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Z Specifications from Jackson
System Development
Jonathan Lee* and Jiann-I Pan†
Software Engineering Lab., Department of Computer Science and Information
Engineering, National Central University, Chungli, Taiwan

Ž .In this paper, we propose a rule-based approach called JSDZ to producing Z specifica-
Ž .tions from Jackson system development JSD specifications automatically. In JSDZ, JSP

is to serve as the structuring mechanism to help the analysis of problem domains, and Z
is to express the formal specifications of JSD artifacts. Several criteria are identified for
comparing specifications generated from JSDZ and Z. The bringing together of diagram-
matical and text elements of JSD specifications in Z notations offers two major benefits.
First, JSD can be seen both as a structuring mechanism that helps in deriving Z
specifications, and as a preliminary that assists in ascertaining the clients requirements.
Second, Z specifications make it easier to identify omissions or errors. Q 1998 John Wiley
& Sons, Inc.

1. INTRODUCTION

Because formal methods find increasing acceptance within the software
industry, there is a growing body of research and user interest in the integration
of informal and formal methods.31,15, 3,17,16 Informal methods have advantages
for requirements elicitation, ease of understanding, communication, and sup-
porting software development process through structuring mechanisms. Mean-
while, formal methods provide conciseness, clarity, and precision, and are more
suitable for analysis and verification. Therefore, as are advocated by Gehani,9

Bowen and Hinchey,3 system specifications, ideally, should include both formal
and informal specifications, and that a method for combining both specifications
is needed.

However, as a result, a number of researchers have reported progress
toward the successful integration of formal and information methods such as

Ž . Žcombining structured analysis SA with formal specifications e.g., Refs. 7, 8, 19,
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. Ž .24, 25 , integrating object-oriented analysis OOA and formal specifications
Ž . Že.g., Refs. 10, 12, 2, 18 , as well as transforming JSD to formal notations e.g.,

.Refs. 28 .
The focus of this paper is on the use of Z27 as the formal notation to

express JSD requirements specifications, called JSDZ. The transformation in
Ž .JSDZ is achieved using a rule-based approach in CLIPS Ref. 5 that enables

the derivation of Z specifications from JSD artifacts automatically. The transfor-
mation heuristics are outlined below.

In JSDZ, a model process in the modeling phase is treated as an active
entity that requires an operation on its data store to add a new instance to the
collection of existing instances. The model process is thus translated into a state
schema, and its related operations are converted into the operation schemas
with instances set that can be modified by the operations. State invariants are
captured in the entity-action list as constraints, which are then described as state
invariants in the state schema. The time-ordering relationship in the structure
diagram is transformed into a collection of transition constraints using the
axiomatic description to serve as a global constraint to restrict the ordering
relationship of the related operations.

In the network phase, a function process in the network phase is manifested
through an operation schema. State vectors and their related functions are
treated as a collection of query operation schemas. Data streams are imple-
mented by read and write operations. Cardinality relationships between pro-
cesses are translated into Z notations based upon the notion of rough merges.
These are illustrated using the problem domain of the library system.30

We first give an overview of JSD in the next section. The proposed
approach that guides the mapping from JSD specifications to Z notations is fully
discussed in Section 3. Related work is introduced in Section 4. In Section 5,
several important issues such as structuring mechanism, criteria for comparing
specifications, etc. are discussed. Finally, we summarize the benefits of our
approach and outline our future research plans.

2. JACKSON SYSTEM DEVELOPMENT OVERVIEW

Ž .14Jackson system development JSD is a method originated by Michael
Jackson for software development. Variations of JSD have been proposed. We
will base our discussion on the features discussed in Ref. 4. JSD specifications
are mainly composed of a distributed network of sequential processes. Each
process can have its own local data. The communication between processes is

Ž .achieved by reading and writing messages data stream and by read-only access
Ž .to one another’s data state vector . The JSD specification is initiated from a

Ž .particular set of model processes or entities . New processes are added to the
specification by connecting them to the model. There are three main phases in
the JSD method.

v Ž .Modeling phase: Model processes or entities and their actions are selected and
defined.
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v Network phase: The relationships between model processes and function pro-
cesses are established, and are represented by the system specification diagram
Ž .SSD .

v Implementation phase: The processes and their data are fitted onto the available
processor and storage devices.

In the following sections, we will only concentrate on the modeling and
network phases. The library system is used as an example to illustrate both the
JSD methodology and the proposed approach for transforming JSD specifica-
tions to Z. The problem description of the library system is summarized below.30

Consider a small library database with the following transactions:

Ž .1 Check out a copy of a book. Return a copy of a book.
Ž .2 Add a copy of a book to the library. Remove a copy of a book from the library.
Ž .3 Get the list of books by a particular author or in a particular subject area.
Ž .4 Find out the list of books currently checked out by a particular borrower.
Ž .5 Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transac-
tions 1, 2, 4, and 5 are restricted to staff users, except that ordinary borrowers
can perform transaction 4 to find out the list of books currently borrowed by
themselves. The database must also satisfy the following constraints:

Ž .c All copies in the library must be available for check-out or be checked out.1
Ž .c No copy of a book may be available and checked out at the same time.2
Ž .c A borrower may not have more than a predefined number of books checked3

out at one time.

2.1. Modeling Phase

The first step in the modeling phase is to find entities and actions related to
each entity. An entity-action list is used to specify the entities, related actions
and their attributes needed in a system. To extend JSD, we incorporate con-
straints into the entity-action list so that the state invariant can be included in

Ž .the state schema.‡ The second constraint c , for example, is defined as the2
exclusive or of INLIB and ONLOAN to indicate that no copy of a book can be
both in the library and on loan at the same time. The entity-action lists for the
entities Book and User in the library system are shown in Figure 1.

In JSD specifications, a model process is composed of a set of ordering
actions and is denoted by a structure diagram. A structure diagram is a tree
structure, the leaves are actions, all other components describe either sequence,
iteration, or selection relationships between actions or between group of actions.
Iterations are denoted by the ‘‘*’’ in the top right corner of the constituent box,

Ž .and the selections are denoted by the ‘‘8’’. Figure 2 a shows that A is a sequence

‡Similar ideas about the inclusion of constraints in an object representation can be
found in BON.22
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Figure 1. Entity-action lists of the library problem.

component, which means that A contains one B action, followed by one C
Ž .action, followed by one D action. Figure 2 b shows that A is a selection

component, which means that A consists of either exactly one B action or
Ž .exactly one C action or exactly one D action. Figure 2 c shows that A is an

iteration component, which means that A contains zero or more B actions.

Ž . Ž . Ž .Figure 2. Structured diagrams: a sequence, b selection, c iteration.
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Ž .Figure 3. Structure diagrams for the library system: a the structure diagram of book,
Ž .b the structure diagram of user.

Notice that the first action associated with an entity in the structure diagram
plays a role of creating instances of the associated entity; whereas, the last
action is in charge of destroying all the instances of the entity.

Having built a model process, we need to define data items and basic
operations to describe the detailed meaning of the model process. The actions
define what happens and the data define what is to be remembered about what
has happened. The model processes can then be transformed into the equivalent
structure text. Figure 3 shows the result of the modeling phase, namely, struc-
tured diagrams that include basic operations for the book and user entities.

2.2. Network Phase

The result of the modeling phase is a set of disconnected processes. In the
network phase, input and output processes are added and connected to the

Ž .model processes e.g., Book in Fig. 4 to build the network of potentially
concurrent processes. The network is described in a system specification dia-

Ž .gram SSD . The SSD notations are shown in Figure 5. In this phase, three
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Figure 4. SSD for the library systems.

different types of function process can be included into the network: input
function process, information function process, and interactive function process.

Input function processes collect data from the real world, check them for
errors, and pass them on to the model process if they are correct, reject them by
producing an error message otherwise. All the input processes together consti-
tute the input subsystem.

Figure 5. SSD notations.
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Information function processes extract information from the model in order
to compute the required system outputs. The system’s outputs must be definable
in terms of the model, namely, actions, action attributes, and entity attributes. If
this is not possible, the model must be elaborated by defining new actions and
entity attributes. In Figure 4, the Find books, Find user, Get list by subject,] ] ] ] ]
and Get list by author are information function processes. Find books receives] ] ] ]
a user identity and outputs the books list of books that the user borrowed.
Find user receives a book identity to find a particular user who has borrowed]
the book. Get list by author gets all the books that were written by a particular] ] ]
author. Get list by subject gets all the books that are associated with a particu-] ] ]
lar subject.

Interactive function processes generate system actions. System actions can
be considered as external actions that are created by the system itself. In most
cases the interactive function process needs information from model processes
to generate the system actions. Interactive function processes are like informa-
tion function processes, except that they produce inputs into the model pro-
cesses instead of system outputs. There are two communication mechanisms
between processes in JSD.

v Ž .State vector: A state vector SV connection constitutes a read-only access from a
process to the local data of another process.

v Ž .Data stream: A data stream DS is a first-in-first-out data queue with infinite
capacity.

In Figure 4, the fbu, gbs, etc. are state vectors, and the fbi, fbo, etc. are
data streams. For example, a user identity is stored in the fbi data stream, and
read in by the Find books. The Find books process inspects the data in User to] ]
retrieve the user’s borrowed books list, and puts the list on the fbo data stream.

Ž .The internals of a function process called a process structure are devel-
Ž .oped with JSP see Fig. 6 . The process structure is deduced from its in and out

Ž .data time structure. All the operations required to produce the output are first

Figure 6. Process structures in the library system.
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defined in an operation list, and allocated to the appropriate components in the
process structure. Conditions have to be specified for each iteration and selec-
tion component. The cardinality relationship between processes could be either

Ž .one-to-one, one-to-many, or many-to-many see Fig. 5 , which is to capture the
Ž .notion of multiplicity of a process i.e., multiple instances . After completing all

function processes and communicating them with modeling processes using SV
Žand DS, an SSD is established see Fig. 4 for a complete SSD of the library

.system .
In the next section, the proposed approach JSDZ is fully discussed and is

illustrated step-by-step using the library system.

3. EXPRESSING JACKSON SYSTEM DEVELOPMENT
SPECIFICATIONS IN Z NOTATIONS

In JSDZ, a model process in the modeling phase is treated as an active
entity that requires an operation on its data store to add a new instance to the
collection of existing instances. The model process is thus transformed into a
state scheme, and its related operations are converted into operation schemas
with an instances set that can be modified by the operations. State invariants are
captured in the entity-action list as constraints, which will then be described as
state invariants in the state schema. The time-ordering relationship in a struc-
ture diagram is transformed into a collection of transition constraints and then
grouped under an axiomatic description. In the network phase, a function
process in JSD specifications is manifested by an operation schema. Cardinality
relationships between processes are translated into Z notations based upon the
notion of rough merges.

JSDZ is implemented using JAVA and CLIPS, JAVA is used to build a
uniform user interface. CLIPS is used to implement the proposed rule base to
transform JSD artifacts into Z specifications. The inputs to the rule base are a
collection of initial knowledge, represented as facts in CLIPS, based on the
entity-action list, the structure diagram and the system specification diagram
from the JSD artifacts. The outputs of JSDZ are Z specifications in LaTeX
format. Windows of the JSDZ tool are shown in Figures 7 and 8.

3.1. Transferring the Jackson System Development
Artifacts into CLIPS Facts

The rule base in JSDZ encompasses two main modules: modeling and
Žnetworking module, each of which consists of a collection of heuristics de-

.scribed in Sections 3.2 and 3.3 to facilitate the transformation. The JSD
artifacts are represented as facts to form the input for the JSDZ rule base. In
JSDZ, the related information in an entity, such as the entity name, attributes,
actions, basic operations, etc., are captured using a deffacts in CLIPS. Referring
to our example, part of the information in the BOOK entity can be represented
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Figure 7. A window of modeling phase in JSDZ tool.

in the Book deffacts as follows§:

(deffacts MAIN::Book
EntityActions (EntityName Book)

(ActionNames add check\ out give\ out give\ back] ] ]
remove))

(EntityAttributes (EntityName Book)
(Attributes ID DATE\ ADDED TITLE SUBJECT AUTHOR]
LAST\ BORROWER]

LEND\ DATE RETURN\ DATE INLIB ONLOAN] ]
REMOVE\ DATE)]

(Types BOOK\ ID DATE TEXT TEXT SET-TEXT USER\ ID DATE] ]
DATE BOOLEAN BOOLEAN DATE))

(Action (EntityName Book) (ActionName add)
(Attributes ID DATE\ OF\ ADDED TITLE SUBJECT AUTHOR)] ]
(Types BOOK\ ID DATE TEXT TEXT SET-TEXT))]

(BasicOperation (EntityName Book) (ActionName add)
(Op DATE\ ADDED "=" add.DATE\ OF\ ADDED))]] ]

(BasicOperation (Entity Name Book) (ActionName add)
(Op TITLE "=" TITLE))

:
:

)

§For details about the CLIPS rules and facts in JSDZ, see Appendix A.
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Figure 8. An output of Z specifications.

3.2. Modeling Phase

1. Define given sets for all types of attributes based on the entity-action list.
Consider the library system, the types needed in the system are described as
follows:

w xBOOLEAN, BOOK ID , USER ID , TEXT , DATE] ]

<REPORT ::s 0 remo¨e date is unknown0 0 last borrower is unknown0] ]
< <0 lend date is unknown0 0 return date is unknown0] ]

2. Define a state schema, treated as a type for each entity where its signature is
depicted using the attributes in the entity-action list. From the same example, the
Book state schema is defined for the entity Book.

Book
id: BOOK ID]
date added : DATE]
title : TEXT
subject : F TEXT
author : F TEXT
last borrower : USER ID] ]
date lent : DATE]
date returned : DATE]
inlib : BOOLEAN
onloan : BOOLEAN
date remo¨ed : DATE]
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3. Create a data-store state schema to represent an instances set for each entity. In
each data store, the schema defined for each entity in the previous step is treated
as a type, and an identity is required to uniquely identify each instance. In the
same example, there is a data-store state schema Book SET , where books is a]
subset of the type BOOK and idbook is an identifier. Thus,

Book SET]
books : F Book 6

idbook : BOOK ID Book]
y

v Ž .;b : Book b g books « b.id s idbook 1 b
ran idbook s books

4. Specify the state invariant in the data-store state schema. In JSD, the state
invariant is not considered at all. Based on our enhanced version of the
entity-action list, constraints in the list are utilized to specify the state invariants

Ž .explicitly. In our example, the c constraint is converted into the formula ;b:2
v ŽŽ . ŽBook b g books « b.inlib s true n b.onloan s false k b.inlib s false n

..b.onloan s true . Therefore,

Book SET]
books : F Book 6

idbook : BOOK ID Book]
y Ž .;b : Book ( b g books « b. id s idbook 1 b

ran idbook s books
v� 4books s D b : Book N b g books b.inlib s true

v� 4jD b : Book N b g books b.onloan s true
v;b : Book b g books «

ŽŽ . Ž ..b.inlib s true n b.onloan s false k b.inlib s false n b.onloan s true

5. Initialize the data-store schema for each entity to specify the initial state. The
initialization of a system can be regarded as a special kind of operation that
creates a state out of nothing; there is no before state, simply an after state with
its variables decorated. The initial state is described by means of the schema
Init Book SET 9, where the schema Init Book SET is defined as follows,] ] ] ]

Init Book SET] ]
books : F Book 6

idbook : BOOK ID Book]

books s B
idbook s B

6. Define an operation schema for each action of an entity, and its signature
according to the entity-action list. If an action changes its associated data store,
attach the D notation to its associated data store to indicate the change;
otherwise, use the J notation. If an action is shared by more than one entity,
include all their related data stores in the declaration part. The signature
portions of the operation schemas for add and remo¨e actions of the book entity
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are described below, respectively,

add
D Book SET]
book : Book
rep remo¨e date! : Report] ]
rep return date! : Report] ]
rep lend date! : Report] ]
rep last borrower! : Report] ]
id? : BOOK ID]
date of added? : DATE] ]
title? : TEXT
subject? : TEXT
author? : F TEXT

remo¨e
D Bo SET]
book : Book
id? : BOOK ID]
date of remo¨e? : DATE] ]

7. Include the basic operations of the action in the predicate part of the operation
schema to illustrate the postconditions of the operation. To reflect the semantics
of the first and last actions of an entity, the creation and destruction of instances
of the entity also need to be specified. For example, the add action is treated as
an operation that can create new instances to be included into the existing

� 4instances set, BOOK SET , namely, books9 s books j book ; while, the remo¨e]
action will delete an instance from the instances set, that is, books9 s books _
� 4 � 4book and idbook9 s id? 1] idbook. Hence,

add
D Book SET]
book : Book
rep remo¨e date! : Report] ]
rep return date! : Report] ]
rep lend date! : Report] ]
rep last borrower! : Report] ]
id? : BOOK ID]
date of added? : DATE] ]
title? : TEXT
subject? : TEXT
author? : F TEXT
id? f dom idbook
book.id9 s id?
book.date added9 s date of added?] ] ]
book.title9 s title?
book.subject9 s subject?
book.author9 s author?
book.inlib9 s true
book.onloan9 s false

� 4idbook9 s idbook [ id? ¬ book
� 4books9 s books j book

rep last borrower!s 0 last borrower is unknown0] ] ]
rep lend date!s 0 lend date is unknown0] ] ]
rep return date!s 0 return date is unknown0] ] ]
rep remo¨e date!s 0 remo¨e date is unknown0] ] ]
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remo¨e
D Book SET]
book : Book
id? : BOOK ID]
date of remo¨e? : DATE] ]

id? g dom idbook
Ž .book s idbook id?

book.inlib9 s false
book.remo¨e date9 s date of remo¨e?] ] ]

� 4books9 s books _ book
� 4idbook9 s id? 1] idbook

8. Convert the time-ordering relationship in each structure diagram into a collec-
5tion of transition constraints and include these constraints in an axiomatic

description to serve as a global constraint for restricting actions involved in
each entity. For example, the time-ordering relationship for the book entity in

ŽFigure 3 can be represented using regular expressions as Add, Check out,]
. .Gï e back *, Remo¨e , which can then be converted into three transition con-]

straints. That is, one constraint is an add action that performs the checkout or
remo¨e actions that happened; another constraint is a checkout action that
performs the remo¨e action that happened; the other constraint depicts a return
action that performs the remo¨e or checkout actions that occurred. A basic type
w xSTATE and a free type Book actions are defined first. In the axiomatic]
description, three formulas are specified in the predicate part to show the
constraints on transitions of operations of the Book entity. Thus

w xSTATE
²² :: ²² ::Book actions ::s Add add ¬ Checkout checkout]

²² :: ²² ::Return return Remo¨e remo¨e

Ž .R : P STATE = Book actions = STATE]
Ž . Ž .;s0, s1 : STATE; 's2, s3 : STATE; s0, add, s1 , s1, checkout, s2 ,

Ž .s1, remo¨e, s3 g R
v Ž . Ž . Ž .s0, add, s1 « s1, checkout, s2 k s1, remo¨e, s3

Ž . Ž .;s1, s2 : STATE; s1, checkout, s2 , s2, return, s1 g R
v Ž . Ž .s1, checkout, s2 « s2, return, s1

Ž . Ž .;s1, s2 : STATE; 's3 : STATE; s2, return, s1 , s1, remo¨e, s3 ,
Ž .s1, checkout, s2 g R

v Ž . Ž . Ž .s2, return, s1 « s1, remo¨e, s3 k s1, checkout, s2

3.3. Network Phase

Data Stream

A data stream is a first-in-first-out data buffer with infinite capacity, and
two operations are defined in a data stream: read and write. To express the data

Ž .stream in Z, we have distinguished two types of data stream: 1 if a data stream

5This technique is adopted from Ref. 29.
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is connected to a function process, then the input]output variables are declared
Ž .in the schema of the function process; and 2 if it is connected to a model

Ž .process an entity , then the information in the entity is included in the schema.
In Figure 4, for example, the data stream glai is connected to the function
process get list by author, therefore, the schema for the function process] ] ]

Ž .would include the input variable author? see below .

State Vector

A state vector connection implies that a read only access from a process
to the local data of another process is performed, which does not change any of

Ž .the state variables; and therefore, any process either model or function that
performs the operation needs to attach the J notation to the related data
stores. In addition, a gets¨ operation is performed implicitly using the identity
function in the function process that is connected to the state vector. In our
example, gba is an SV that inspects data from the Book entity for the function
process get list by author. The get list by author operation schema includes] ] ] ] ] ]

Ž .JBook SET in its signature part, and uses idbook bookid to retrieve all the]
Ž .information about the Book see below .

Function Process

The transformation of a function process into an operation schema will
consider its connected data streams and state vectors, as well as its process
structure. Input and information function processes will not change the related
state space, while interactive function processes will. Therefore, we usually
attach J notation to the related data store for input and information function
processes, and D for the interactive function process. Refer to the same

Ž .example see Fig. 6 , the get list by author function process receives the user’s] ] ]
query from the data stream glai, and answers the list of books by a particular
author as an output. Thus

get list by author] ] ]

JBook SET]
author? : TEXT
rep! : F BOOK ID]

v� Ž . 4author? g D bookid : BOOK ID idbook bookid .author]
� Ž . 4rep!s bookid : BOOK ID ¬ author? g idbook bookid .author]

Merge

In a data stream connection the initiative for the communication comes
from the writing process. The reading process must consume the complete
stream of data records. If a process reads data streams from different processes,
the developer must specify how the data streams should be merged. The merge
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strategy defines the sequence in which the receiving process reads the data
records.

There are two types of merge: fixed and rough merges. In a fixed merge the
reading sequence is defined by the reading process alone. In a rough merge the
strategy is indeterminate.

For rough merges, we use a set as an internal buffer in the reading process
to take in the data from each data stream. If all data streams are empty, the
reading process is suspended, otherwise the set collects the data from all data
streams, and clears each data stream. The output sequence of the data in the set
is not determined until the implementation.

For fixed merges, we use a sequence as an internal buffer instead of a set to
collect data. The output sequence of the data in the buffer is determined by the
reading process. In general, if one of the data streams is empty the reading
process is suspended. In particular, whether the reading process being sus-
pended or not depends on the problem domain.

Note that due to the fact that data collected from data streams may be of
Ž .different types, it is necessary that the internal buffer i.e., a set can assume

different types as well.

Cardinality

In JSD, if a process communicates with several instances of another
process, the notion of cardinality is applied. In Figure 5, the data streams from
the processes of type A are rough merged to form a single input DS in the case
of the many-to-one situation, or a multiple inputs DS for many-to-many into
process B.

4. RELATED WORK

A number of researchers have reported progress toward the successful
Ž .integration of formal and informal methods i.e., methods integration . Sem-

mens et al. have conducted a comparative study of the related work.26 However,
their study only concentrated on approaches in combining structured analysts
and formal specification techniques. To provide a more comprehensive view of
the state-of-the-art in this line of research, we have classified three categories
for methods integration based upon the different informal analysis approaches
used.

v 23Ž .From structured analysis SA to formal specifications: for example, Polack,
Mander and Polack,20 and Semmens and Allen’s25 work on integrating SA and Z;
Randell translated DFD into Z24; France combined SA and algebraic specifica-
tions7; Fraser et al. integrated SA with VDM8; Liu combined extended DFD and
VDM19; and Moulding and Smith combined CORE with VDM and CSP.21

v Ž .From object-oriented analysis and design OOArD to formal specifications:
typical examples are Giovanni and Iachini’s work on including Z in HOOD,10

Hammond integrated Shaler Mellor’s OOA with Z,12 Bourdeau and Cheng
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provided a formal semantics for OMT models,2 and Lee et al. combined Bailin’s
OOS with Z.18

v From JSD to formal notations: Sridhar and Hoare transformed structure dia-
grams to CSP.28

4.1. Structured Analysis to Formal Specifications

In Semmens and Allen’s work,25 there are two phases involved in the
analysis. First, a data model of the system is developed, expressed first as an

Ž .entity relationship diagram ERD and then as a Z state schema which is
systematically derived from the ERD. In the second phase, the process model is
built. A semiformal model is expressed using DFD, then the semantics of each
of the processes in the DFD is specified using Z operation schemas. An entity
is represented in an entity type schema and an entity instance set schema.
Attributes of an entity can be referred to in an entity dictionary. A relationship
can be represented as a relationship schema. Partial function, partial injection,
or relation are used to specify the cardinality and connectivity relationships
between two entities. These schemas build the state space of the system in Z.
Data flows between processes in DFD can be shown as input and output
variables in an operation schema.

Mander and Polack took a different view, seeing the systems analysis as an
important but partially independent precursor to the formal definition.20 The Z
specifications must not be a straight translation of the informal analysis, if it is
to find requirements or errors overlooked by the analysts. It must be guided by
the systems analysis, rather than being exclusively derived from it. The basic
components of the Z definition: state and process specifications will be consid-
ered separately. In the state specifications of Z, which are derived from ERD,
constraints on data or conditions on relationships are included in the formal
state model, and data attributes may be modeled in the entity definitions. In the
process specifications, operations are formed from function definitions which are
derived from function description, IrO structure, effect correspondence dia-
gram, and entity life histories.

Randell focused on how to translate a data flow diagram into Z.24 The Z
specification is generated by carrying out a sequence of steps: taking external
entities, data stores and processes in turn to produce parts of the Z specifica-
tion. Since ERD is not considered in the data modeling, the state specifications
are directly translated from data stores. The operation schemas are translated
from processes in DFD. Input and output variables indicate the data flow
between the external entity and the process. Predicate information about the
process does not appear in a DFD, which must be obtained from elsewhere.

France provided a semantically extended DFD as a control-extended DFD
Ž . 7C-DFD associated with an algebraic specification technique. The syntactic
aspect is concerned with its pictorial representation of C-DFD, and the semantic
aspect is about the behavioral interpretation of its C-DFD. A C-DFD’s data
domain is defined by specifiers using a data description language. State specifi-
cations and label specifications are defined to describe the data flow in DFD,
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and DataStore state specifications are used to describe the data stores in DFD.
Operators in accessing these data stores are also discussed. Data transform
specification is used to specify the behavior of a data transform. Algebraic state
transition systems corresponding to the state transition diagram can be used to
specify the behavior of external entity and the system behavior.

Fraser et al. integrated VDM and structured analysis.8 Two approaches
Ž .were described in the paper: 1 structured analysis as a cognitive guide to

Ž .developing VDM specifications, and 2 automated generation of VDM specifi-
cations from SA models using a rule-based approach. The main difference in
these two approaches is that the former is manual and the later is automated.
The information from the entity dictionary is used to build the information
domain. Operators rd and wr indicate the data flow between processes. Precon-
dition and postcondition are used to specify the process’s functionality.

Moulding and Smith focus on the use of the VDM with CORE and express
the role of CORE in CSP.21 That is, a VDM specification to define the pro-
cessing semantics of the actions, and a CSP specification to identify the real-time
collective behavior of those actions. The data flows between viewpoints which
identified in a CORE model form the global state of the VDM specification,
and the VDM data types for these state variables are derived from the data-
structuring information within the CORE model. The target system and all
other viewpoints are expressed as the VDM-SL modules, in which the actions of
the viewpoints are modeled as VDM operations. Internal data flows within a
viewpoint were considered as the local state of the viewpoint module, and the
triggering conditions for an action are expressed in the precondition of the
corresponding operation. The control and sequencing behavior of operations

Ž .was specified in single viewpoint modeling SVM and combined viewpoint
Ž .modeling CVM stages of CORE. Each CORE action, channel, and pool was

represented by a CSP process. Processes were combined using the CSP parallel
Ž5.composition operator to specify the overall behavior of the SVM. A CVM

was a process composed from the channels, pools, and actions. Similarly, the
compositional features of CSP were used to describe a CVM.

4.2. Object-Oriented Analysis to Formal Specifications

Giovanni and Iachini combined HOOD and Z, in which HOOD was used
as a structuring mechanism to guide the construction of Z specifications.10 In
this article, WHAT, WithWHAT, and HOW specifications are used to build the
formal specification. A WHAT specification may consist of more than one
schema and is used to describe an object. These schemas can be partitioned into
state schemas and operation schemas. A state schema is used to specify an
object’s data model. However, information in specifying an object is insufficient.
Each method of an object is described in a separated operation schema.

Hammond integrated Shaler-Mellor’s OOA and Z.12 There are three
Ž . Ž .phases in the OOA: 1 information modeling, 2 state transition modeling, and

Ž .3 process modeling. ERD is used to express the information model in OOA.
Objects and relationships are specified in an entity type schema, an entity
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instance set schema, and a relationship schema. In the state transition modeling,
a schema event is to specify the generation or receipt of any event, and a state
transition schema is used to specify state transitions. The predicates in a state
transition schema should describe the precondition of an input event and the
initial state, and the postcondition of components’ values of the after state and
output events. An active object is defined to be an object that requires an
operation on its data store to add a new instance to the collection of the existing
instances. In the process modeling, processes accessors and event generators are
identified from Z transition specifications.

Bourdeau and Cheng presented a formal semantics for the OMT object
model notations.2 Object models and instance diagrams in OMT are formalized
as algebraic specifications and algebras, respectively. Instance diagrams can be
used to provide the semantics for object models, and algebraic specifications
have algebras as their semantics. Finally, the set of algebras can be treated
as the semantics of an object model. There are two ways to determine algebras:
Ž .1 to compute the algebraic specifications of the object model and look at a set

Ž .of algebras that satisfy this specification, and 2 to determine the instance
diagrams consistent with the object model and compute their corresponding
algebras. If the design is consistent, then either method for determining the

Ž .algebras will yield the same results. The Larch shared language LSL was
chosen as the algebraic specification language. A trait in LSL was used to
represent an abstract data type in the object model, and an S-algebra was
generated by this trait. Traits can be used to depict classes and associations. The
related classes within an association was included in an association trait. The
multiplicity constraints can be described in terms of four relational properties:
functional, injective, surjective, and total.

Lee et al.18 proposed an integration of Bailin’s object-oriented specification
and Z, called OOSZ. In OOSZ, OOS was used as a structuring mechanism to
guide the derivation of Z specifications. An entity process can be considered in

Ž .two dimensions: 1 as an active entity that requires an operation on its data
Ž .store to add a new instance to the collection of existing instances, and 2 as an

abstract operation which can be decomposed into operations related to the
entity process. Therefore, an entity process is manifested through a state
schema, and instance creation operation schema and an abstract operation
schema, meanwhile, a function process is converted into an operation schema in
Z specifications.

4.3. Jackson System Development to Formal Notations

Sridhar and Hoare demonstrated how to express JSD in CSP through
Ž .several examples in Ref. 28. In their approach, only the structure diagram SD

is considered in the transformation process. An entity modeled in the SD was
described by its life history, and can be defined by two formulas in CSP: the first
one to depict the creation of an entity, and the second one to describe the
remainder of the history. Adding new actions into the second formula later is
permitted. The iterative mechanism between CSP and JSD is provided. That is,
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a new entity process can be defined in CSP, and then backward to modify the
SD. No systematic transformation heuristics are provided.

Compared with all these approaches, JSDZ offers two important advan-
Ž . Ž .tages: 1 artifacts generated from the informal method JSD are tightly

Ž .coupled, and 2 the notion of an active entity]object is manifested through a
state schema, an instance creation operation schema and its operation schemas
in the Z specifications.

5. DISCUSSION

5.1. Structuring Mechanism

One of the major criticisms of formal methods is that they are not so much
‘‘methods’’ as formal systems. They fail to support many of the methodological
aspects of the more traditional structured-development methods. However, as a
result, Woodcock32 proposes the use of schema language to structure Z specifi-
cations. Diller 6 proposes a step-by-step procedure in writing Z specifications.
However in these two approaches, little emphasis is placed on the underlying
development model and little guidance is provided as to how development
should proceed. Recently, D. Jackson and M. Jackson13 proposed the use of
views for structuring Z specifications. The basic idea is to decompose a problem

Ž .in parallel into several views subproblems to fit into their applicable problem
frames, which are then used to guide the derivation of Z specifications.

Bowen and Hinchey 3 claim that the integration of formal and informal
methods leads to a ‘‘true’’ development method that fully supports the software
life cycle and allows developers to use more formal techniques in the specifica-
tion and design phase, supporting refinement to executable code and proof-of
properties. JSDZ can be considered as one of the attempts to provide a
systematic approach to supporting the structuring of Z specifications through
JSD.

5.2. Criteria for Comparison

In Ref. 1, Bicarregui and Ritchie propose three criteria: invariants, frames,
postconditions, for comparing VDM and B notations. Essentially, their criteria
are for the comparison of different kinds of formal specification. To compare

Ž .the same type of specification in our case, Z , we have identified four criteria;
state space, state invariants, operation definition, and operation interaction.

v State space: Comparing the representation of state space in both Z and JSDZ,
the main difference is that: a state schema of an entity is treated as a type and a
data-store state schema as an instances set, both of which constitute the state
space in JSDZ.

v State invariants: To express state invariants explicitly in JSDZ, JSD is extended by
incorporating constraints into the entity-action list to specify state invariants in
the state schema.
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v Operation definition: To define an operation schema in JSDZ, artifacts generated
by JSD are very useful. For example, basic operations in SD and process
structures form the postconditions and outputs for the operation schema. In Z,
error handling schemas are generated based on the information gained from
preconditions of each operation, which are included in the total specification to
make complete the specification of each operation. However, the error handling
schema is not part of the product of JSDZ, which is a limitation of JSDZ for
future improvement.

v Operation interaction: Z does not provide any mechanism for describing the
interactions among operations. In JSDZ, a global transition constraint, specified
using the axiomatic description, is used to represent the time ordering relation-
ship in each SD.

5.3. Representing an Object in Z Notations

It is of interest to note that there are a number of ways to represent the
concept of an entity]object in Z notations. Hall,11 Hammond12 and JSDZ all

Ž .provide a self identity an identifier for an entity]object identification. Data
stores are generally used to indicate the connection between an entity]object
and its operations. No distinction is made between active or passive entities]
objects in Hall’s approach. Both JSDZ and Hammond’s approach distinguish
active from passive entities]objects based on the creation operation.

6. CONCLUDING REMARKS

Ž .In this paper, we proposed an integration of an informal method JSD with
Ž .a formal notation Z . In JSDZ, a model process is treated as an active entity

that requires an operation on its data store to add a new instance to the
collection of existing instances. The model process is thus translated into a state
schema, and its related operations are converted into the operation schemas
with instances set that can be modified by the operations. A structure diagram is
transformed into an axiomatic description in Z specifications which is used to
depict the global transition constraint. Cardinality relationships between pro-
cesses are translated into Z notations based upon the notion of rough merges. Z
specifications are automatically generated using a rule-based approach. In the
network phase, a function process in JSD specifications is manifested through an
operation schema.

The bringing together of diagrammatical and text elements of JSD specifi-
Ž .cations in Z notations offers two major benefits: 1 JSD specifications can

be seen both as a structuring mechanism that helps in deriving Z specifications
and as a preliminary that assists in ascertaining the clients requirements, and
Ž .2 Z specifications make it easier to identify omissions or errors.

We would like to thank C. K. Chang and J. Y. Kuo for their early work on this
project, and Professor W. T. Huang for his invaluable comments on an earlier draft of

Ž .this paper. This research was supported by National Science Council Taiwan, R.O.C.
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APPENDIX: JSDZ RULE BASE

(deffacts MAIN::Book
(EntityActions (EntityName Book)

(ActionNames add check\ out give\ back remove))] ]
(EntityAttributes (EntityName Book)

(Attributes ID DATE\ ADDED TITLE SUBJECT AUTHOR]
LAST\ BORROWER]
LEND\ DATE RETURN\ DATE INLIB ONLOAN] ]
REMOVE\ DATE)]

(Types BOOK\ ID DATE TEXT SET-TEXT USER\ ID DATE DATE] ]
BOOLEAN BOOLEAN DATE))

(Action (EntityName Book) (ActionName add)
(Attributes ID DATE\ OF\ ADDED TITLE SUBJECT] ]
AUTHOR)(Types BOOK\ ID DATE TEXT TEXT SET-TEXT))]
(BasicOperation (EntityName Book) (ActionName add) (Op
DATE\ ADDED "=" add. DATE\ OF\ ADDED))] ] ]
(BasicOperation (EntityName Book) (ActionName add) (Op
TITLE "=" add.TITLE))
(BasicOperation (EntityName Book) (ActionName add) (Op
AUTHOR "=" add.AUTHOR))
(BasicOperation (EntityName Book) (ActionName add) (Op
SUBJECT "=" add.SUBJECT))
(BasicOperation (EntityName Book) (ActionName add) (Op
LAST BORROWER "=" UNDEFINED))]
(BasicOperation (EntityName Book) (ActionName add) (Op
LEND\ DATE "=" UNDEFINED))]
(BasicOperation (EntityName Book) (ActionName add) (Op
INLIB "=" TRUE))
(BasicOperation (EntityName Book) (ActionName add) (Op
ONLOAN "=" TRUE))
(BasicOperation (EntityName Book) (ActionName add) (Op
RETURN\ DATE "=" UNDEFINED))]
(BasicOperation (EntityName Book) (ActionName add) (Op
REMOVE\ DATE "=" UNDEFINED))]
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(Action (EntityName Book) (ActionName check\ out)]
(Attributes ID BORROWER DATE\ OF\ LEND)(Types BOOK\ ID] ] ]
USER\ ID DATE))]
(BasicOperation (EntityName Book) (ActionName
check\ out) (Op LAST\ BORROWER "="] ]
check\ out.BORROWER))]
(BasicOperation (EntityName Book) (ActionName
check\ out) (Op LEND\ DATE "="] ]
check\ out.DATE\ OF\ LEND))] ] ]
(BasicOperation (EntityName Book) (ActionName
check\ out) (Op INLIB "=" FALSE))]
(BasicOperation (EntityName Book) (ActionName
check\ out) (Op ONLOAN "=" FALSE))]

(Action (EntityName Book) (ActionName give\ back)]
(Attributes ID DATE\ OF\ RETURN)(Types BOOK\ ID DATE))] ] ]
(BasicOperation (EntityName Book) (ActionName
give\ back) (Op INLIB "=" TRUE))]
(BasicOperation (EntityName Book) (ActionName
give\ back) (Op ONLOAN "=" FALSE))]
(BasicOperation (EntityName Book) (ActionName
give\ back) (Op LEND\ DATE "=" UNDEFINE))] ]
(BasicOperation (EntityName Book) (ActionName
give\ back) (Op RETURN\ DATE "="] ]
give\ back.DATE\ OF\ RETURN))] ] ]

(Action (EntityName Book) (ActionName remove)
(Attributes ID DATE\ OF\ REMOVE)(Types BOOK\ ID DATE))] ] ]
(BasicOperation (EntityName Book) (ActionName remove)
(Op INLIB "=" FALSE))
(BasicOperation (EntityName Book) (ActionName remove)
(Op REMOVE\ DATE "=" remove.DATE\ OF\ REMOVE))] ] ]

)

(defrule MODELLING::DefineStateSchema
(phase DefineStateSchema)
?att ¤ (AttributesTemp ?af $?ar)
?typ ¤ (TypesTemp ?tf $?tr)
?sch ¤ (StateSchema $?n ?r1 ?r2 ?r3)

«
(retract ?att ?typ ?sch)
(bind ?p :)
(assert (AttributeTemp $?ar))
(assert (TypesTemp $?tr))
(if (eq (sub-string 1 3 ?tf) "SET") then

(assert (StateSchema $?n ?af ?p
(str-cat "\\finset" (sub-string 5 (str-length
?tf) ?tf))
?r1 ?r2 ?r3))

else (assert (StateSchema $?n ?af ?p ?tf ?r1 ?r2 ?r3))))
(defrule MODELLING::CreatDataStoreStateScheman

(phase PrintStateSchema)
(EntityAttributes (EntityName ?en) (Attributes ?af $?ar)
(Types ?tf $?tr))

«
(bind ?sen (lowcase ?en))
(bind ?osen (sub-string 1 1 ?sen))
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(printout DataFile crlf (str-cat \begin{schema} { ?en
"\\ SET") } crlf)]
(printout DataFile (str-cat ?sen s) ": \\finset " ?en "
\\\\crlf)
(printout DataFile (str-cat id ?sen) ":" ?tf " \\fun
?en crlf)
(printout DataFile "\\where" crlf)
(printout DataFile "\\forall " ?osen ":" ?en "\\spot "
?osen " \\in "

(str-cat ?sen s) " \\wedge " (str-cat ?osen .
?af) "="
(str-cat id ?sen { y1}) "(" ?osen ") \\\\crlf)ˆ

(printout DataFile "\\ran " (str-cat id ?sen) "="
(str-cat ?sen s) crlf)
(printout DataFile "\\end{schema}" crlf crlf))

(defrule MODELLING::DefineOperationSchemaSignature
(phase DefineOperationSchema)
?ata ¤ (ActionAttributesTemp ?atf $?atrest)
?tta ¤ (ActionTypesTemp ?ttf $?ttrest)
?osa ¤ (OperationsSchema $?os ?r1 ?r2 ?r3)

«
(retract ?ata ?tta ?osa)
(bind ?p ":")
(bind ?q "?")
(bind ?s "")
(assert (ActionAttributesTemp $?atrest))
(assert (ActionTypesTemp $?ttrest))
(if (eq ?atf "y") then

(assert (OperationSchema $?os \where ?s ?s ?r1 ?r2
?r3))

else (if (eq (sub-string 1 3 ?ttf) "SET") then
(assert (OperationsSchema $?os (str-cat "atf ?q) ?p
(str-cat "\\finset " (sub-string 5 (str-length
?ttf) ?ttf)) ?r1 ?r2 ?r3))

else (assert (OperationSchema $?os (str-cat ?atf ?q)
?p ?ttf ?r1 ?r2 ?r3)))))

(defrule MODELLING::DefineOperationSchemaPredicate
(phase DefineOperationSchema)
?boa ¤ (BasicOperation (EntityName ?a9) (ActionName ?a2)

(Op ?bo1 ?bo2 ?bor))
?osa ¤(OperationSchema ?a1 ?a2 ?a3 ?a4 ?a5 ?a6 ?a7 ?a8

?a9 $?os ?r1 ?r2 ?r3)
(test (neq ?bor UNDEFINED))

«
(retract ?boa ?osa)
(if (lexemep ?bor) then

(assert (OperationSchema ?a1 ?a2 ?a3 ?a4 ?a5 ?a6 ?a7
?a8 ?a9 $?os

(str-cat ?a7 . ?bo1 ’) ?bo2 (filter ?bor (str-cat
?a2 .)) ?r1 ?r2 ?r3))

else (assert (OperationSchema ?a1 ?a2 ?a3 ?a4 ?a5 ?a6 ?a7
?a8 ?a9 $?os

(str-cat ?a7 . ?bo1 ’) ?bo2 ?bor ?r1 ?r2 ?r3))))
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(defrule NETWORK::DefineDataStream
?eata ¤ (EntityAttributesTemp ?eatf $?eatr)
?eatta ¤ (EntityAttributesTypesTemp ?eattf $?eattr)
?dsa ¤ (DataStream $?ds ?a1 ?a2 ?a3)
?wdsa ¤ (WDataStream $?wds ?wa1 ?wa2 ?wa3 ?r1 ?r2 ?r3

?fa)
«

(retract ?eata ?eatta ?dsa ?wdsa)
(assert (EntityAttributesTemp $?eatr))
(assert (EntityAttributesTypesTemp $?eattr))
(if (eq (sub-string 1 3 ?eattf)"SET") then

(assert (DataStream $?ds ?eatf ": \\finset "
(sub-string 5 (str-length ?eattf) ?eattf) ?a1 ?a2
?a3))

else
(assert (DataStream $?ds ?eatf ":" ?eattf ?a1 ?a2
?a3)))

(assert (WDataStream $?wds (str-cat entry? . ?eatf) "="
(str-cat ?fa . ?eatf "?") ?wa1 ?wa2 ?wa3 ?r1 ?r2 ?r3
?fa)))
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