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Introduction

Introduction

When Prof. Chao asked me to give a lecture here, I
wasn’t quite sure what I should talk about

I don’t have new and emerging topic to share with
you here.

So instead I plan to talk about a topic
“Mathematics and Computer Science”

But why this topic?

I will explain my motivation
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Introduction

Introduction (Cont’d)

Sometime ago, in a town-hall meeting with some
faculty members, one student asked why calculus is
a required course

I heard this from some faculty members as I wasn’t
there

Anyway I think it really happened

Here is the reaction from a professor:

He said “When we were students, we didn’t ask why
xxx is a required course. We just took it.”
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Introduction

Introduction (Cont’d)

Then I asked myself if it’s possible to give you some
reasons

That leads to this lecture
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Introduction

The Role of Mathematics in CS I

One reason why some students’ don’t think calculus
is important is that they think

CS = programming

But many (or most) CS areas are beyond
programming

One issue is that in our required courses, things like
calculus are seldom used

Students can see that discrete mathematics are
related to algorithms
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Introduction

The Role of Mathematics in CS II

But they find calculus/linear algebra/statistics
useful only after taking computer vision, signal
processing, machine learning and others

These are more advanced courses

Note that CS is a rapidly changing area

Before Internet, many CS companies just hired
programmers

For example, for Windows and Offices
developments, Microsoft hired many programmers
with an undergraduate degree
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Introduction

The Role of Mathematics in CS III

Then Google started hiring many with Ph.D. or
master degrees

In compared with traditional software development,
in the Internet era, analytics skills are more
important

This doesn’t mean every engineer in big Internet
companies has the job of developing analytics tools
(e.g., deep learning software)

Instead, most are users. They don’t need to know
all sophisticated details, but some basic
understanding is essential
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Introduction

The Role of Mathematics in CS IV

For example, as a user of deep learning, you
probably need to roughly know how it works

Otherwise you might now know what you are doing
and what kinds of results you will get

To have a basic understanding of these things, you
need some mathematics background

I am going to illustrate this point in the lecture
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Neural Networks

Neural Networks

To discuss why mathematics is important in some
CS areas, we can consider many examples

We decide to talk about neural networks as deep
learning is (incredibly) hot

There are many types of neural networks, but we
will consider the simplest one

It’s the fully connected network for multi-class
classification

So let’s check what data classification is
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Neural Networks

Data Classification

We extract information to build a model for future
prediction
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Neural Networks

Data Classification (Cont’d)

The main task is on finding a model

It’s also called supervised learning
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Neural Networks

Data Classification (Cont’d)

Given training data in different classes (labels
known)

Predict test data (labels unknown)

Classic example: medical diagnosis

Find a patient’s blood pressure, weight, etc.

After several years, know if he/she recovers

Build a machine learning model

New patient: find blood pressure, weight, etc

Prediction

Training and testing
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Neural Networks

Minimizing Training Errors

Basically a classification method starts with
minimizing the training errors

min
model

(training errors)

That is, all or most training data with labels should
be correctly classified by our model

A model can be a decision tree, a support vector
machine, a neural network, or others

There are various ways to introduce classification
methods. Here we consider probably the most
popular one
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Neural Networks

Minimizing Training Errors (Cont’d)

For simplicity, let’s consider the model to be a
vector w

That is, the decision function is

sgn(wTx)

For any data, x, the predicted label is{
1 if wTx ≥ 0

−1 otherwise
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Neural Networks

Minimizing Training Errors (Cont’d)

The two-dimensional situation
◦ ◦
◦
◦◦◦
◦
◦4

4
44
4
4

4

wTx = 0

This seems to be quite restricted, but practically x
is in a much higher dimensional space
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Neural Networks

Minimizing Training Errors (Cont’d)

To characterize the training error, we need a loss
function ξ(w; x, y) for each instance (x, y)

Ideally we should use 0–1 training loss:

ξ(w; x, y) =

{
1 if ywTx < 0,

0 otherwise
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Neural Networks

Minimizing Training Errors (Cont’d)

However, this function is discontinuous. The
optimization problem becomes difficult

−ywTx

ξ(w; x, y)

We need continuous approximations
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Neural Networks

Common Loss Functions

Hinge loss (l1 loss)

ξL1(w; x, y) ≡ max(0, 1− ywTx) (1)

Logistic loss

ξLR(w; x, y) ≡ log(1 + e−yw
Tx) (2)

Support vector machines (SVM): Eq. (1). Logistic
regression (LR): (2)

SVM and LR are two very fundamental classification
methods
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Neural Networks

Common Loss Functions (Cont’d)

−ywTx

ξ(w; x, y)

ξL1
ξLR

Logistic regression is very related to SVM

Their performance is usually similar
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Neural Networks

Common Loss Functions (Cont’d)

However, minimizing training losses may not give a
good model for future prediction

Overfitting occurs
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Neural Networks

Overfitting

See the illustration in the next slide

For classification,

You can easily achieve 100% training accuracy

This is useless

When training a data set, we should

Avoid underfitting: small training error

Avoid overfitting: small testing error
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Neural Networks

l and s: training; © and 4: testing
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Neural Networks

Regularization

To minimize the training error we manipulate the w
vector so that it fits the data

To avoid overfitting we need a way to make w’s
values less extreme.

One idea is to make w values closer to zero

We can add, for example,

wTw

2
or ‖w‖1

to the function that is minimized
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Neural Networks

General Form of Linear Classification

Training data {yi , xi}, xi ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), f (w) ≡ wTw

2
+ C

∑l

i=1
ξ(w; xi , yi)

wTw/2: regularization term

ξ(w; x, y): loss function

C : regularization parameter (chosen by users)
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Neural Networks

From Linear to Nonlinear

We now have linear classification because the
decision function

sgn(wTx)

is linear

We will see that neural networks (NN) is a nonlinear
classifier
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Neural Networks

Neural Networks

We will explain neural networks using the the same
framework for linear classification

Among various types of networks, we consider
fully-connected feed-forward networks for multi-class
classification

Chih-Jen Lin (National Taiwan Univ.) 28 / 88



Neural Networks

Neural Networks (Cont’d)

Our training set includes (yi , xi), i = 1, . . . , l .

xi ∈ Rn0 is the feature vector.

yi ∈ RK is the label vector.

K : # of classes

If xi is in class k , then

yi = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0]T ∈ RK

A neural network maps each feature vector to one
of the class labels by the connection of nodes.
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Neural Networks

Neural Networks (Cont’d)

Between two layers a weight matrix maps inputs
(the previous layer) to outputs (the next layer).

A0

B0

C0

A1

B1

A2

B2

C2
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Neural Networks

Neural Networks (Cont’d)

The weight matrix Wm at the mth layer is

Wm =

 wm
11 · · · wm

1nm
. . .

wm
nm−11

· · · wm
nm−1nm


nm−1×nm

,

nm : # neurons at layer m

nm−1 : # neurons at layer m − 1

L: number of layers

n0 = # of features, nL = # of classes

Let z
m be the input of mth layer. z

0 = x and z
L is

the output
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Neural Networks

Neural Networks (Cont’d)

From (m − 1)th layer to mth layer

sm = (Wm)Tzm−1,

zmj = σ(smj ), j = 1, . . . , nm,

σ(·) is the activation function. We collect all variables:

θ =

vec(W 1)
...

vec(W L)

 ∈ Rn n : total # variables

= n0n1 + · · ·+ nL−1nL
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Neural Networks

Neural Networks (Cont’d)

We solve the following optimization problem,

minθ f (θ),

where

f (θ) =
1

2
θTθ + C

∑l

i=1
ξ(zL,i(θ); xi , yi).

C : regularization parameter

z
L(θ) ∈ RnL: last-layer output vector of x.

ξ(zL; x, y): loss function. Example:

ξ(zL; x, y) = ||zL − y||2
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Neural Networks

Neural Networks (Cont’d)

That is, we hope

y =



0
...
0
1
0
...
0


z
L =



±0.00 · · ·
...

±0.00 · · ·
1.00 · · ·
±0.00 · · ·

...
±0.00 · · ·
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Neural Networks

Neural Networks (Cont’d)

The formulation is as before, but loss function is
more complicated

This NN method has been developed for decades.
So what’s new about deep learning?

Though there are some technical advances, one
major thing is that more layers often lead to better
results
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Neural Networks

Solving Optimization Problems I

How do you minimize

f (θ)?

Usually by a descent method

That is, we find a sequence

θ1,θ2,θ3, . . . ,

such that

f (θ1) > f (θ2) > f (θ3) > · · ·
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Neural Networks

Solving Optimization Problems II

Hopefully
lim
k→∞

f (θk)

exists and is the smallest function value

Now you see that calculus is used. You need to
know what limit is

But how to obtain

f (θk+1) < f (θk)

Usually by gradient descent
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Neural Networks

Gradient Descent I

Taylor expansion. If

f (θ) : R1 → R1

f (θk + d) = f (θk) + f ′(θk)d +
1

2
f ′′(θk)d2 + · · ·

This is the one-dimensional case

Now we have multiple variables

f (θ) : Rn → R1
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Neural Networks

Gradient Descent II

So we need multi-dimensional Taylor expansion

f (θk + d) = f (θk) +∇f (θk)Td + · · ·

We don’t get into details, but ∇f (θ) is called the
gradient

Gradient is the multi-dimensional first derivative

∇f (θ) =


∂f (θ)
∂θ1...
∂f (θ)
∂θn
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Neural Networks

Gradient Descent III

Let
f (θk + d) ≈ f (θk) +∇f (θk)Td

and we can find d by

min
d
∇f (θk)Td

But easily this value goes to −∞
If

∇f (θk)Td = −100,

then
100∇f (θk)Td = −10, 000
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Neural Networks

Gradient Descent IV

Thus we need to confine the search space of d

min
d
∇f (θk)Td

subject to ‖d‖ = 1
(3)

Here ‖d‖ means the length of d:√
d2
1 + · · ·+ d2

n

How to solve (3)?
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Neural Networks

Gradient Descent V

We will use Cauchy inequality

(a1b1 + · · ·+ anbn)2

≤(a21 + · · ·+ a2n)(b21 + · · ·+ b2n)

When

d =
−∇f (θk)

‖∇f (θk)‖
,

we have

‖∇f (θk)Td‖2 = ‖∇f (θk)‖2

=‖∇f (θk)‖2‖d‖2
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Neural Networks

Gradient Descent VI

Equality holds for Cauchy inequality

Thus the minimum of (3) is obtained

However, we may not have

f (θk + d) < f (θk)

Instead, we need to search for a step size
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Neural Networks

Gradient Descent VII
Specifically we try

α = 1,
1

2
,

1

4
,

1

8
, . . .

until

f (θk + αd) < f (θk) + σ∇f (θk)Td, (4)

where σ ∈ (0, 1/2).

The condition (4) is usually called sufficient
decrease condition in optimization

The algorithm becomes
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Neural Networks

Gradient Descent VIII

While θ isn’t optimal

d = −∇f (θ) and α← 1
while true

If (4) holds
break

else
α← α/2

θ ← θ + αd

The procedure to search for α is called line search
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Neural Networks

Gradient Descent IX

Instead of

α = 1,
1

2
,

1

4
,

1

8
, . . .

we can use

α = 1, β, β2, β3, . . . ,

where

0 < β < 1
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Neural Networks

Step-size Search I

Why

σ ∈ (0,
1

2
)?

The use of 1/2 is for convergence though we won’t
discuss details

Q: how do we know that the line search procedure is
guaranteed to stop?
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Neural Networks

Step-size Search II

In fact we can prove that if

∇f (θ)Td < 0 (5)

then there exists α∗ > 0 such that

f (θ + αd) < f (θ) + σ∇f (θ)T (αd),∀α ∈ (0, α∗)

Any d satisfying (5) is called a descent direction
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Neural Networks

Step-size Search III

Proof: assume the result is wrong. There exists a
sequence

{αt}

with
lim
t→∞

αt = 0 and αt > 0,∀t

such that

f (θ + αtd) ≥ f (θ) + σαt∇f (θ)Td,∀t
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Neural Networks

Step-size Search IV

Then

lim
αt→0

f (θ + αtd)− f (θ)

αt

=∇f (θ)Td ≥ σ∇f (θ)Td

However,

∇f (θ)Td < 0 and σ > 0

cause a contradiction
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Neural Networks

Step-size Search V
Q: how do you formally say

lim
α→0

f (θ + αd)− f (θ)

α
= ∇f (θ)Td?

Let
g(α) ≡ f (θ + αd)

We essentially calculate

lim
α→0

g(α)− g(0)

α
(6)

By the definition of the first derivative
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Neural Networks

Step-size Search VI
(6) is g ′(0)

But what are
g ′(α) and then g ′(0)?

We have

g ′(α)

=
∂f (θ + αd)

∂θ1

∂(θ1 + αd1)

∂α
+ · · ·+

∂f (θ + αd)

∂θn

∂(θn + αdn)

∂α

=
∂f (θ + αd)

∂θ1
d1 + · · ·+ ∂f (θ + αd)

∂θn
dn

=∇f (θ + αd)Td
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Neural Networks

Step-size Search VII

and
g ′(0) = ∇f (θ)Td

This is multi-variable chain rule

Statement of multi-variable chain rule: let

x = x(t) and y = y(t)

be differentiable at t and suppose

z = f (x , y)
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Neural Networks

Step-size Search VIII

is differentiable at (x , y). Then

z(t) = f (x(t), y(t))

is differentiable at t and

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
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Neural Networks

Gradient of NN I

Recall that NN optimization problem is

min
θ

f (θ), where

f (θ) =
1

2
θTθ + C

∑l

i=1
ξ(zL,i(θ); xi , yi).

How to calculate the gradient?

Now z
L is actually a function of all variables

z
L(θ)
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Neural Networks

Gradient of NN II

What we will calculate is

∇f (θ) = θ + C
l∑

i=1

∇θξ(zL,i(θ); xi , yi)

So what is

∇θξ(zL(θ); x, y)?
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Neural Networks

Gradient of NN III

We have

∂ξ(zL(θ); x, y)

∂θ1
=

∂ξ(zL(θ); x, y)

∂zL1

∂zL1 (θ)

∂θ1
+ · · ·+ ∂ξ(zL(θ); x, y)

∂zLnL

∂zLnL(θ)

∂θ1

∂ξ(zL(θ); x, y)

∂θ2
=

∂ξ(zL(θ); x, y)

∂zL1

∂zL1 (θ)

∂θ2
+ · · ·+ ∂ξ(zL(θ); x, y)

∂zLnL

∂zLnL(θ)

∂θn
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Neural Networks

Gradient of NN IV
Thus

∇θξ(zL(θ); x, y)

=


∂zL1 (θ)
∂θ1

· · · ∂zLnL(θ)

∂θ1
. . .

∂zL1 (θ)
∂θn

· · · ∂zLnL(θ)

∂θn




∂ξ
∂zL1...
∂ξ
∂zLnL


where 

∂zL1 (θ)
∂θ1

· · · ∂zLnL(θ)

∂θ1
. . .

∂zL1 (θ)
∂θn

· · · ∂zLnL(θ)

∂θn
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Neural Networks

Gradient of NN V

is called the Jacobian of zL(θ)

We see that chain rule is used again

There are a lot of more details about the gradient
evaluation but let’s stop here

The point is that techniques behind deep learning is
quite complicated and needs lots of mathematics

Next let’s switch to the issue of computation
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Matrix Computation in NN

Outline

1 Introduction

2 Neural Networks

3 Matrix Computation in NN

Chih-Jen Lin (National Taiwan Univ.) 60 / 88



Matrix Computation in NN

Matrix Multiplication I

We will show that to calculate

f (θ)

the main operation from one layer to next is a
matrix-matrix product

Recall from (m − 1)th layer to mth layer

sm = (Wm)Tzm−1,

zmj = σ(smj ), j = 1, . . . , nm,

where σ(·) is the activation function.
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Matrix Computation in NN

Matrix Multiplication II

Now each instance xi has z
m−1,i

So we have
z
m−1,1, . . . , zm−1,l

if there are l training instances

Thus[
sm,1 · · · sm,l

]
= W T

m

[
z
m−1,1 · · · z

m−1,l] ∈ Rnm×l ,

where
Wm ∈ Rnm−1×nm
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Matrix Computation in NN

Matrix Multiplication III
The main cost in calculating function value of NN is
the

matrix-matrix product

between every two layers

You know how to do matrix multiplication.

C = AB

is a mathematics operation with

Cij =
n∑

k=1

AikBkj
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Matrix Computation in NN

Matrix Multiplication IV

At the first glance, it has nothing to do with
computer science

But have you ever thought about a question: why
do people use GPU for deep learning?

An Internet search shows the following answer from
https://www.quora.com/

Why-are-GPUs-well-suited-to-deep-learning

“Deep learning involves huge amount of matrix
multiplications and other operations which can be
massively parallelized and thus sped up on GPU-s.”
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Matrix Computation in NN

Matrix Multiplication V

As a computer science student, we need to know a
bit more details

I am going to use CPU rather than GPU to give an
illustration – how computer architectures may affect
a mathematics operation
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Matrix Computation in NN

Optimized BLAS: an Example by Using
Block Algorithms I

Let’s test the matrix multiplication

A C program:

#define n 2000

double a[n][n], b[n][n], c[n][n];

int main()

{

int i, j, k;

for (i=0;i<n;i++)
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Matrix Computation in NN

Optimized BLAS: an Example by Using
Block Algorithms II

for (j=0;j<n;j++) {

a[i][j]=1; b[i][j]=1;

}

for (i=0;i<n;i++)

for (j=0;j<n;j++) {

c[i][j]=0;

for (k=0;k<n;k++)

c[i][j] += a[i][k]*b[k][j];

}
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Matrix Computation in NN

Optimized BLAS: an Example by Using
Block Algorithms III

}

A Matlab program

n = 2000;

A = randn(n,n); B = randn(n,n);

t = cputime; C = A*B; t = cputime -t

To remove the effect of multi-threading, use

matlab -singleCompThread

Timing is an issue

Elapsed time versus CPU time
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Matrix Computation in NN

Optimized BLAS: an Example by Using
Block Algorithms IV

cjlin@linux1:~$ matlab -singleCompThread

>> a = randn(3000,3000);tic; c = a*a; toc

Elapsed time is 4.520684 seconds.

>> a = randn(3000,3000);t=cputime; c = a*a;

t=cputime-t

t =

4.3500
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Matrix Computation in NN

Optimized BLAS: an Example by Using
Block Algorithms V

cjlin@linux1:~$ matlab

>> a = randn(3000,3000);tic; c = a*a; toc

Elapsed time is 1.180799 seconds.

>> a = randn(3000,3000);t=cputime; c = a*a;

t=cputime-t

t =

8.4400

Matlab is much faster than a code written by
ourselves. Why ?
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Matrix Computation in NN

Optimized BLAS: an Example by Using
Block Algorithms VI

Optimized BLAS: data locality is exploited

Use the highest level of memory as possible

Block algorithms: transferring sub-matrices between
different levels of storage

localize operations to achieve good performance
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Matrix Computation in NN

Memory Hierarchy I

CPU

↓
Registers

↓
Cache

↓
Main Memory

↓
Secondary storage (Disk)

Chih-Jen Lin (National Taiwan Univ.) 72 / 88



Matrix Computation in NN

Memory Hierarchy II

↑: increasing in speed

↓: increasing in capacity

When I studied computer architecture, I didn’t quite
understand that this setting is so useful

But from optimized BLAS I realize that it is
extremely powerful
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Matrix Computation in NN

Memory Management I

Page fault: operand not available in main memory

transported from secondary memory

(usually) overwrites page least recently used

I/O increases the total time

An example: C = AB + C , n = 1, 024

Assumption: a page 65,536 doubles = 64 columns

16 pages for each matrix

48 pages for three matrices
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Matrix Computation in NN

Memory Management II
Assumption: available memory 16 pages, matrices
access: column oriented

A =

[
1 2
3 4

]
column oriented: 1 3 2 4

row oriented: 1 2 3 4

access each row of A: 16 page faults, 1024/64 = 16

Assumption: each time a continuous segment of
data into one page

Approach 1: inner product
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Matrix Computation in NN

Memory Management III

for i =1:n

for j=1:n

for k=1:n

c(i,j) = a(i,k)*b(k,j)+c(i,j);

end

end

end

We use a matlab-like syntax here

At each (i,j): each row a(i, 1:n) causes 16 page
faults
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Memory Management IV

Total: 10242 × 16 page faults

at least 16 million page faults

Approach 2:

for j =1:n

for k=1:n

for i=1:n

c(i,j) = a(i,k)*b(k,j)+c(i,j);

end

end

end
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Memory Management V

For each j , access all columns of A

A needs 16 pages, but B and C take spaces as well

So A must be read for every j

For each j , 16 page faults for A

1024× 16 page faults

C ,B : 16 page faults

Approach 3: block algorithms (nb = 256)
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Memory Management VI

for j =1:nb:n

for k=1:nb:n

for jj=j:j+nb-1

for kk=k:k+nb-1

c(:,jj) = a(:,kk)*b(kk,jj)+c(:,jj);

end

end

end

end

In MATLAB, 1:256:1025 means 1, 257, 513, 769
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Memory Management VII

Note that we calculateA11 · · · A14
...

A41 · · · A44

B11 · · · B14
...

B41 · · · B44


=

[
A11B11 + · · ·+ A14B41 · · ·

... . . .

]
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Memory Management VIII

Each block: 256× 256

C11 = A11B11 + · · ·+ A14B41

C21 = A21B11 + · · ·+ A24B41

C31 = A31B11 + · · ·+ A34B41

C41 = A41B11 + · · ·+ A44B41

For each (j , k), Bk ,j is used to add A:,kBk,j to C:,j
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Memory Management IX

Example: when j = 1, k = 1

C11 ← C11 + A11B11

...

C41 ← C41 + A41B11

Use Approach 2 for A:,1B11

A:,1: 256 columns, 1024× 256/65536 = 4 pages.
A:,1, . . . ,A:,4 : 4× 4 = 16 page faults in calculating
C:,1

For A: 16× 4 page faults
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Memory Management X

B : 16 page faults, C : 16 page faults

Now let’s try to compare approaches 1 and 2

We see that approach is faster. Why?

C is row-oriented rather than column-oriented
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Optimized BLAS Implementations

OpenBLAS

http://www.openblas.net/

It is an optimized BLAS library based on
GotoBLAS2 (see the story in the next slide)

It’s a successful open-source project developed in
China

Intel MKL (Math Kernel Library)

https://software.intel.com/en-us/mkl
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Some Past Stories about Optimized BLAS

BLAS by Kazushige Goto

https://www.tacc.utexas.edu/

research-development/tacc-software/

gotoblas2

See the NY Times article: “Writing the fastest
code, by hand, for fun: a human computer keeps
speeding up chips”

http://www.nytimes.com/2005/11/28/

technology/28super.html?pagewanted=all
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Homework I

We would like to compare the time for multiplying
two 8, 000 by 8, 000 matrices

Directly using sources of blas

http://www.netlib.org/blas/

Intel MKL

OpenBLAS

You can use BLAS or CBLAS

Try to comment on the use of multi-core processors.
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Conclusions I

In general I don’t think we should have too many
required courses

However, some of them are very basic and are very
useful in advanced topics

Some students do not think basic mathematics
courses (e.g., calculus) are CS courses. But that
may not be the case

When I evaluate applications for graduate schools
by checking their transcripts, very often I first look
at the grade of calculus
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Conclusions II

I hope that through this lecture you have seen that
some mathematics techniques are very related to CS
topics
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