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Abstract

One of the foci of the recent development in object-oriented modeling (OOM) has

been the extension of OOM to fuzzy logic to capture and analyze informal requirements

that are imprecise in nature. In this paper, a new approach to object-oriented modeling

based on fuzzy logic is proposed to formulate imprecise requirements along four di-

mensions: (1) to extend a class by grouping objects with similar properties into a fuzzy

class, (2) to encapsulate fuzzy rules in a fuzzy class to describe the relationship between

attributes, (3) to evaluate the membership function of a fuzzy class by considering both

static and dynamic properties, and (4) to model uncertain fuzzy associations between

classes. The proposed approach is illustrated using the problem domain of a meeting

scheduler system. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Imprecise requirements; Object-oriented modeling; Requirements engineer-

ing

1. Introduction

One of the foci of the recent developments in object-oriented modeling
(OOM) has been the extension of OOM to fuzzy logic to capture informal
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requirements that are imprecise in nature. Rumbaugh and his colleagues [27]
have argued that OOM is a way of thinking about problems using models
organized around real-world concepts which are usually expressed in natural
languages. As Zadeh pointed out in [32], it is evident that almost all concepts in
or about natural languages are almost fuzzy in nature. Several researchers such
as Dubois et al. [12] and Lano [22] have further advocated that object classes
with fuzzy memberships values are therefore a natural representation frame-
work for real-world concepts.

As a continuation of our previous work [23,24] in using fuzzy logic as a basis
for formulating imprecise requirements, we propose, in the paper, a fuzzy
object-oriented modeling technique (FOOM) to capture and analyze imprecise
requirements through the following two steps: (1) to identify the possible types
of fuzziness involved in the modeling of imprecise requirements, and (2) to
investigate the potential impacts of incorporating the notion of fuzziness on the
features of object orientation.

In FOOM, we have identi®ed several kinds of fuzziness that are required to
model imprecise information involved in user requirements.
· classes with imprecise boundary to describe a group of objects with similar

attributes, similar operations and similar relationships;
· rules with linguistic terms that are encapsulated in a class to describe the re-

lationships between attributes;
· ranges of an attribute with linguistic values or typical values in a class to de®ne

the set of allowed values that instances of that class may take for the attribute;
· the membership degree (i.e. ISA degree) between an object and a class, and

between a subclass and its superclass (i.e. AKO degree) can be mapped to
the interval [0,1] and

· associations between classes that an object instance may participate to some
extent.
The paper is organized as follows. We ®rst introduce di�erent versions of

features in object orientation in the next section. Several kinds of fuzziness
rooted in FOOM are fully described in Section 3. Related work is discussed in
Section 4. Finally, we summarize the bene®ts of our approach and outline the
plan for our future research in Section 5.

2. Features of object orientation

Object orientation is an engineering principle used to create a representation
of the real-world problem domain and to map it into a software solution do-
main [13]. Di�erent versions about the features of object orientation have been
identi®ed, for example, (1) Coad and Yourdon [9]: abstraction, information
hiding, inheritance, and methods of organization including objects and
attributes, assembly structures, and classi®cation structures; (2) Rumbaugh
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et al. [27]: identity, classi®cation, polymorphism and inheritance; (3) Booch [5]:
abstraction, encapsulation, modularity and hierarchy; (4) Wirfs-Brock and
Johnson [30]: abstraction, encapsulation, polymorphism, classi®cation and
inheritance; and (5) Blair [4]: identity, encapsulation, classi®cation, ¯exible
sharing and interpretation.

We have adopted Blair's version of object orientation for, as was pointed
out in [13], the ®ve dimensions help in de®ning a framework which captures all
the encountered variations.
· Identity: The unique identi®cation of every object is through the use of an

object identi®er. An object's uniqueness is modeled even though its descrip-
tion is not unique [21].

· Encapsulation: The grouping together of various properties with an identi®-
able object is usually referred to as the notion of encapsulation. The main
considerations in implementing encapsulation are [13]: (1) the selection of
properties to be encapsulated (e.g. attributes, operations, representations, al-
gorithms, triggers, constraints, etc.), and (2) the determination of visibility of
these properties.

· Classi®cation: The concept of classi®cation is grouping associated objects ac-
cording to common properties. Various classi®cation schemes are possible
such as the set, type, and class. It is important to distinguish between the in-
tentional and the extensional aspects of a particular classi®cation [13]:
� The intent of a classi®cation is the description of that classi®cation char-

acteristics, therefore, the intent speci®es a predicate.
� The extent of a classi®cation is the set of objects in the current environ-

ment which features such behavior, that is, a population selected by ap-
plying a predicate.

· Flexible sharing: The ability for an object to belong to more than one clas-
si®cation is called ¯exible sharing, which will require a ¯exible form of be-
havior sharing. Techniques in achieving ¯exible sharing are based on the
encapsulated properties, the considered classi®cation scheme, and the rela-
tionships between classi®cations.

· Interpretation: The resolution of the precise semantics of the shared item of
behavior. It is necessary to resolve the ambiguity exists in a ¯exible sharing
environment. There are two steps involved in the resolution: type checking
and binding. Type checking is the determination of whether operations
are supported by a particular object; whereas, binding locates the correct im-
plementation of the operation. However, interpretation is a feature that is
more in line with the object-oriented programming aspect. Therefore, we will
only focus on the other four features in FOOM.
In the next section, the four kinds of fuzziness in FOOM are fully discussed.

Features of object orientation exhibited in FOOM are also described. The
notations used throughout the paper is an extension of Uni®ed Modeling
Language (UML) [15].
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3. Fuzzy object-oriented modeling

Fuzzy object-oriented modeling technique is a modeling approach for re-
quirements engineers to model and analyze imprecise requirements. FOOM
extends the traditional OOM along several dimensions: (1) to extend a class to
a fuzzy class which classi®es objects with similar properties, (2) to encapsulate
fuzzy rules in a class to describe the relationship between attributes, (3) to
evaluate fuzzy class memberships by considering both static and dynamic
properties, and (4) to model uncertain fuzzy associations between classes.

3.1. Inside a fuzzy class

Traditionally, a class is used to describe a crisp set of objects with common
attributes, common operations and common relationships. In order to model
the impreciseness rooted in user requirements, we extend a class to describe a
fuzzy set of objects (called a fuzzy class), in which objects may have similar
attributes, similar operations and similar relationships, for example, a set of
interesting books or a class of clever students. In the meeting scheduler system,
the class ImportantParticipant is modeled as a fuzzy class, that is, a participant
may be an important one to a degree.

A fuzzy class in FOOM is an encapsulation of a number of properties that
can be classi®ed as static properties or dynamic ones 1 (see Fig. 1). Static
properties are viewed as integral features of an object that exist for its lifetime
including identi®er, attributes and operations. On the other hand, dynamic
properties are optional for an object and can be short-lived such as fuzzy
rules 2 and fuzzy relationships.

Since a fuzzy class is a group of objects with similar static properties (i.e.,
attributes, operations) and similar dynamic properties (i.e., relationships and
rules), the membership degree of an instance to a fuzzy class is dependent on
the properties, especially the values of attributes and the values of link at-
tributes. In our example, the degree that a person belongs to the class Im-
portantParticipant depends on his status and his role in the meeting he
attends.

The properties of fuzzy relationships and operations are discussed in detail
in Sections 3.3 and 3.4 We focus on the fuzzy ranges and fuzzy rules in this
section.

Attributes with fuzzy ranges: The domain of an attribute is the set of all
values the attribute may take, irrespective to the class it falls into; whereas,
the range of an attribute in a class is de®ned as the set of allowed values that

1 We have adopted this classi®cation scheme from Zenith approach [14].
2 Encapsulating rules in an object is also proposed in SOMA [18].
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a member of a class may take for the attribute [16]. The range of an attribute
ai in the class C is denoted as R�ai;C�. In FOOM, the fuzziness in the range
of an attribute in a class may be due to either a linguistic term or a typical
value.
· A class may be fuzzy for the linguistic values its attributes can take. For ex-

ample, the class YoungMan has a fuzzy range for the attribute age, since a
person may take young or very young as values for his age.

· The range of an attribute is fuzzy because some of its values are deemed as
atypical (i.e. less possible than other values), therefore, each value the attrib-
ute may take is associated with a typical degree 3. In our example, the class
ImportantParticipant has a fuzzy range {student/0.4, sta�/0.7, faculty/1} for
the attribute status, which means that a faculty is typically an important par-
ticipant, and a student is an important participant with a typical degree of
0.4.
It is of interest to note that a crisp class may have attributes with fuzzy

ranges. For instance, the class MeetingRegistration is a crisp class, with an
attribute participant importance, which is associated with a fuzzy range.

Fuzzy rules: Incorporating fuzzy rules in object-oriented analysis can help
enrich the semantics of analysis models. Using fuzzy rules is one way to deal
with imprecision where a rule's conditional part and/or the conclusion part
contains linguistic variables. More speci®cally, fuzzy rules in a fuzzy class play
two important roles: to specify internal relationships between attributes, and to
describe triggers more explicitly. These are usually neglected by most of the
current object-oriented analysis approaches. Although Eckert and Golder [13]
have addressed this issue by treating attributes as objects in which the internal
relationships can be described, their approach ignores the fact that internal

3 The notion of typical values is adopted from [12].

Fig. 1. Properties encapsulated in a fuzzy class.

J. Lee et al. / Information Sciences 118 (1999) 101±119 105



relationships not only exist in between attributes, but also among other en-
capsulated properties.

Fuzzy rules are an optional feature for a fuzzy class in FOOM and are thus
classi®ed as a dynamic property. Fuzzy rules are used to describe the internal
relationship or external relationship. In the former, fuzzy rules describe the
relationship between attributes inside a class. For example, in Fig. 2, a rule ``if
the role is a sta�, the participant importance is less important'' describes the
relationship between the attributes role and participant importance. In the
latter, fuzzy rules are used to describe the relationship between two di�erent
classes.

3.2. Fuzzy classi®cation

Perceptual fuzziness refers to the compatibility between a class and an object
(i.e. ISA), and the class membership between a class and its subclass (i.e. AKO)
[31]. In FOOM, we extend crisp class memberships to fuzzy class memberships
by allowing the existence of perceptual fuzziness. In this section, the notion of
inheritance and how it e�ects the perceptual fuzziness are elaborated. A novel
approach to calculating the membership degree of an object to a class and a
subclass to its superclass is also proposed.

3.2.1. Subclassing and subtyping
Inheritance plays an important role in object-oriented analysis and design.

Generally, inheritance is separated into two di�erent concepts: implementa-

Fig. 2. An example of a fuzzy class.
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tion inheritance and subtyping inheritance [8]. Implementation inheritance
refers to the sharing of representation and implementation code between a
subclass and its superclass. In contrast, subtyping refers to some kind of
conformance between a subclass and its superclass in terms of their inter-
faces.

Subclassing is concerned with how a class is implemented, that is, a new
class is constructed from a parent class by reusing some or all of the parent's
operations [3]. In general, a subclass can be constructed through:
· Extension: add a new operation.
· Rede®nition: retain the original interface but recode a particular method.
· Restriction: inherit a subset of operations.

On the other hand, a type de®nes an abstract interface and can be viewed as
the speci®cation of objects behavior [1,13]. There are three kinds of typing
relationship: subtype, same type, and supertype. In the speci®cation level, the
subtype±supertype relationship can be de®ned in terms of the weak form of the
principle of substitutability [8]:

S is a subtype of T if substituting an object of type S wherever an object of
type T is expected does not introduce the possibility of type errors.
To guarantee the weak form of the principle of substitutability, the fol-

lowing syntactic conditions are imposed.
· The subtype must provide at least all operations of its supertype.
· For each operation in the subtype, the corresponding operation in the super-

class has the same number of arguments and results.
· The type of the arguments of the supertype's operations conform to those of

the subtype's operations.
· The type of the result of the subtype's operations conforms to the type of the

result of the supertype's operations.
It is well known that subclassing and subtyping are not necessarily re-

lated [3,13], namely, a subclass may be of di�erent typing relationships:
subtype, same type or supertype, to its superclass. If the subclass does not
inherit the behavior of its superclass, a problem may occur: when an in-
stance of the subclass is passed to a subprogram expecting an object of the
superclass, the subprogram may produce unexpected results. In FOOM, a
subclass is guaranteed to be either a subtype or a same type of its super-
class, that is, the weak form of the principle of substitutability is main-
tained.

3.2.2. Perceptual fuzziness between classes and subclasses
Traditionally, the AKO relationship between a class and its subclass is crisp,

that is, an instance of a subclass is also an instance of its superclass. In FOOM,
an instance of the subclass may be an instance of its superclass to some extent,
i.e., the AKO degree ranges from 0 to 1.
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As the weak form of substitutability is maintained in FOOM, a subclass is
constructed through extending new operations, rede®ning the inherited
operations, adding new attributes or modifying the inherited attribute ranges.
The AKO degree between a subclass and its superclass can be determined by
examining the following situations:
· Extension of operations and attributes: In this case, an instance of the sub-

class carries all properties of its superclass, and is seen as an instance of
its superclass. The AKO degree between the classes is equal to 1.

· Rede®nition of the inherited operations: In this case, only implementation of
the operation is rede®ned, an instance of the subclass still possesses the be-
havior of its superclass. Therefore, an instance of the subclass is viewed as an
instance of its superclass.

· Modi®cation of the inherited attribute ranges: In FOOM, since the attribute
range in the superclass and subclass are allowed to be fuzzy, the attribute
range in the superclass may include the attribute range in the subclass to
some extent. In this case, an instance of the subclass is an instance of its su-
perclass to a degree.

The perceptual fuzziness of an object to a class or a subclass to its superclass
are calculated by evaluating both the static properties and dynamic properties.
It is also important to note that not all attributes are necessarily related to the
perceptual fuzziness. Referring to our example, the membership degree of a
person to the class ImportantParticipant can be obtained by checking his status
and his participant importance in the meeting he attends. Other properties such
as his address, preference set or exclusive set are irrelevant to the perceptual
fuzziness. An attribute that may a�ect a perceptual fuzziness is called a Focus
Of Attention (FOA) attribute. Therefore, the attribute status is classi®ed as a
static FOA attribute, and participant importance a dynamic FOA attribute.

The criticality of an FOA attribute indicates the relevance of the attribute to
a perceptual fuzziness. For example, the attribute participant importance is
more relevant than the attribute status while examining if a participant is an
important one, therefore, it is assigned a higher criticality. To determine the
criticality of attributes, we utilize the Analytic Hierarchy Process (AHP) [28],
which compares pairwise attributes according to their relative criticality. We
use CRI�ai;C� to denote the criticality of an FOA attribute ai to the perceptual
fuzziness for the class C. After the process of AHP, criticalities of attributes are
normalized, that is,

P
ai ;2FOA�C� CRI�ai;C� � 1, where FOA(C) is the set of

FOA attributes for the class C.
The membership degree of a class in its superclass has to account for the

criticalities of the FOA attributes and the degree of inclusion of the range of
each FOA attributes of the class in that of its superclass. Supposed that the
class C is a superclass of the class D. The membership degree of the class C in
the class D is denoted as AKO(D,C), and de®ned as
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AKO�D;C� �
X

ai2Att�C�\FOA�C�
CRI�ai;C� �AKOai�D;C�

�
X

Ek2A�C�

X
bj2Att�hC;Eki�\FOA�C�

CRI�bj;C�
0@ �AKObj�D;C�

1A;
where A�C� is the set of classes associated with C, Att(C) is the set of attributes
in C, and Att�hC;Eki� is the set of link attributes in the association hC;Eki
which is established between the classes C and Ek. The degree AKOai�x;C� is
the AKO degree with respect to (w.r.t.) the attribute ai and AKObj�x;C� refers
to the AKO degree w.r.t. to the link attribute bj.

To calculate AKOai�D;C�, we also need to examine whether the fuzziness of
R�ai;C� is of the type of linguistic terms or typical values.
· In the case of linguistic terms, the membership degree is de®ned as the fuzzy

inclusion of R�ai;D� into R�ai;C�:
AKOai�D;C� � INCI�R�ai;C�jR�ai;D��:

The degree of inclusion of fuzzy sets is de®ned as

INCI�AjB� � kA \ Bk
kBk :

Note that INCI�AjB� � 1 if and only if A � B, and INCI�AjB� � 0 if and
only if A \ B � ;. Therefore, ISAai�D;C� � 1 if and only if the range of ai in
the class D is included in the range of ai in the class C, and ISAai�D;C� � 0 if
there is no intersection in between.

· In the case of typical values, the membership degree is de®ned by a fuzzy in-
clusion based on Godel's fuzzy implication [10]:

AKOai�D;C� � INCG�R�ai;C�jR�ai;D��:

The fuzzy inclusion INCG�AjB� between the fuzzy sets A and B is de®ned as:

INCG�AjB� � inf
s
�lB�s� ! lA�s��;where lB�s� ! lA�s�

� 1 if lB�s�6 lA�s�;
lA�s� otherwise:

�
Note that INC�R�ai;C�jR�ai;D�� � 1() 8s; lR�ai;D��s�6 lR�ai;C��s�,

that is, the range of the attribute ai in the subclass is included in the corre-
sponding range of its superclass. More speci®cally, the subclass inherits attri-
butes from its parents by specializing their ranges.

It is also required to examine whether the fuzziness of R�bi; hC;Eki� is of the
type of linguistic fuzziness or typical values while calculating AKObj�D;C�:
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· In the case of linguistic terms, the membership is de®ned as the fuzzy inclu-
sion of R�bj; hD;Eki� into R�bj; hC;Eki�:

AKObj�D;C� � INCI�R�bj; hC;Eki�jR�bj; hD;Eki��:
· In the case of typical values, we have

AKObj�D;C� � INCG�R�bj; hC;Eki�jR�bj; hD;Eki��:

3.2.3. Perceptual fuzziness between classes and objects
The class membership between an object and a class is crisp, that is, the ISA

degree of an object to a class is either 1 or 0. In FOOM, a perceptual fuzziness
between an object and a class is allowed. An object may belong to a class to a
degree. In the meeting scheduler system, a person may belong to the class
ImportantParticipant to some extent.

The ISA degree between an object and a class can be established either
explicitly or implicitly [3]. In [17], the ISA degree is explicitly given, and used to
derive the values of attributes of the object. Therefore, an object shares part of
properties from its base classes. In FOOM, the ISA degree is implicitly de-
termined by the structure of classes (see Fig. 3).

The membership degree of an object x in a fuzzy class C is denoted as
ISA�x;C�, and de®ned as:

ISA�x;C� �
X

ai2Att�C�\FOA�C�
CRI�ai;C� � ISAai�x;C�

�
X

Ek2A�C�

X
bj2Att�C;Ek�\FOA�C�

CRI�bj;C�
0@ � ISAbj�x;C�

1A;

Fig. 3. An example of perceptual fuzziness for ISA relationship.
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where ISAai�x;C� is the membership degree of the object x in the class C with
respect to (w.r.t.) the attribute ai, and ISAbj�x;C� refers to the membership
degree w.r.t. to the link attribute bj. Both static properties (object attributes)
and dynamic properties (link attributes) are required for computing the
membership degree of an object in a class.

To calculate ISAai�x;C�, we need to examine whether the fuzziness of
R�ai;C� is of the type of linguistic terms or typical values.
· In the case of linguistic terms, the membership degree is de®ned as the degree

of inclusion of the value of ai of x into the range of ai in C, that is

ISAai�x;C� � INCI�R�ai;C�jV �ai; x��;
where V �ai; x� is the value of x for ai.

· In the case of typical values, the membership degree is de®ned by
lR�ai;C�V �ai; x�, that is,

ISAai�x;C� � lR�ai ;C�V �ai; x�:

Similarly, to calculate the membership degree w.r.t. to a link attribute, we
also need to check to see whether the fuzziness of the range of the link at-
tribute's values is of the type of linguistic terms or typical values.
· In the case of linguistic terms, the membership degree is de®ned as the degree

of inclusion of the value that bj takes for the link hx; ei into the range of bj in
hC;Eki, where e is an instance of Ek connected with the object x:

ISAbj�x;C� � INCI�R�ai; hC;Eki�jV �ai; hx; ei��:
· In the case of typical values, we have

ISAbj�x;C� � lR�ai ;hC;Eki�V �ai; x�:
In our example, supposed that we have the following information in the

meeting scheduler system:
R(status, ImportantParticipant)� {student/0.4, sta�/0.6, faculty/1.0}
R�participant importance; h ImportantParticipant; Meeting i� � important
V (status, John) � ``student''
V (role, John) � ``sta�''
V �participant importance; h John;M101 i� � less important
CRI(status, ImportantParticipant) � 0.3
CRI(participantimportance, ImportantParticipant) � 0.7
The value V (participant importance, John) is derived by the rule ``if the role

is sta�, the participant importance is less important''. To calculate the mem-
bership degree of a participant John to the class ImportantParticipant (abbre-
viated as IP), we ®rst calculate the membership degrees w.r.t the FOA
attributes status and participant important (abbreviated as pi).
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ISAstatus�John; IP� � lR�status; IP��student� � 0:4; and

ISApi�John; IP� � INC�important j less important� � 0:6:

Therefore, we have

ISA�John; IP� � CRI�status; IP� � ISAstatus�x; IP� � CRI�pi; IP�
� ISApi�x; hIP; Meetingi� � 0:54:

It should be noted that the importance degree of John is dynamically de-
termined by the meeting he attends. The example above describes that: ``John is
a more or less important participant (since the degree is 0.54) for the meeting
M101''.

3.2.4. Discussion
The concept of fuzzy clustering is somewhat similar to fuzzy classi®cation in

our approach: an entity (or object) can belong to a cluster (or a class) to some
extent.

The primary objective of clustering techniques is to partition a given data
sets into clusters. The concept of fuzzy clustering has been applied to the area
of software engineering to the analysis of software systems structure, such as
automatic clustering of a large number of program modules [2,26]. Techniques
used to measure the distance between data include fuzzy similarity measure and
fuzzy inclusion measure.

In FOOM, we use fuzzy inclusion technique to compute the compatibility
degree between a class and an object, and the class membership between a class
and its subclass (i.e., perceptual fuzziness). Instead of using fuzzy inclusion
technique to clustering data, our focus is to determine the compatibility be-
tween objects based on their properties (i.e. attributes, operation, and associ-
ation). In Table 1, we compare di�erences between our approach and fuzzy
clustering.

Table 1

A comparison of fuzzy clustering and FOOM

Objective Application in soft-

ware engineering

®eld

Measure

Fuzzy

clustering

Data partition [10] Clustering program

module [2,26]

Similarity, inclusion

measure [26]

Perceptual

fuzziness

Compatibility between

entities and concepts [31]

Class classi®cation in

FOOM

Inclusion measure in

FOOM
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3.3. Uncertain fuzzy associations

Links and associations are means for establishing relationship among ob-
jects and classes. A link is a physical or conceptual connection between object
instances. For example, John work-for Simplex company. An association de-
scribes a group of links with common structure and common semantics. For
example, a person work-for a company. In traditional object-oriented ap-
proaches, only crisp associations are introduced, namely, an object either
participates in an association or not.

Usually, certain and precise knowledge about an association is not always
available in the user requirements; furthermore, usersÕ observations are
sometimes uncertain and imprecise. Therefore, an adequate management of
uncertainty and imprecision in the phase of requirements analysis is an im-
portant issue. The distinction between imprecise and uncertain information can
be best explained by Dubois and Prade [11]: imprecision implies the absence of
a sharp boundary of the value of an attribute; whereas, uncertainty is an in-
dication of our reliance about the fuzzy information.

A uncertain fuzzy association is allowed in FOOM. The imprecision of an
association implies that an object can participate in the association to some
extent, whereas uncertainty is referred to the con®dence degree about the as-
sociation. To represent the imprecision of an association, a special link at-
tribute is introduced in FOOM to indicate the intensity that objects participate
in an association. Fuzzy truth value, such as true, fairly true and very true, is
used to serve as the representation of uncertainty for its capability to express
the possibility of the degree of truth.

A link between x and y which is an instance of the association R is repre-
sented as a canonical form in FOOM:

�link attribute; hx; yi; degree of participation; s�;
where the ®rst component of the quadruple is a link attribute of an association.
The value that a link hx; yi takes for the link attribute is described in the degree
of participation, which represents the degree that objects x and y participate in
the association R. The value is a linguistic term such as very high, high or low.
The fuzzy valuation s is a con®dence level of the fuzzy association, whose value
is a fuzzy truth value.

For example, an important participant can identify his preference for lo-
cations and the intensity of his preference (see Fig. 4). Sometimes it is not
certain whether a participant prefer a speci®c location or not. To model the
relationship between important participants and locations to be an uncertain
fuzzy association prefer will help the meeting scheduler system to resolve
con¯icts and make a most convenient schedule. A link attribute preference is
associated with the association prefer to indicate the degree of preference. By
stating that a link between John and L102 is �preference; hJohn; L102i;
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strong; very true�, we mean that it is very true that John strongly prefers the
location L102.

Constraints with imprecise information are also allowed in FOOM, called
soft constraints. For example,the requirement ``a meeting location should be as
convenient as possible for all important participants'' is modeled as a soft
constraint on the associations prefer and take place.

3.4. Polymorphism

Polymorphism is one of the most characteristic features of object-oriented
approaches. An operation may apply to many di�erent classes is polymorphic,
that is, the same operation takes on di�erent forms in di�erent classes. Several
techniques have been proposed to support polymorphism, for example, over-
loading, coercions, parameter polymorphism, and inclusion polymorphism [3].

Inclusion polymorphism is adopted in FOOM. Inclusion polymorphism
allows a function to operate on a range of types. The range of types is deter-
mined by subtyping relationships. With inclusion polymorphism, a function
de®ned on a particular type can also operate on any subtype. Since FOOM
maintains the weak form of the principle of substitutability, an operation de-
®ned in the superclass is viewed as a polymorphic operation.

4. Related work

A number of researchers have reported progress towards the successful in-
tegration of fuzzy logic and object-oriented modeling in the Fuzzy Logic and
Software Engineering literature, e.g. [12,16,17,19,20,29], which can be classi®ed
into three categories based on their intended modeling purposes:

Knowledge representation for AI systems: Lano has proposed to combine
fuzzy reasoning and object-oriented representation for the real-world infor-
mation [22]. A knowledge base is organized as a class hierarchy for repre-
senting concept categories, each class corresponds to a fuzzy set, whose
membership functions is the proximity metric de®ned for the class. Learning is
the process that transforms a knowledge base and a new example to a new
knowledge base.

Fig. 4. An example of fuzzy association.
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To support an approximate reasoning in systems based on prototypical
knowledge representation, Torasso and Console have de®ned a formalism for
the representations and a general evaluation mechanism to deal with the form
of knowledge [29]. Each frame has three kinds of weighted attributes: neces-
sary, su�cient and supplementary. The evaluation mechanism is based on
fuzzy logic: the fuzzy match between prototypical description and sets of data
is based on possibility theory and the relevance measure of each slot.

To handle vagueness and imprecision in an expert system, Leung and
Wong [25] integrate fuzzy concepts into object oriented knowledge represen-
tation. Relationships between classes may be crisp or fuzzy, which is depen-
dent on the types of classes. If the relationship is fuzzy, the certainty factor of
class variables and rules in a class will be modi®ed in the subclass. An ap-
proach to querying fuzzy objects and the fuzzy relations between classes is
also proposed.

Data modeling for database systems: In [12], Dubois and Prade have advo-
cated that classes can be intensionally described in terms of attributes which are
distinguished between the range of allowed values and the range of typical
values. The degree of inclusion between a class C1 and a subclass C2 is com-
puted by comparing the ranges or the typical ranges of C1 with the ranges or
the typical ranges of C2. Three kinds of inheritance are proposed: typical in-
heritance, normal inheritance and atypical inheritance.

In [19], the problem of object recognition is viewed as a classi®cation
problem, which is characterized by an objected-oriented knowledge represen-
tation and control strategies based on fuzzy pattern matching procedures.
Taxonomies of classes are represented by hierarchies of frames. Which class
matching the unknown object is decided by fuzzy matching theory based on
possibility theory. The matching process is seen as a quanti®cation of similarity
and di�erences of both objects, and the computation of these measures strongly
depends on the types of the prototypes and object ®elds and the weight of each
®eld.

Bodogna et al. [6] propose a Fuzzy Object Oriented model for manage-
ment of crisp and fuzzy data. Their work develops a fuzzy graph-based data
model, which intends to generalize a graph model so that imprecision and
uncertainty can be managed at di�erent levels. To formulate imprecise que-
ries and retrieve precise or imprecise object with a degree of plausibility as-
sociated with them, fuzziness is managed in two level: imprecise in the data
themselves and knowledge of the data, i.e., uncertainty in the information on
the data.

Object-oriented modeling for conventional software systems: George et al.
have utilized the ranges of fuzzy values of classes and objects for computing the
degree of inclusion and membership, respectively [16]. To measure the class
memberships, a similarity metric is formulated to measure the nearness be-
tween attributes' values in a superclass and its subclasses (see Fig. 5).
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Graham [17] has focused on the derivation of unknown values of attributes
through the use of a-kind-of relation (AKO), generalized modus ponen and
defuzzi®cation techniques [17]. In Graham's work, the notion of an object is
extended to that of a fuzzy object in two ways: (1) attributes' values may be
fuzzy, and (2) AKO is a matter of degrees. The AKO degree between classes
is assumed to be known by a system, and unknown attributes' values are
derived through AKO, generalized modus ponen and defuzzi®cation tech-
niques.

In [20], the focus has been on the representation of uncertain information
based on a generalized fuzzy sets notation. Gyseghem et al. represent fuzzy
information as fuzzy sets and uncertainty by means of generalized fuzzy set. A
generic class Fuzzy-Set is introduced to capture fuzziness associated with at-
tributes. Uncertain information is modeled by a kind of generalized fuzzy sets
in which each element of the universe is associated with a fuzzy truth value
{p/true, n/false}.

However, none of this work is devoted to the development of an object-
oriented technique for informal requirements, but either to the formulation of
class memberships (e.g. [12,17]), or to the representation of prototypical
knowledge as in [29,19]. Furthermore, features of object orientation are not
fully explored in these work. Types of fuzziness in consideration are also
somewhat limited. Comparing FOOM with previous researches, FOOM o�ers
several important bene®ts (see Table 2):

Fig. 5. Modeling meeting scheduler system using FOOM.
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· FOOM provides a more comprehensive modeling technique by considering
di�erent kinds of fuzziness that are usually found in user's requirements.

· These approaches only consider static attributes in computing the class
membership, which neglects the fact that a fuzzy class is a fuzzy set of objects
with similar attributes, operations and relationships. FOOM not only takes
static attributes into account, but also relationships.

· FOOM is more general an approach than non-fuzzy ones in that FOOM can
model both crisp and imprecise requirements. The benchmark against non-
fuzzy modeling techniques can be evaluated based on the following aspects:
focus of modeling, ranges of attributes in a class, association between class-
es, and the classi®cation mechanism.

5. Conclusion

As was pointed by Borgida et al. [7], a good requirement modeling approach
should take the problem of describing natural kinds into account; furthermore,

Table 2

Integrating OOM with fuzzy logic: a comparison

Focus Fuzziness

Attribute Association Classi®cation

Property Evaluation

Non-fuzzy

technique

Modeling

crisp require-

ments

Crisp value,

crisp type

Certain,

precise

Static,

dynamic

Crisp

FOOM Model

imprecise

requirements

Linguistic

fuzziness,

typical

values

Degree of

participa-

tion, uncer-

tainty

Static,

dynamic

Fuzzy

implication

Bordogna

et al. [6]

Imprecise

data

management

Type,

class

Link

strength,

uncertainty

Static Explicit

Dubois

et al. [12]

Uncertainty in

hierarchy

Possibility

distribution

No Static Fuzzy

implication

George

et al. [16]

Imprecise

data in data

base

No No Static Fuzzy

similarity

Graham

[17]

Fuzzy object Linguistic

fuzziness

No Static Explicit

Granger

[19]

Object

recognition

Uncertainty No Static No

Leung and

Wong [25]

Approximate

reasoning

Linguistic

fuzziness

No Static Explicit

Tarosso

and Cam-

bell [29]

Approximate

reasoning

Possibility

value

No Static No
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Zadeh have indicated that almost all concepts in or about natural languages
are almost fuzzy in nature [32]. In this paper, we have proposed an approach to
incorporating fuzzy concepts into object-oriented systems for modeling im-
precise requirements. Several kinds of fuzziness involved in user requirements
are identi®ed: fuzzy classes, fuzzy rules, fuzzy ranges of attributes, perceptual
fuzziness, and uncertain fuzzy associations.

Our approach o�ers an important bene®t: to extend traditional object-ori-
ented techniques to manage di�erent kinds of fuzziness that are rooted in user
requirements.

Our future research plan will consider the following tasks: (1) to explore the
possibility of extending FOOM to handle trade-o� analysis among con¯icting
requirements, and (2) to investigate the dynamic behavior in a fuzzy class.
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