Some thoughts on Mathematics and Computer Science

Chih-Jen Lin

Outline

(2) Neural Networks

(3) Matrix Computation in NN

Introduction

- When Prof. Chao asked me to give a lecture here, I wasn't quite sure what I should talk about
- I don't have new and emerging topic to share with you here.
- So instead I plan to talk about a topic "Mathematics and Computer Science"
- But why this topic?
- I will explain my motivation

Introduction (Cont'd)

- Sometime ago, in a town-hall meeting with some faculty members, one student asked why calculus is a required course
- I heard this from some faculty members as I wasn't there
- Anyway I think it really happened
- Here is the reaction from a professor:

He said "When we were students, we didn't ask why xxx is a required course. We just took it."

Introduction (Cont'd)

- Then I asked myself if it's possible to give you some reasons
- That leads to this lecture

The Role of Mathematics in CS I

- One reason why some students' don't think calculus is important is that they think

$$
\mathrm{CS}=\text { programming }
$$

- But many (or most) CS areas are beyond programming
- One issue is that in our required courses, things like calculus are seldom used
- Students can see that discrete mathematics are related to algorithms

The Role of Mathematics in CS II

- But they find calculus/linear algebra/statistics useful only after taking computer vision, signal processing, machine learning and others
- These are more advanced courses
- Note that CS is a rapidly changing area
- Before Internet, many CS companies just hired programmers
- For example, for Windows and Offices developments, Microsoft hired many programmers with an undergraduate degree

The Role of Mathematics in CS III

- Then Google started hiring many with Ph.D. or master degrees
- In compared with traditional software development, in the Internet era, analytics skills are more important
- This doesn't mean every engineer in big Internet companies has the job of developing analytics tools (e.g., deep learning software)
- Instead, most are users. They don't need to know all sophisticated details, but some basic understanding is essential

The Role of Mathematics in CS IV

- For example, as a user of deep learning, you probably need to roughly know how it works
- Otherwise you might now know what you are doing and what kinds of results you will get
- To have a basic understanding of these things, you need some mathematics background
- I am going to illustrate this point in the lecture

Outline

(1) Introduction

(2) Neural Networks

(3) Matrix Computation in NN

Neural Networks

- To discuss why mathematics is important in some CS areas, we can consider many examples
- We decide to talk about neural networks as deep learning is (incredibly) hot
- There are many types of neural networks, but we will consider the simplest one
- It's the fully connected network for multi-class classification
- So let's check what data classification is

Data Classification

We extract information to build a model for future prediction

Data Classification (Cont'd)

- The main task is on finding a model
- It's also called supervised learning

Data Classification (Cont'd)

- Given training data in different classes (labels known)
Predict test data (labels unknown)
- Classic example: medical diagnosis

Find a patient's blood pressure, weight, etc.
After several years, know if he/she recovers
Build a machine learning model
New patient: find blood pressure, weight, etc Prediction

- Training and testing

Minimizing Training Errors

- Basically a classification method starts with minimizing the training errors

$$
\min _{\text {model }} \text { (training errors) }
$$

- That is, all or most training data with labels should be correctly classified by our model
- A model can be a decision tree, a support vector machine, a neural network, or others
- There are various ways to introduce classification methods. Here we consider probably the most popular one

Minimizing Training Errors (Cont'd)

- For simplicity, let's consider the model to be a vector w
- That is, the decision function is

$$
\operatorname{sgn}\left(\mathbf{w}^{T} \mathbf{x}\right)
$$

- For any data, \mathbf{x}, the predicted label is

$$
\begin{cases}1 & \text { if } \mathbf{w}^{T} \mathbf{x} \geq 0 \\ -1 & \text { otherwise }\end{cases}
$$

Minimizing Training Errors (Cont'd)

- The two-dimensional situation

- This seems to be quite restricted, but practically \mathbf{x} is in a much higher dimensional space

Minimizing Training Errors (Cont'd)

- To characterize the training error, we need a loss function $\xi(\mathbf{w} ; \mathbf{x}, y)$ for each instance (\mathbf{x}, y)
- Ideally we should use 0-1 training loss:

$$
\xi(\mathbf{w} ; \mathbf{x}, y)= \begin{cases}1 & \text { if } y \mathbf{w}^{T} \mathbf{x}<0 \\ 0 & \text { otherwise }\end{cases}
$$

Minimizing Training Errors (Cont'd)

- However, this function is discontinuous. The optimization problem becomes difficult

- We need continuous approximations

Common Loss Functions

- Hinge loss (I1 loss)

$$
\begin{equation*}
\xi_{\mathrm{L} 1}(\mathbf{w} ; \mathbf{x}, y) \equiv \max \left(0,1-y \mathbf{w}^{T} \mathbf{x}\right) \tag{1}
\end{equation*}
$$

- Logistic loss

$$
\begin{equation*}
\xi_{\mathrm{LR}}(\mathbf{w} ; \mathbf{x}, y) \equiv \log \left(1+e^{-y \mathbf{w}^{\top} \mathbf{x}}\right) \tag{2}
\end{equation*}
$$

- Support vector machines (SVM): Eq. (1). Logistic regression (LR): (2)
- SVM and LR are two very fundamental classification methods

Common Loss Functions (Cont'd)

- Logistic regression is very related to SVM
- Their performance is usually similar

Common Loss Functions (Cont'd)

- However, minimizing training losses may not give a good model for future prediction
- Overfitting occurs

Overfitting

- See the illustration in the next slide
- For classification,

You can easily achieve 100\% training accuracy

- This is useless
- When training a data set, we should

Avoid underfitting: small training error
Avoid overfitting: small testing error

\bigcirc and \triangle : training; \bigcirc and \triangle : testing

Regularization

- To minimize the training error we manipulate the \mathbf{w} vector so that it fits the data
- To avoid overfitting we need a way to make w's values less extreme.
- One idea is to make w values closer to zero
- We can add, for example,

$$
\frac{\mathbf{w}^{T} \mathbf{w}}{2} \text { or }\|\mathbf{w}\|_{1}
$$

to the function that is minimized

General Form of Linear Classification

- Training data $\left\{y_{i}, \mathbf{x}_{i}\right\}, \mathbf{x}_{i} \in R^{n}, i=1, \ldots, l, y_{i}= \pm 1$
- l: \# of data, n : \# of features

$$
\min _{\mathbf{w}} f(\mathbf{w}), \quad f(\mathbf{w}) \equiv \frac{\mathbf{w}^{\top} \mathbf{w}}{2}+C \sum_{i=1}^{\prime} \xi\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)
$$

- $\mathbf{w}^{\top} \mathbf{w} / 2$: regularization term
- $\xi(\mathbf{w} ; \mathbf{x}, y)$: loss function
- C: regularization parameter (chosen by users)

From Linear to Nonlinear

- We now have linear classification because the decision function

$$
\operatorname{sgn}\left(\mathbf{w}^{T} \mathbf{x}\right)
$$

is linear

- We will see that neural networks (NN) is a nonlinear classifier

Neural Networks

- We will explain neural networks using the the same framework for linear classification
- Among various types of networks, we consider fully-connected feed-forward networks for multi-class classification

Neural Networks (Cont'd)

- Our training set includes $\left(\mathbf{y}_{i}, \mathbf{x}_{i}\right), i=1, \ldots, l$.
- $\mathbf{x}_{i} \in R^{n_{0}}$ is the feature vector.
- $\mathbf{y}_{i} \in R^{K}$ is the label vector.
- K : \# of classes
- If \mathbf{x}_{i} is in class k, then

$$
\mathbf{y}_{i}=[\underbrace{0, \ldots, 0}_{k-1}, 1,0, \ldots, 0]^{T} \in R^{K}
$$

- A neural network maps each feature vector to one of the class labels by the connection of nodes.

Neural Networks (Cont'd)

- Between two layers a weight matrix maps inputs (the previous layer) to outputs (the next layer).

Neural Networks (Cont'd)

- The weight matrix W^{m} at the m th layer is

$$
W^{m}=\left[\begin{array}{ccc}
w_{11}^{m} & \cdots & w_{1 n_{m}}^{m} \\
& \ddots & \\
w_{n_{m-1} 1}^{m} & \cdots & w_{n_{m-1} n_{m}}^{m}
\end{array}\right]_{n_{m-1} \times n_{m}},
$$

- n_{m} : \# neurons at layer m
- n_{m-1} : \# neurons at layer $m-1$
- L : number of layers
- $n_{0}=\#$ of features, $n_{L}=\#$ of classes
- Let z^{m} be the input of m th layer. $z^{0}=\mathbf{x}$ and z^{L} is the output

Neural Networks (Cont'd)

From $(m-1)$ th layer to m th layer

$$
\begin{aligned}
\mathbf{s}^{m} & =\left(W^{m}\right)^{T} \boldsymbol{z}^{m-1} \\
z_{j}^{m} & =\sigma\left(s_{j}^{m}\right), j=1, \ldots, n_{m},
\end{aligned}
$$

$\sigma(\cdot)$ is the activation function. We collect all variables:

$$
\boldsymbol{\theta}=\left[\begin{array}{c}
\operatorname{vec}\left(W^{1}\right) \\
\vdots \\
\operatorname{vec}\left(W^{L}\right)
\end{array}\right] \in R^{n}
$$

n : total \# variables
$=n_{0} n_{1}+\cdots+n_{L-1} n_{L}$

Neural Networks (Cont'd)

- We solve the following optimization problem,

$$
\min _{\theta} \quad f(\boldsymbol{\theta}),
$$

where

$$
f(\boldsymbol{\theta})=\frac{1}{2} \boldsymbol{\theta}^{T} \boldsymbol{\theta}+C \sum_{i=1}^{l} \xi\left(z^{L, i}(\boldsymbol{\theta}) ; \mathbf{x}_{i}, \mathbf{y}_{i}\right)
$$

C : regularization parameter

- $z^{L}(\theta) \in R^{n_{L}}$: last-layer output vector of \mathbf{x}. $\xi\left(\mathbf{z}^{L} ; \mathbf{x}, \mathbf{y}\right)$: loss function. Example:

$$
\xi\left(z^{L} ; \mathbf{x}, \mathbf{y}\right)=\left\|z^{L}-\mathbf{y}\right\|^{2}
$$

Neural Networks (Cont'd)

- That is, we hope

$$
\mathbf{y}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad z^{L}=\left[\begin{array}{c}
\pm 0.00 \cdots \\
\vdots \\
\pm 0.00 \cdots \\
1.00 \cdots \\
\pm 0.00 \cdots \\
\vdots \\
\pm 0.00 \cdots
\end{array}\right]
$$

Neural Networks (Cont'd)

- The formulation is as before, but loss function is more complicated
- This NN method has been developed for decades. So what's new about deep learning?
- Though there are some technical advances, one major thing is that more layers often lead to better results

Solving Optimization Problems I

- How do you minimize

$$
f(\boldsymbol{\theta}) ?
$$

- Usually by a descent method
- That is, we find a sequence

$$
\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\theta}_{3}, \ldots,
$$

such that

$$
f\left(\boldsymbol{\theta}_{1}\right)>f\left(\boldsymbol{\theta}_{2}\right)>f\left(\boldsymbol{\theta}_{3}\right)>\ldots
$$

Solving Optimization Problems II

- Hopefully

$$
\lim _{k \rightarrow \infty} f\left(\boldsymbol{\theta}_{k}\right)
$$

exists and is the smallest function value

- Now you see that calculus is used. You need to know what limit is
- But how to obtain

$$
f\left(\boldsymbol{\theta}_{k+1}\right)<f\left(\boldsymbol{\theta}_{k}\right)
$$

- Usually by gradient descent

Gradient Descent I

- Taylor expansion. If

$$
\begin{gathered}
f(\theta): R^{1} \rightarrow R^{1} \\
f\left(\theta_{k}+d\right)=f\left(\theta_{k}\right)+f^{\prime}\left(\theta_{k}\right) d+\frac{1}{2} f^{\prime \prime}\left(\theta_{k}\right) d^{2}+\cdots
\end{gathered}
$$

- This is the one-dimensional case
- Now we have multiple variables

$$
f(\theta): R^{n} \rightarrow R^{1}
$$

Gradient Descent II

- So we need multi-dimensional Taylor expansion

$$
f\left(\boldsymbol{\theta}_{k}+\mathbf{d}\right)=f\left(\boldsymbol{\theta}_{k}\right)+\nabla f\left(\boldsymbol{\theta}_{k}\right)^{T} \mathbf{d}+\cdots
$$

- We don't get into details, but $\nabla f(\boldsymbol{\theta})$ is called the gradient
- Gradient is the multi-dimensional first derivative

$$
\nabla f(\boldsymbol{\theta})=\left[\begin{array}{c}
\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{1}} \\
\vdots \\
\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_{n}}
\end{array}\right]
$$

Gradient Descent III

- Let

$$
f\left(\boldsymbol{\theta}_{k}+\mathbf{d}\right) \approx f\left(\boldsymbol{\theta}_{k}\right)+\nabla f\left(\boldsymbol{\theta}_{k}\right)^{T} \mathbf{d}
$$

and we can find \mathbf{d} by

$$
\min _{\mathbf{d}} \nabla f\left(\boldsymbol{\theta}_{k}\right)^{T} \mathbf{d}
$$

- But easily this value goes to $-\infty$
- If

$$
\nabla f\left(\boldsymbol{\theta}_{k}\right)^{T} \mathbf{d}=-100
$$

then

$$
100 \nabla f\left(\boldsymbol{\theta}_{k}\right)^{T} \mathbf{d}=-10,000
$$

Gradient Descent IV

- Thus we need to confine the search space of \mathbf{d}

$$
\begin{aligned}
\min _{\mathbf{d}} & \nabla f\left(\boldsymbol{\theta}_{k}\right)^{T} \mathbf{d} \\
\text { subject to } & \|\mathbf{d}\|=1
\end{aligned}
$$

- Here $\|\mathbf{d}\|$ means the length of \mathbf{d} :

$$
\sqrt{d_{1}^{2}+\cdots+d_{n}^{2}}
$$

- How to solve (3)?

Gradient Descent V

- We will use Cauchy inequality

$$
\begin{aligned}
& \left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right)^{2} \\
\leq & \left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)
\end{aligned}
$$

- When

$$
\mathbf{d}=\frac{-\nabla f\left(\boldsymbol{\theta}_{k}\right)}{\left\|\nabla f\left(\boldsymbol{\theta}_{k}\right)\right\|},
$$

we have

$$
\begin{aligned}
& \left\|\nabla f\left(\boldsymbol{\theta}_{k}\right)^{\mathbf{d}}\right\|^{2}=\left\|\nabla f\left(\boldsymbol{\theta}_{k}\right)\right\|^{2} \\
= & \left\|\nabla f\left(\boldsymbol{\theta}_{k}\right)\right\|^{2}\|\mathbf{d}\|^{2}
\end{aligned}
$$

Gradient Descent VI

- Equality holds for Cauchy inequality
- Thus the minimum of (3) is obtained
- However, we may not have

$$
f\left(\boldsymbol{\theta}_{k}+\mathbf{d}\right)<f\left(\boldsymbol{\theta}_{k}\right)
$$

- Instead, we need to search for a step size

Gradient Descent VII

- Specifically we try

$$
\alpha=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots
$$

until

$$
\begin{equation*}
f\left(\boldsymbol{\theta}_{k}+\alpha \mathbf{d}\right)<f\left(\boldsymbol{\theta}_{k}\right)+\sigma \nabla f\left(\boldsymbol{\theta}_{k}\right)^{T} \mathbf{d} \tag{4}
\end{equation*}
$$

where $\sigma \in(0,1 / 2)$.

- The condition (4) is usually called sufficient decrease condition in optimization
- The algorithm becomes

Gradient Descent VIII

While $\boldsymbol{\theta}$ isn't optimal

- $\mathbf{d}=-\nabla f(\boldsymbol{\theta})$ and $\alpha \leftarrow 1$
- while true

If (4) holds break else

$$
\alpha \leftarrow \alpha / 2
$$

- $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha \mathbf{d}$
- The procedure to search for α is called line search

Gradient Descent IX

- Instead of

$$
\alpha=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots
$$

we can use

$$
\alpha=1, \beta, \beta^{2}, \beta^{3}, \ldots,
$$

where

$$
0<\beta<1
$$

Step-size Search I

- Why

$$
\sigma \in\left(0, \frac{1}{2}\right) ?
$$

The use of $1 / 2$ is for convergence though we won't discuss details

- Q: how do we know that the line search procedure is guaranteed to stop?

Step-size Search II

- In fact we can prove that if

$$
\begin{equation*}
\nabla f(\boldsymbol{\theta})^{T} \mathbf{d}<0 \tag{5}
\end{equation*}
$$

then there exists $\alpha^{*}>0$ such that

$$
f(\boldsymbol{\theta}+\alpha \mathbf{d})<f(\boldsymbol{\theta})+\sigma \nabla f(\boldsymbol{\theta})^{T}(\alpha \mathbf{d}), \forall \alpha \in\left(0, \alpha^{*}\right)
$$

- Any d satisfying (5) is called a descent direction

Step-size Search III

- Proof: assume the result is wrong. There exists a sequence

$$
\left\{\alpha_{t}\right\}
$$

with

$$
\lim _{t \rightarrow \infty} \alpha_{t}=0 \text { and } \alpha_{t}>0, \forall t
$$

such that

$$
f\left(\boldsymbol{\theta}+\alpha_{t} \mathbf{d}\right) \geq f(\boldsymbol{\theta})+\sigma \alpha_{t} \nabla f(\boldsymbol{\theta})^{T} \mathbf{d}, \forall t
$$

Step-size Search IV

- Then

$$
\begin{aligned}
& \lim _{\alpha_{t} \rightarrow 0} \frac{f\left(\boldsymbol{\theta}+\alpha_{t} \mathbf{d}\right)-f(\boldsymbol{\theta})}{\alpha_{t}} \\
= & \nabla f(\boldsymbol{\theta})^{T} \mathbf{d} \geq \sigma \nabla f(\boldsymbol{\theta})^{T} \mathbf{d}
\end{aligned}
$$

However,

$$
\nabla f(\boldsymbol{\theta})^{T} \mathbf{d}<0 \text { and } \sigma>0
$$

cause a contradiction

Step-size Search V

- Q: how do you formally say

$$
\lim _{\alpha \rightarrow 0} \frac{f(\boldsymbol{\theta}+\alpha \mathbf{d})-f(\boldsymbol{\theta})}{\alpha}=\nabla f(\boldsymbol{\theta})^{T} \mathbf{d} ?
$$

- Let

$$
g(\alpha) \equiv f(\boldsymbol{\theta}+\alpha \mathbf{d})
$$

- We essentially calculate

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{g(\alpha)-g(0)}{\alpha} \tag{6}
\end{equation*}
$$

- By the definition of the first derivative

Step-size Search VI

(6) is $g^{\prime}(0)$

- But what are

$$
g^{\prime}(\alpha) \text { and then } g^{\prime}(0) ?
$$

- We have

$$
\begin{aligned}
& g^{\prime}(\alpha) \\
= & \frac{\partial f(\boldsymbol{\theta}+\alpha \mathbf{d})}{\partial \theta_{1}} \frac{\partial\left(\theta_{1}+\alpha d_{1}\right)}{\partial \alpha}+\cdots+ \\
& \frac{\partial f(\boldsymbol{\theta}+\alpha \mathbf{d})}{\partial \theta_{n}} \frac{\partial\left(\theta_{n}+\alpha d_{n}\right)}{\partial \alpha} \\
= & \frac{\partial f(\boldsymbol{\theta}+\alpha \mathbf{d})}{\partial \theta_{1}} d_{1}+\cdots+\frac{\partial f(\boldsymbol{\theta}+\alpha \mathbf{d})}{\partial \theta_{n}} d_{n} \\
= & \nabla f(\boldsymbol{\theta}+\alpha \mathbf{d})^{T} \mathbf{d}
\end{aligned}
$$

Step-size Search VII

and

$$
g^{\prime}(0)=\nabla f(\boldsymbol{\theta})^{T} \mathbf{d}
$$

This is multi-variable chain rule

- Statement of multi-variable chain rule: let

$$
x=x(t) \text { and } y=y(t)
$$

be differentiable at t and suppose

$$
z=f(x, y)
$$

Step-size Search VIII

is differentiable at (x, y). Then

$$
z(t)=f(x(t), y(t))
$$

is differentiable at t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Gradient of NN I

- Recall that NN optimization problem is
$\min _{\boldsymbol{\theta}} f(\boldsymbol{\theta})$, where

$$
f(\boldsymbol{\theta})=\frac{1}{2} \boldsymbol{\theta}^{T} \boldsymbol{\theta}+C \sum_{i=1}^{l} \xi\left(\boldsymbol{z}^{L, i}(\boldsymbol{\theta}) ; \mathbf{x}_{i}, \mathbf{y}_{i}\right) .
$$

- How to calculate the gradient?
- Now z^{L} is actually a function of all variables

$$
z^{L}(\theta)
$$

Gradient of NN II

- What we will calculate is

$$
\nabla f(\boldsymbol{\theta})=\theta+C \sum_{i=1}^{\prime} \nabla_{\boldsymbol{\theta}} \xi\left(\boldsymbol{z}^{L, i}(\boldsymbol{\theta}) ; \mathbf{x}_{i}, \mathbf{y}_{i}\right)
$$

- So what is

$$
\nabla_{\boldsymbol{\theta}} \xi\left(\boldsymbol{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right) ?
$$

Gradient of NN III

- We have

$$
\begin{aligned}
& \frac{\partial \xi\left(\boldsymbol{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right)}{\partial \theta_{1}}= \\
& \frac{\partial \xi\left(\mathbf{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right)}{\partial z_{1}^{L}} \frac{\partial z_{1}^{L}(\boldsymbol{\theta})}{\partial \theta_{1}}+\cdots+\frac{\partial \xi\left(\boldsymbol{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right)}{\partial z_{n_{L}}^{L}} \frac{\partial z_{n_{L}}^{L}(\boldsymbol{\theta})}{\partial \theta_{1}} \\
& \frac{\partial \xi\left(\boldsymbol{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right)}{\partial \theta_{2}}= \\
& \frac{\partial \xi\left(\boldsymbol{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right)}{\partial z_{1}^{L}} \frac{\partial z_{1}^{L}(\boldsymbol{\theta})}{\partial \theta_{2}}+\cdots+\frac{\partial \xi\left(\boldsymbol{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right)}{\partial z_{n_{L}}^{L}} \frac{\partial z_{n_{L}}^{L}(\boldsymbol{\theta})}{\partial \theta_{n}}
\end{aligned}
$$

Gradient of NN IV

- Thus

$$
\begin{aligned}
& \nabla_{\boldsymbol{\theta}} \xi\left(\boldsymbol{z}^{L}(\boldsymbol{\theta}) ; \mathbf{x}, \mathbf{y}\right) \\
= & {\left[\begin{array}{ccc}
\frac{\partial z_{1}^{L}(\theta)}{\partial \theta_{1}} & \cdots & \frac{\partial z_{n_{L}}^{L}(\theta)}{\partial \theta_{1}} \\
& \ddots & \\
\frac{\partial z_{1}^{L}(\theta)}{\partial \theta_{n}} & \cdots & \frac{\partial z_{n_{L}}^{L}(\theta)}{\partial \theta_{n}}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial \xi}{\partial z_{1}^{L}} \\
\vdots \\
\frac{\partial \xi}{\partial z_{n_{L}}^{L}}
\end{array}\right] }
\end{aligned}
$$

where

$$
\left[\begin{array}{ccc}
\frac{\partial z_{1}^{L}(\boldsymbol{\theta})}{\partial \theta_{1}} & \cdots & \frac{\partial z_{L_{L}}^{L}(\theta)}{\partial \theta_{1}} \\
& \ddots & \\
\frac{\partial z_{1}^{L}(\boldsymbol{\theta})}{\partial \theta_{n}} & \cdots & \frac{\partial z_{n_{L}}^{L}(\theta)}{\partial \theta_{n_{\square}}}
\end{array}\right]
$$

Gradient of NN V

is called the Jacobian of $\boldsymbol{z}^{L}(\boldsymbol{\theta})$

- We see that chain rule is used again
- There are a lot of more details about the gradient evaluation but let's stop here
- The point is that techniques behind deep learning is quite complicated and needs lots of mathematics
- Next let's switch to the issue of computation

Outline

(1) Introduction

(2) Neural Networks

(3) Matrix Computation in NN

Matrix Multiplication

- We will show that to calculate

$$
f(\boldsymbol{\theta})
$$

the main operation from one layer to next is a matrix-matrix product

- Recall from $(m-1)$ th layer to m th layer

$$
\begin{aligned}
& \mathbf{s}^{m}=\left(W^{m}\right)^{T} z^{m-1}, \\
& z_{j}^{m}=\sigma\left(s_{j}^{m}\right), j=1, \ldots, n_{m},
\end{aligned}
$$

where $\sigma(\cdot)$ is the activation function.

Matrix Multiplication II

- Now each instance \mathbf{x}_{i} has $z^{m-1, i}$
- So we have

$$
z^{m-1,1}, \ldots, z^{m-1, l}
$$

if there are / training instances

- Thus

$$
\left[\begin{array}{lll}
\mathbf{s}^{m, 1} & \cdots & \mathbf{s}^{m, l}
\end{array}\right]=W_{m}^{T}\left[\begin{array}{lll}
z^{m-1,1} & \cdots & z^{m-1, l}
\end{array}\right] \in R^{n_{m} \times l}
$$

where

$$
W_{m} \in R^{n_{m-1} \times n_{m}}
$$

Matrix Multiplication III

- The main cost in calculating function value of NN is the

matrix-matrix product

 between every two layers- You know how to do matrix multiplication.

$$
C=A B
$$

is a mathematics operation with

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

Matrix Multiplication IV

- At the first glance, it has nothing to do with computer science
- But have you ever thought about a question: why do people use GPU for deep learning?
- An Internet search shows the following answer from https://www.quora.com/
Why-are-GPUs-well-suited-to-deep-learning
- "Deep learning involves huge amount of matrix multiplications and other operations which can be massively parallelized and thus sped up on GPU-s."

Matrix Multiplication V

- As a computer science student, we need to know a bit more details
- I am going to use CPU rather than GPU to give an illustration - how computer architectures may affect a mathematics operation

Optimized BLAS: an Example by Using Block Algorithms I

- Let's test the matrix multiplication
- A C program:
\#define n 2000
double $a[n][n], b[n][n], c[n][n]$;
int main()
\{
int i, j, k;
for ($i=0 ; i<n ; i++$)

Optimized BLAS: an Example by Using
 Block Algorithms II

for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) \{ $a[i][j]=1 ; b[i][j]=1$;
\}
for (i=0;i<n;i++)
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) \{
c[i] [j]=0;
for ($k=0 ; k<n ; k++$)
c[i] [j] += a[i] [k] $\mathrm{bb}[\mathrm{k}][j]$;
\}

Optimized BLAS: an Example by Using Block Algorithms III

\}

- A Matlab program

$$
n=2000 ;
$$

$$
A=\operatorname{randn}(n, n) ; B=\operatorname{randn}(n, n) ;
$$

$$
\mathrm{t}=\text { cputime } ; \mathrm{C}=\mathrm{A} * \mathrm{~B} ; \mathrm{t}=\text { cputime }-\mathrm{t}
$$

- To remove the effect of multi-threading, use matlab -singleCompThread
- Timing is an issue

Elapsed time versus CPU time

Optimized BLAS: an Example by Using Block Algorithms IV

cjlin@linux1:~\$ matlab -singleCompThread
>> a = randn $(3000,3000) ;$ tic; $c=a * a ; ~ t o c$ Elapsed time is 4.520684 seconds.
>> a = randn(3000,3000) ; t=cputime; c = a*a;
$\mathrm{t}=$ cputime-t
$\mathrm{t}=$

$$
4.3500
$$

Optimized BLAS: an Example by Using
 Block Algorithms V

cjlin@linux1: ~\$ matlab
>> $\mathrm{a}=$ randn $(3000,3000)$;tic; $c=a * a ;$ toc Elapsed time is 1.180799 seconds.
>> $a=r a n d n(3000,3000) ; t=c p u t i m e ; ~ c=a * a ;$
t=cputime-t
$\mathrm{t}=$

$$
8.4400
$$

- Matlab is much faster than a code written by ourselves. Why ?

Optimized BLAS: an Example by Using Block Algorithms VI

- Optimized BLAS: data locality is exploited
- Use the highest level of memory as possible
- Block algorithms: transferring sub-matrices between different levels of storage
localize operations to achieve good performance

Memory Hierarchy I

CPU \downarrow

Registers

Cache
\downarrow
Main Memory
\downarrow
Secondary storage (Disk)

Memory Hierarchy II

- \uparrow : increasing in speed
- \downarrow : increasing in capacity
- When I studied computer architecture, I didn't quite understand that this setting is so useful
- But from optimized BLAS I realize that it is extremely powerful

Memory Management I

- Page fault: operand not available in main memory transported from secondary memory
(usually) overwrites page least recently used
- I/O increases the total time
- An example: $C=A B+C, n=1,024$
- Assumption: a page 65,536 doubles $=64$ columns
- 16 pages for each matrix

48 pages for three matrices

Memory Management II

- Assumption: available memory 16 pages, matrices access: column oriented

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

column oriented: 1324
row oriented: 1234

- access each row of A : 16 page faults, $1024 / 64=16$
- Assumption: each time a continuous segment of data into one page
- Approach 1: inner product

Memory Management III

```
for \(i=1: n\)
        for \(j=1: n\)
        for \(k=1: n\)
        \(c(i, j)=a(i, k) * b(k, j)+c(i, j) ;\)
        end
        end
end
```

We use a matlab-like syntax here

- At each (i, j): each row a($\mathrm{i}, 1: \mathrm{n}$) causes 16 page faults

Memory Management IV

Total: $1024^{2} \times 16$ page faults

- at least 16 million page faults
- Approach 2:
for $\mathrm{j}=1$: n
for $k=1$: n
for $i=1: n$
$c(i, j)=a(i, k) * b(k, j)+c(i, j) ;$
end
end
end

Memory Management V

- For each j, access all columns of A
A needs 16 pages, but B and C take spaces as well
So A must be read for every j
- For each $j, 16$ page faults for A
1024×16 page faults
$C, B: 16$ page faults
- Approach 3: block algorithms $(\mathrm{nb}=256)$

Memory Management VI

for $\mathrm{j}=1: \mathrm{nb}: \mathrm{n}$
for $k=1: n b: n$
for $j j=j: j+n b-1$
for $k k=k: k+n b-1$
$c(:, j j)=a(:, k k) * b(k k, j j)+c(:, j j) ;$ end
end
end
end

In MATLAB, 1:256:1025 means $1,257,513,769$

Memory Management VII

- Note that we calculate

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
A_{11} & \cdots & A_{14} \\
& \vdots & \\
A_{41} & \cdots & A_{44}
\end{array}\right]\left[\begin{array}{ccc}
B_{11} & \cdots & B_{14} \\
& \vdots & \\
B_{41} & \cdots & B_{44}
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
A_{11} B_{11}+\cdots+A_{14} B_{41} & \cdots \\
\vdots & & \ddots
\end{array}\right]
\end{aligned}
$$

Memory Management VIII

- Each block: 256×256

$$
\begin{aligned}
& C_{11}=A_{11} B_{11}+\cdots+A_{14} B_{41} \\
& C_{21}=A_{21} B_{11}+\cdots+A_{24} B_{41} \\
& C_{31}=A_{31} B_{11}+\cdots+A_{34} B_{41} \\
& C_{41}=A_{41} B_{11}+\cdots+A_{44} B_{41}
\end{aligned}
$$

- For each $(j, k), B_{k, j}$ is used to add $A_{i, k} B_{k, j}$ to $C_{:, j}$

Memory Management IX

- Example: when $j=1, k=1$

$$
\begin{aligned}
& C_{11} \leftarrow C_{11}+A_{11} B_{11} \\
& \vdots \\
& C_{41} \leftarrow C_{41}+A_{41} B_{11}
\end{aligned}
$$

- Use Approach 2 for $A_{;, 1} B_{11}$
- $A_{:, 1}: 256$ columns, $1024 \times 256 / 65536=4$ pages.
$A_{:, 1}, \ldots, A_{:, 4}: 4 \times 4=16$ page faults in calculating $C_{:, 1}$
- For A : 16×4 page faults

Memory Management X

- B: 16 page faults, $C: 16$ page faults
- Now let's try to compare approaches 1 and 2
- We see that approach is faster. Why?
- C is row-oriented rather than column-oriented

Optimized BLAS Implementations

- OpenBLAS
http://www.openblas.net/
It is an optimized BLAS library based on
GotoBLAS2 (see the story in the next slide)
It's a successful open-source project developed in
China
- Intel MKL (Math Kernel Library)
https://software.intel.com/en-us/mkl

Some Past Stories about Optimized BLAS

- BLAS by Kazushige Goto https://www.tacc.utexas.edu/ research-development/tacc-software/ gotoblas2
- See the NY Times article: "Writing the fastest code, by hand, for fun: a human computer keeps speeding up chips"
http://www.nytimes.com/2005/11/28/ technology/28super.html?pagewanted=all

Homework I

- We would like to compare the time for multiplying two 8,000 by 8,000 matrices
- Directly using sources of blas http://www.netlib.org/blas/
- Intel MKL
- OpenBLAS
- You can use BLAS or CBLAS
- Try to comment on the use of multi-core processors.

Conclusions I

- In general I don't think we should have too many required courses
- However, some of them are very basic and are very useful in advanced topics
- Some students do not think basic mathematics courses (e.g., calculus) are CS courses. But that may not be the case
- When I evaluate applications for graduate schools by checking their transcripts, very often I first look at the grade of calculus

Conclusions II

- I hope that through this lecture you have seen that some mathematics techniques are very related to CS topics

