optimal
solution is bounded by a certain factor.

3 A Reduction to the Set-Covering Problem

We now recast the tag SNP selection problem as the set-covering problem.
Given a universal set U and a collection C of subsets of U , the set-covering
problem is to find a minimum-size subcollection of C that covers all elements
of U . It is an abstraction of many naturally arising combinatorial problems,
such as crew scheduling, committee forming, and service planning. For ex-
ample, a universal set U could represent a set of skills required to perform a
task. Each person in the candidate pool has certain skills in U . The objective
is to form a task force with as few people as possible so that all the required
skills are owned by at least one person in the task force. In other words, we
wish to recruit a minimum number of persons to cover all the requisite skills.

Recall that a haplotype block is represented by an n×h binary matrix M
whose entries are either a black square (representing a major allele) or a gray
square (representing a minor allele). To reformulate the tag SNP selection
problem as a set-covering problem, let U = {(j, k) | 1 ≤ j < k ≤ h} be the set
of all possible pairwise haplotype pattern indexes. Let C = {C1, C2, ..., Cn},
where Ci = {(j, k) | M [i, j] ̸= M [i, k] and 1 ≤ j < k ≤ h} stores the index
pairs of haplotype patterns that SNP Si ∈ S can distinguish. We show that a
subset of S forms a set of tag SNPs if and only if its corresponding subset of C
covers all the elements in U . Each element in U represents a pair of haplotype
patterns needed to be distinguished. If a subset of C covers all the elements
in U , then its corresponding SNP subset of S forms a set of tag SNPs since all
pairs of haplotype patterns can be distinguished. Conversely, if a subset of
S forms a set of tag SNPs, it can distinguish all pairs of haplotype patterns,
which yields that its corresponding subset of C covers all the elements in U .

Now let us consider the example given in Figure 1. We have four haplo-
type patterns, so the universal set U is {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
which contains all the elements to be covered. Since SNP S1 can distinguish
patterns P1 and P4 from P2 and P3, we set C1 to be {(1, 2), (1, 3), (2, 4), (3, 4)}
(see Figure 3). SNP S2 can distinguish pattern P2 from P1, P3, and P4, so

5

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

U

C

C1 C2 C4 C5C3

Figure 3: The elements covered by C1, which correspond to the pairs of
haplotype patterns distinguished by SNP S1.

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

C1

C2 C4

C5C3

Figure 4: The elements covered by each Ci in C.

we set C2 to be {(1, 2), (2, 3), (2, 4)}. Figure 4 depicts the pairs of haplotype
patterns distinguished by each SNP. As a consequence, the collection C of
subsets is {C1, C2, C3, C4, C5}, where

C1 = {(1, 2), (1, 3), (2, 4), (3, 4)},
C2 = {(1, 2), (2, 3), (2, 4)},
C3 = {(1, 3), (1, 4), (2, 3), (2, 4)},
C4 = {(1, 2), (1, 4), (2, 3), (3, 4)}, and
C5 = {(1, 3), (2, 3), (3, 4)}.

As shown in Figure 2(b), S1, S2 and S5 do not form a set of tag SNPs since
they cannot distinguish the pair P1 and P4. In the corresponding set-covering

6

instance, element (1, 4) is not covered by C1, C2, and C5 (see Figure 5).

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

U

C

C1 C2 C4 C5C3

Figure 5: An invalid set cover. Element (1, 4) is not covered by C1, C2, and
C5.

On the contrary, S1 and S4 form a set of tag SNPs since they can distin-
guish all pairs in P . In the corresponding set-covering instance, each element
is covered by at least one set in C (see Figure 6).

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

U

C

C1 C2 C4 C5C3

Figure 6: A valid set cover. All elements are covered by C1 and C4.

Now let us consider a greedy method for the set-covering problem. The
greedy algorithm iteratively picks the set that covers the most remaining
uncovered elements until all elements are covered. In the context of the tag
SNP selection problem, the algorithm iteratively chooses the SNP that distin-
guishes the most remaining undistinguished pairs until all pairs of haplotype
patterns are distinguished.

The Set-Cover-Greedy algorithm takes an input a universal set U and
a colletion C of subsets of U . Let R store the uncovered elements in U , which
is initially set to be U because all elements are uncovered at the beginning

7

of the procedure. C ′ stores the selected sets and is initialized as an empty
set. While R is not empty, we choose the set Ci ∈ C that can cover the most
elements in R. Ci would essentially cover the most uncovered elements in U .
Then we include Ci in C ′ and remove from R the elements that are covered
by it. Repeat this procedure until all elements are covered.

Algorithm: Set-Cover-Greedy(U , C)
1 R ← U
2 C ′ ← ϕ
3 while R ̸= ϕ do
4 Select a set Ci from C that maximizes |Ci ∩R|
5 C ′ ← C ′ ∪ {Ci}
6 R←R− Ci

7 endwhile
8 return C ′

The subcollection of sets, C ′, returned by the Set-Cover-Greedy al-
gorithm is valid as long as each element of U is covered by at least one set in
C. However, the size of C ′ may not always be minimal over all possible valid
set covers. For example, let U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and C = {C1, C2, C3},
where C1 = {2, 3, 4, 5, 6, 7}, C2 = {1, 2, 3, 4, 5}, and C3 = {5, 6, 7, 8, 9}. The
greedy algorithm will first pick C1 since it covers the most elements. After
this choice, it will also need to pick C3 followed by C2 to form a valid set
cover. The resulting C ′ is {C1, C2, C3}. But for this instance, the minimum
set cover is {C2, C3} since all the elements in U can be covered by C2 and C3

without including C1.
Although the Set-Cover-Greedy algorithm may not always deliver

the minimum set cover, its solution is in fact not too far away from an
optimal one. Assume that C∗ is an optimal set cover. Let |X| denote the
size (cardinality) of a given set X. We show that |C ′| can be bounded by
|C∗| times a reasonable factor. To calculate the bound, we distribute the
covering cost of a selected set to the elements it covers. For the example
given in the previous paragraph, the covering order of the elements by the
greedy algorithm might be [2, 3, 4, 5, 6, 7, 8, 9, 1] because each of the elements
in {2, 3, 4, 5, 6, 7} is covered for the first time by C1 in the first iteration, and
then {8, 9} by C3 in the second iteration, and {1} by C2 in the last iteration.
Since C1 covers six uncovered elements, each element in {2, 3, 4, 5, 6, 7} shares

8

a cost of 1/6. Similarly, each element in {8, 9} shares a cost of 1/2, and the
element in {1} shares a cost of 1. The covering cost for each element in order
is [1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 1/2, 1/2, 1]. Summing these costs would get 3,
which is the size of the set cover, C ′, delivered by the greedy algorithm.

Let [u1, u2, ..., u|U|] be the elements in the order in which they are covered
by the Set-Cover-Greedy algorithm. A key observation here is that the
cost shared by uk is at most |C∗|/(|U|−k+1) for 1 ≤ k ≤ |U|. In the iteration
when uk is covered, there are at least |U| − k + 1 elements still uncovered,
and for sure these uncovered elements can be covered by C∗, which gives
an average shared cost of |C∗|/(|U| − k + 1). Since the greedy algorithm
covers the most uncovered elements, its shared cost for each element in any
iteration is the minimum. It follows that the cost shared by uk is no more
than |C∗|/(|U|− k+1). In other words, the covering cost for [u1, u2, ..., u|U|]
is no more than [|C∗|/|U|, |C∗|/(|U|− 1), . . . , |C∗|], respectively. Since the size
of C ′ is the sum of the costs shared by uk for 1 ≤ k ≤ |U|, we have

|C′| ≤ (1 +
1

2
+ · · ·+ 1

|U|
)× |C∗|.

The series 1+ 1
2
+· · ·+ 1

|U| is called the harmonic series. It grows very slowly.

For instance, it sums approximately to 2.929 when |U| = 10, to 5.187 when
|U| = 100, to 7.485 when |U| = 1000, and to 14.393 when |U| = 1, 000, 000.
As a matter of fact, the harmonic series 1 + 1

2
+ · · · + 1

|U| is bounded by

1 +
∫ |U|
1

1
x
dx, which yields the bound loge |U| + 1. Furthermore, this factor

is only a worst-case analysis, and the real approximation ratio could be even
better.

4 A Reduction to the Integer-Programming

Problem

Linear programming is a general formulation of problems involving maxi-
mizing or minimizing a linear objective function subject to certain linear
constraints. The following is a simple example.

Minimize x1 + x2

9

x2

x11

1

2

2

3

3

3x1 + x2 = 3

x1 + 2x2 = 2

x1 + x2 = 0

feasible region

Figure 7: A feasible region defined by the four linear constraints x1+2x2 ≥ 2,
3x1 + x2 ≥ 3, x1 ≥ 0, and x2 ≥ 0.

Subject to x1 + 2x2 ≥ 2,

3x1 + x2 ≥ 3,

x1 ≥ 0,

x2 ≥ 0.

Here the linear objective function is x1 + x2, and there are four linear
constraints x1 + 2x2 ≥ 2, 3x1 + x2 ≥ 3, x1 ≥ 0, and x2 ≥ 0. By graphing
the constraints on the plane, we observe that the objective function x1 + x2

(lines with slope −1, see Figure 7) is minimized when x1 =
4
5
and x2 =

3
5
, a

corner point where the line x1 + 2x2 = 2 and the line 3x1 + x2 = 3 intersect.
If we impose the extra constraints that the values of the variables are

integers, then the problem is called integer linear programming or simply
integer programming. In the above example, if both x1 and x2 are required
to be integers, the problem becomes an integer-programming problem.

Now we show how to formulate the tag SNP selection problem as an
integer-programming problem. Recall that we are given a haplotype block
containing n SNPs and h haplotype patterns. Let us assign a variable xi for
each SNP Si ∈ S. Variable xi is set to be 1 if SNP Si is selected and set to
be 0 otherwise. Define D(Pj, Pk) as the set of SNPs which can distinguish
between patterns Pj and Pk, 1 ≤ j < k ≤ h. Each pair of patterns must be
distinguished by at least one SNP. Therefore, for each set D(Pj, Pk), at least
one SNP has to be selected to distinguish between patterns Pj and Pk. The

10

following integer program formulates the tag SNP selection problem whose
objective is to minimize the number of selected SNPs.

Minimize
n∑

i=1

xi

Subject to
∑

Si∈D(Pj ,Pk)

xi ≥ 1, for all 1 ≤ j < k ≤ h,

xi = 0 or 1, for all 1 ≤ i ≤ n.

In Figure 1, the pair P1 and P2 can be distinguished by SNPs S1, S2,
and S4. Thus, we have D(P1, P2) = {S1, S2, S4}, which yields the constraint
x1 + x2 + x4 ≥ 1. Similarly, D(P1, P3) = {S1, S3, S5}, D(P1, P4) = {S3, S4},
D(P2, P3) = {S2, S3, S4, S5}, D(P2, P4) = {S1, S2, S3}, and D(P3, P4) =
{S1, S4, S5}. By examining all possible pairs of haplotype patterns, we obtain
the following integer program for Figure 1.

Minimize x1 + x2 + x3 + x4 + x5

Subject to x1 + x2 + x4 ≥ 1,

x1 + x3 + x5 ≥ 1,

x3 + x4 ≥ 1,

x2 + x3 + x4 + x5 ≥ 1,

x1 + x2 + x3 ≥ 1,

x1 + x4 + x5 ≥ 1,

x1, x2, x3, x4, x5 = 0 or 1.

In the above integer program, if we set x1 and x4 to be 1 and the rest of
the xi’s to be 0, then all constraints are satisfied. Consequently, the set of
SNPs S1 and S4 can distinguish all pairs of haplotype patterns and its size
is minimized. However, if we set x1, x2, and x5 to be 1 and set x3 and x4 to
be 0, then the third constraint x3 + x4 ≥ 1 (for distinguishing P1 and P4) is
not satisfied. This implies that SNPs S1, S2, and S5 do not form a set of tag
SNPs since patterns P1 and P4 cannot be distinguished.

All variables xi’s are required to be 0 or 1. Such an integral constraint
makes the problem much harder to solve. In fact, both integer programming
and 0-1 integer programming have been shown to be NP-hard as has the

11

set-covering problem. It should be noted, however, that without the integral
constraint, this integer program becomes a linear program in which variables
can be fractional numbers, and fast algorithms, such as the simplex algo-
rithm by George Dantzig, are available for solving it. A general strategy for
solving the 0-1 integer-programming problems is thus to replace the integral
constraint that each variable must be 0 or 1 by a weaker constraint that
each variable be a number in the interval [0,1]. This process is referred to
as a linear-programming relaxation. After the relaxation, the solution to the
relaxed linear program may assign fractional values to the variables. For the
above integer program, if we set x1, x3, and x4 to be 0.5 and set x2 and x5 to
be 0, all the constraints can be satisfied except the last integral constraint.
Several techniques, such as randomized rounding, can cope with the linear-
programming relaxation to derive heuristic integral solutions for the original
unrelaxed integer program. A widely-used idea for rounding a fractional so-
lution is to use their fractions as probabilities for rounding. The heuristic
solutions may not be optimal, but often their quality can be assured by a
logarithmic approximation ratio.

5 Discussion

In this chapter, we reformulate the tag SNP selection problem as two well-
known optimization problems in computer science – the set-covering problem
and the integer-programming problem. Both problems are hard to solve, yet
efficient approximation algorithms can be used to find their near-optimal
solutions.

In reality, some tag SNPs may be missing, and we may fail to distinguish
two haplotype patterns due to the ambiguity caused by missing data. To
conquer this, either we genotype a larger set of tag SNPs for tolerating miss-
ing data or re-genotype some auxiliary tag SNPs to resolve the ambiguity on
the fly. We can handle these extensions by modifying the formulations.

It should be noted that selecting tag SNPs within a haplotype block is
only one of the models for selecting tag SNPs. An alternative is to identify a
minimum set of bins, each of which contains highly-correlated SNPs. Such an
approach identifies a minimum set of tag SNPs that can represent all other
SNPs which might be far apart, whereas the block-based methods considered
in this chapter are mainly focused on representing all other SNPs in a short
contiguous region. Furthermore, some methods may assume that the number

12

of tag SNPs is specified as an input parameter and identify tag SNPs which
can reconstruct the haplotype of an unknown sample with high accuracy.

Acknowledgements

This work was supported in part by NSC grants 97-2221-E-002-097-MY3 and
98-2221-E-002-081-MY3 from the National Science Council, Taiwan. The
author would like to thank Yao-Ting Huang and Tandy Warnow for making
several valuable comments that improved the presentation.

Bibliographic Notes and Further Reading

This chapter presents two algorithmic approaches for solving the tag SNP
selection problem. Readers can refer to algorithm textbooks for more algo-
rithmic details. For instance, the algorithm book (or “The White Book”) by
Cormen et al. [3] is a comprehensive reference of data structures and algo-
rithms with a solid mathematical and theoretical foundation. The minimum
test collection problem was shown to be NP-hard via a reduction from the
3-dimensional matching problem by Garey and Johnson [4].

An early review paper by Brookes [1] provides a good orientation for read-
ers who are not familiar with SNPs. Millions of SNPs have been identified,
and these data are now publicly available [5, 6, 8]. The Phase II HapMap
has characterized over 3.1 million human SNPs genotyped in 270 individuals
from four geographically diverse populations [6]. The dbSNP database is a
public-domain archive for a broad collection of SNPs [8].

In a large-scale study of human Chromosome 21, Patil et al. [7] developed
a greedy algorithm to partition the haplotypes into 4,135 blocks with 4,563
tag SNPs. It was later refined by Zhang et al. [9, 10] and Chang et al. [2].

References

[1] A.J. Brookes. The Essence of SNPs. Gene, 234: 177–86, 1999.

[2] C.-J. Chang, Y.-T. Huang, and K.-M. Chao. A Greedier Approach for
Finding Tag SNPs. Bioinformatics, 22: 685–691, 2006.

13

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 2009.

[4] M.R. Garey and D.S. Johnson. Computers and Intractability : A Guide
to the Theory of NP-completeness. W.H. Freeman and Co., 1979.

[5] D.A. Hinds, L.L. Stuve, G.B. Nilsen, E. Halperin, E. Eskin, D.G.
Ballinger, K.A. Frazer, and D.R. Cox. Whole-Genome Patterns of Com-
mon DNA Variation in Three Human Populations. Science, 307: 1072–
1079, 2005.

[6] The International HapMap Consortium. A Second Generation Human
Haplotype Map of over 3.1 Million SNPs. Nature, 449: 851–861, 2007.

[7] N. Patil, A.J. Berno, D.A. Hinds, W.A. Barrett, J.M. Doshi, C.R.
Hacker, C.R. Kautzer, D.H. Lee, C. Marjoribanks, D.P. McDonough,
B.T. Nguyen, M.C. Norris, J.B. Sheehan, N. Shen, D. Stern, R.P.
Stokowski, D.J. Thomas, M.O. Trulson, K.R. Vyas, K.A. Frazer, S.P.
Fodor, and D.R. Cox. Blocks of Limited Haplotype Diversity Revealed
by High-Resolution Scanning of Human Chromosome 21. Science, 294:
1719–1723, 2001.

[8] S.T. Sherry, M.H. Ward, M. Kholodov, J. Baker, L. Phan, E.M. Smigiel-
ski, and K. Sirotkin. dbSNP: the NCBI Database of Genetic Variation.
Nucleic Acids Res., 29: 308–11, 2001.

[9] K. Zhang, F. Sun, M.S. Waterman, and T. Chen. Haplotype Block Par-
tition with Limited Resources and Applications to Human Chromosome
21 Haplotype Data. Am. J. Hum. Genet., 73: 63–73, 2003.

[10] K. Zhang, Z.S. Qin, J.S. Liu, T. Chen, M.S. Waterman, and F. Sun.
Haplotype Block Partition and Tag SNP Selection Using Genotype Data
and Their Applications to Association Studies. Genome Research, 14:
908–916, 2004.

14

