
Change the Face of Software Engineering Education: a

Field Report from Taiwan

Jonathan Leea, Yu Chin Chengb

aDepartment of Computer Science and Information Engineering,

National Central University, Jhongli, Taiwan 320.

E-Mail: yjlee@selab.csie.ncu.edu.tw
bDepartment of Computer Science and Information Engineering,

National Taipei University of Technology, Taipei, Taiwan 106.

E-Mail: yccheng@csie.ntut.edu.tw

Abstract

Context: In Taiwan, the supply of software engineers provided by universities
has suffered from both a quantity problem and a quality problem. An effort
to change the software engineering education is in need.
Objective: The Software Engineering Consortium (SEC) of Taiwan sets its
objective to increase the number of college graduates that are better prepared
for filling software development and maintenance jobs.
Method: Four dysfunctions: avoidance of process, inattention to modeling,
lack of awareness to software quality, and chasm between application domains
and software engineering, of the current situation are identified. The effort
to correct the dysfunctions involves design of a module-oriented software
engineering curriculum, and organization of people, resource, and activities.
Results: In the academic years from 2003 to 2008, both the number of soft-
ware engineering courses offered and the enrollment size increased signifi-
cantly by a space of some 250 courses and 5000 enrollments, respectively.
Conclusion: The SEC effort to establishing software engineering modules
has been received with enthusiasm by faculty members and students of the
participating institutes. Inspired by the important foundational work such
as SWEBOK and SE2004, we believe that the adopted strategy of identify-
ing dysfunctions and then designing remedies to address these dysfunctions
contributed significantly to the success of the SEC effort.

Preprint submitted to Information and Software Technology August 27, 2010



1. Introduction

Since the 1990s, Taiwan has established its position as a global supplier of
Information and Communication Technology (ICT) hardware products [1].
The continuing success has resulted in a severe deviation from the global
trend in ICT development. Specifically, the global trend shows a sustained
growth of software and service over computer hardware. In 2008, the global
ICT spending in software and service is 240% of computer hardware. On the
other hand, Taiwan’s software and service industry brought in a mere 4.2% of
the computer hardware industry in revenue [2]. The deviation is considered
as a potential risk by the government and it was decided that the software
and service industry has much room to grow. The expected growth creates
a strong demand on the supply of software engineers, which can be deemed
as a “quantity” problem.

Despite the expected shortage, a recent government report on human re-
source projected an over-supply of a combination of Information Technology
(IT) -related college graduates in the job market [3]. The projected average
surplus is over twelve thousand per annum over the time span from 2005
to 2015. Given that graduates of IT-related programs constitute the main
source of software engineers in this country, it can simply be concluded that
the IT-related programs has failed to adequately prepare the graduates with
core competence to work as software engineers, which can be viewed as a
“quality” problem.

An initiative is set out for change to the current software engineering
education to answer to the requests for more college graduates who are better
qualified to work as software engineers. The change is effected in two steps.
First, a reference curriculum is developed to increase the coverage of the
knowledge areas defined in the Guide to the Software Engineering Body of
Knowledge (SWEBOK) [4]. Second, measures are taken to encourage the
universities to start new software engineering programs based on the reference
curriculum and increase enrollment size.

Since only a change that occurs at the national level can possibly solve
the shortage and competence problems and, before describing how the two
steps are performed, it is helpful to understand one of the most frequently
used mechanisms of effecting changes in Taiwan. Taiwan’s success in ICT
is due in no small part by a strong engagement of the government [1]. The
engagement comes in the form of national-scale projects that involve both
government agencies, organizations in the private sector, and universities;

2



Table 1: Software engineering courses offered in 2003.
course title universities courses

Introduction to Software Engineering 55 121
Advanced Software Engineering 4 5
Object-oriented Software Engineering 8 10
Software Quality Management 4 4
Software Engineering Environment 1 1
Software Project Management 8 17
Advanced Software Project Management 1 1
Capability Maturity Model Integration 0 0
Component-based Software Engineering 0 0
Software Architecture 0 0
Personal Software Process 0 0
Testing & Validation 0 0
Software Metrics 0 0
Workflow Software Engineering 0 0
Web Service Software Engineering 0 0

Total 81 159
Offer a single course 63
Offer module program 5

the objective is to make Taiwan competitive in per area concerned.
In the sequel, we examine the current situation of software engineering

education through a survey of software engineering related courses offered in
the higher education institutions in Taiwan in Section 2, propose a remedy
to the four dysfunctions identified in the survey in Section 3, asses the effort
for change by means of an evaluation model in Section 4, compare other
software engineering education efforts in Section 5, and conclude with our
future plan.

2. Dysfunctions of Software Engineering Education

We began with an analysis of software engineering courses offered in the
academic year 2003 (Table 1). Data are collected from the web site of courses
offering listing from all the universities in Taiwan hosted by National Taiwan
Normal University.

A total of 150 universities were included in this survey. 63 out of 150
universities offered software engineering related (SE-related) courses, whilst
18 courses – difference between 81 and 63 – were offered as module programs
by 5 universities, and a sum of 159 SE-related courses were offered. Two
major problems with the software engineering education in Taiwan can be
derived from the data in Table 1:

3



• One is that only some 3180 students – obtained from an estimation
of 159 courses multiply 20 enrollments per course (assuming that 20
enrollment in each course) – took SE-related courses in the academic
year of 2003, which attributes to the shortage of manpower of software
engineers; and

• The other is that most of which, 121 out of 159, were “Introduction to
Software Engineering”, only 17 courses on “Software Project Manage-
ment”, and a small fraction – 10 courses – on “Object-Oriented Soft-
ware Engineering”, and 4 courses on “Software Quality Management”.
By scrutinizing these course offerings, we found that only a small chunk
of knowledge on software engineering were conveyed in 2003; and that
some of the key concepts in software engineering, such as “process” as
well as “domain knowledge” were missing, and “software quality” as
well as “modeling” were only addressed to a very limited degree, which
explains why the majority of IT-related graduates are not well-equipped
to work as software engineers.

As can be seen, there were problems related to both quantity and quality
as of 2003. It is interesting to note that as early as 1987, an early call
for software engineering education actions was made by L. Bernstein in a
workshop held in Taiwan. However, the call largely went unheeded and no
definitive resource was committed by the government.

As an attempt to alleviate the quantity and quality problems, we con-
clude the analysis by identifying four dysfunctions of software engineering
education: avoidance of process, inattention to modeling, lack of awareness
to software quality, and chasm between application domains and software
engineering (see Figure 1). These four dysfunctions then serve as a basis
for researching into which subjects of courses to be developed to further
strengthen both the breadth and depth of software engineering knowledge,
and thereby to increase the number of enrollment in software engineering
courses.

The problems, analysis, and attributed dysfunctions are derived from the
above analysis and experiences in collaborating with industry and govern-
ment agencies. The experiences include both working on software related
projects and serving on numerous software-related reviewing boards.

4



Avoidance of Process

Inattention to Modeling

Lack of Awareness 

to Software Quality

Chasm

Between

Application

Domains and 

Software Engineering

Figure 1: Four dysfunctions of software engineering education.

2.1. Avoidance of process

It is a common phenomenon among ICT product manufacturers that
software is developed by individuals or by very small teams. Software usually
exists either as an integrated part or as an accessory of the product; it is of
small-scale (e.g., firmware and device drivers); reference implementations are
available from suppliers and are used with little or no tailoring. Under these
circumstances, software developers tend to work independently with little
coordination. As a result, software process is often viewed as an overhead,
that is, paper work that brings little benefit to justify the cost.

However, as ICT products are getting more integrated and end-user ori-
ented, for instance, in the cases of cell phones and personal data assistants,
software becomes too complex to be tackled by individuals in a time-efficient
manner. While capable as individuals, ICT software engineers know little
to work as a team; thus, individual productivity does not scale well where
teamwork is required.

ICT product software development is not alone in suffering from avoid-
ance of process. In recent years, both of the authors participated in reviewing
project proposals for government funding to subsidize the implementation of
Capability Maturity Model Integration (CMMI) [5] by software organiza-
tions. The ultimate goal was for the local companies to obtain a CMMI
maturity level rating and become convincing suppliers in the outsourcing
market. In reviewing the proposals, it is not uncommon to find that many of

5



Table 2: A multi-track curriculum for software engineering module.

Software engineering

methodology

Software process manage-

ment

Software formal method

Introductory level

• Introduction to soft-
ware engineering †

• Programming with
personal software
process †

• Object-oriented soft-
ware engineering
†

• Software testing and
verification

• Software quality man-
agement †

• Software engineering
mathematics

Intermediate level

• Advanced software en-
gineering

• Design patterns

• Software architecture †

• Model-driven architec-
ture

• Introduction to the
team software process
(TSP)

• Capability maturity
model integration
(CMMI) †

• Formal methods in
software engineering †

• Advanced probability
and statistics for soft-
ware engineering

Advanced level

• Software development:
case study

• Agent-based software
engineering

• Software engineering
of workflow programs

• Web-based software
engineering †

• Software engineering
for embedded systems

• Software/hardware co-
design

• Software metrics †

• Software project
management and
economics †

• Empirical software en-
gineering

• Software engineering
with computational
intelligence

† These course materials are published as open courseware in OpenCourseWare Consortium.

6



the organizations are unable to produce a description of their current soft-
ware development and maintenance processes. The avoidance of process can
lead to the check-list mentality in the preparation for an appraisal [6].

While the dysfunction can have many causes, as far as software engineer-
ing education is concerned, the IT-related departments has not been paying
enough attention to courses on software process. Indeed, many people have
traditionally viewed software development and maintenance as an art perfor-
mance rather than an engineering practice and emphasized on innovations
and inventions over processes and disciplines. A popular view among peo-
ple equates developing software with writing program code. While this is
not incorrect from a programming language point of view, in equating the
two the engineering aspects are completely omitted and software develop-
ment and maintenance easily becomes “hacking” performed by individuals.
To help turning things around, software process and process improvement
should receive the right amount of attention.

2.2. Inattention to modeling

Reducing software development and maintenance to coding means by-
passing artifacts created during the various stages of the process and looking
at software at the programming language level. In the software development
parlance, this reduction implies (1) using programming languages as the only
way to model the target systems; and (2) skipping some or all of requirements
models, domain models, design models and test models.

The former usually leads easily to the trap of limiting oneself to the scope
and expressiveness power of what a language can provide, and thus is prone to
getting bogged down to the bugging and debugging vicious circle, hampering
the ability to escalate to a top-down view of the whole system. The latter
makes the visualization of the target system nearly impossible since it breaks
the layers of abstractions, which are highly effective for reducing a complex
problem to a sequence of increasingly formalized models in a manageable
way.

2.3. Lack of awareness to software quality

There is a general lack of concern regarding software quality both in soft-
ware systems and in the development process. Commonly, students confuse
testing with debugging. Most of the programs that the students write while
in school are only debugged but not tested, and rarely run for more than
a few times. There is no time for testing. The debugging-as-testing and

7



no-time-for-testing mentalities carry over when graduates enter the job mar-
ket. The symptoms resurface repeatedly, for example, when developers are
pressed by a time-to-market deadline to ship the product.

2.4. Chasm between application domains and software engineering

By scanning through the courses offered in 2003 in Table 1, we can find
that none of the courses emphasized on bridging the domain knowledge gap to
better prepare our students for the application domains they may encounter
in their careers as software engineers.

In a software development project, software engineers must effectively
communicate with stakeholder such as users, customers and domain experts
in order to capture the right requirements, and develop an ability to grasp
domain knowledge in a more effective and efficient manner. Courses that
provide training in this regard can also be helpful for non-IT students.

Parallel to the four identified dysfunctions in software engineering ed-
ucation in Taiwan is a problem found in many similar settings in which
competing for resources and lacking of coordination are viewed as a com-
mon phenomena but with a slightly different variation of causes. At the
present time, software engineering is viewed as an area of computer science
and must compete with other IT areas in terms of student enrollment in
classes, faculty quota and teaching resources. It is interesting to note that
similar observations were made by a recent survey of master’s programs in
software engineering [7].

3. A Proposed Remedy

A four-year fund at the national-level is secured to support the effort
for solving problem of the shortage of software engineers by correcting the
four identified dysfunctions. The three principal components of the effort
include a plan to organize people and activities, a focused yet highly adapt-
able software engineering curriculum schema, and a strategy for allocating
resources.

3.1. Organization of people and activities

Currently, there are more than one hundred and fifty higher educational
institutions in Taiwan. To maintain a focus on the objectives, to coordinate

8



the efforts, and to ensure cost-effective resource allocation, the Software En-

gineering Consortium at www.sec.org.tw (SEC) was founded to organize the
participating institutes.

The planning and reviewing board is responsible for developing the cur-
riculum schema, setting the resource allocation policies, reviewing project
proposals and monitoring project executions. The board members include ex-
perienced educators, researchers and practitioners from academia, industry,
and government. Resources are allocated to participating institutes through
competitive projects. Two types of projects are defined. Institutes apply-
ing for the individual course project concentrate on improving the teaching
of a specific fundamental course such as Introduction to Software Engineer-
ing. Institutes applying for the module curriculum project aim at building
a more comprehensive software engineering program adapted from the SEC
curriculum schema.

The participating institutes are organized into a number of clusters based
on their strengths and regions. In particular, a number of universities with a
larger faculty size (e.g., over three faculty members in software engineering)
are invited to submit a project proposal to become a cluster center. To qual-
ify as a cluster center, an institution either must have established a software
engineering module program or is in the process of establishing one. A cluster
center is assigned the responsibilities of developing common teaching mate-
rials to be shared by consortium members, recruiting cluster partners, and
organizing and hosting teaching workshops. In contrast, the cluster partners
are institutes that are less well-endowed but show clear commitment to soft-
ware engineering education. Their responsibilities include offering the basic
core courses to their students and participating in consortium and cluster
activities.

3.2. A tailorable software engineering courses framework

The SEC favors a curriculum suitable for tailoring into an elective module

program over a comprehensive undergraduate degree program [8]. An elective
module program is defined as a relative compact collection of core courses in a
discipline outside of the student’s major. An elective module program in the
Taiwanese universities comprises anywhere from six to ten 3-credit courses.
A student completing the requirements of an elective module program is
conferred a certificate at graduation.

An elective module program has a number of advantages. First of all,
it can be set up in a relatively short period of time, typically from six to

9



twelve months. In contrast, the approval process for starting an undergrad-
uate degree program can take two to four years. Secondly, since a module
program is more feasible to students outside IT-related departments to elect
and can be more effective in helping non-IT majors to cross the domain-
and-software-engineering chasm. Thirdly, a module program can be elected
by both undergraduate and graduate students, therefore producing more
better qualified software engineers. Finally, the module program serves as
the interim stage of establishing comprehensive undergraduate and graduate
programs in software engineering.

The main disadvantage of an elective module program for software en-
gineering is its limited coverage of the knowledge areas in the SWEBOK.
In developing the module-oriented curriculum, materials are drawn from
the standard references [9, 4, 10, 11]. The identified subjects are allocated
into a software engineering courses matrix with the horizontal dimension of
three knowledge areas: software engineering methodology, software process
management, and software formal methods; and with the vertical dimen-
sion of three levels: introductory, intermediate, and advanced. In Table
2, twenty-four courses populate the nine cells of the matrix, of which ten
courses are equipped with courseware materials and can be found in the
OpenCourseware Consortium web site under the path of members/affiliate
society/Taiwan/SEC.

A detailed account on the selection of the courses is beyond the scope
of this paper. The following briefly described course selections to fix the
dysfunctions related to process, modeling, and quality.

In order to put the notion of process into perspective, several courses on
process and process improvement are included. For example, Programming
with Personal Software Process (PSP) [12] is included to create a focus on
discipline and quality at the level of the individual programmers. At the
intermediate level, Capability Maturity Model Integration (CMMI) [10] is
included since it addresses process and quality concerns at the organization
level. Note that CMMI has become the de facto process improvement stan-
dard in industry and government in Taiwan. To provide a prism for viewing
into the target systems and analyzing the real world application domains in
a higher level, courses covering abstractions such as the notion of objects,
agents, and services injected into this curriculum, including Object-Oriented
Software Engineering, Design Patterns, Agent-Based Software Engineering,
and Web-Based Software Engineering. To raise the awareness of quality,
courses such as Software Testing and Verification, Software Quality Manage-

10



Table 3: A Summary of SE-related Course Offerings from 2003 to 2008.
2003 2004 2005

course univ. courses univ. courses univ. courses

Intro. to SE 55 121 70 159 83 223
Advanced SE 4 5 5 5 5 5
OOSE 8 10 9 13 16 27
Software Quality Management 4 4 3 4 9 13
SE Environment 1 1 1 1 1 1
Software Project Management 8 17 11 15 18 37
Adv. Software Project Management 1 1 1 1 2 8
CMMI 0 0 3 5 1 1
Component-based SE 0 0 2 2 1 1
Software Architecture 0 0 0 0 0 0
PSP 0 0 5 7 6 6
Testing & Validation 0 0 1 1 0 0
Software Metrics 0 0 3 4 2 3
Workflow SE 0 0 0 0 0 0
Web Service SE 0 0 0 0 1 1

Total 81 159 114 217 145 326
Offer a single course 63 76 86
SEC-Sponsored individual course 0 54 45
Offer module program 5 7 12
SEC-Sponsored module program 0 0 6

2006 2007 2008

course univ. courses univ. courses univ. courses

Intro. to SE 86 261 95 268 87 274
Advanced SE 5 5 5 5 5 5
OOSE 19 36 19 30 18 26
Software Quality Management 7 13 8 13 11 22
SE Environment 0 0 2 2 2 3
Software Project Management 24 47 21 49 26 48
Adv. Software Project Management 3 6 1 1 1 1
CMMI 1 1 7 9 2 2
Component-based SE 0 0 2 2 1 1
Software Architecture 5 6 4 4 4 4
PSP 9 10 6 7 6 6
Testing & Validation 2 8 2 2 3 6
Software Metrics 2 2 2 2 2 2
Workflow SE 1 1 0 0 1 1
Web Service SE 4 5 3 5 3 5

Total 169 402 177 400 172 406
Offer a single course 88 101 92
SEC-Sponsored individual course 47 10 0
Offer module program 20 21 22
SEC-Sponsored module program 14 10 0

11



ment, Software Architecture, and Software Measurement are included in the
curriculum.

3.3. Tracks and instantiation examples

The SEC members are given much freedom in tailoring the curriculum to
meet their own developmental objectives. To this end, three generic tracks
are identified: the research track, the pragmatic track and the professional

track.
The research track is intended for research-oriented institutes, where the

primary issue is to stay at the frontier of software engineering research, in-
cluding development of new methods, tools, theoretical studies, etc. The
pragmatic track is for institutes emphasizing software development using
matured methods and technologies. Notably, the pragmatic track seeks to
further enhance a close collaboration between industry and academia that
has been cited as one of the most significant reasons behind the success in
Taiwan’s ICT industry [1]. The professional track serves people already on
job. For example, with government subsidy, the Software Engineering Asso-
ciation of Taiwan (SEAT) has run a number of highly successful short courses
of software testing based on the corresponding consortium course. The short
course is a good example of the collaborated effort among industry, academia,
and government for improving software development practices and quality.

4. Evaluation of the Effort for Change

In order to assess the results of the effort for change, we have designed
an evaluation model with three criteria: the number of courses offered, the
number of universities that offer SE-related courses, and the number of uni-
versities that offer two or more SE-related courses to measure the impact
of proliferation, especially, on the module programs after the closure of this
project. We have applied this model to both the universities sponsored by
SEC and to all the universities in Taiwan. Data are collected from the same
data source as Table 1.

Table 3 lists the number of courses offered, the number of universities
that offer SE-related courses, and the number of universities that offer two
or more SE-related courses in the time span from 2003 to 2008. We can see
clearly that there is a significant improvement measured by the three criteria:

12



• the growth of the total number of courses offered has been rising at
about 36 percent per year from 2003 to 2006, and then has flatlined at
about 400 courses since 2006;

• since 2003, the number of universities that offer SE-related courses was
up 46 percent from 61 in 2003 to 92 in 2008; and

• the number of universities that offer two or more SE-related courses
tripled from 18 in 2003 to 80 in 2008 which accounts for the dramatic
increase of the number of universities offering module programs from 5
to 22.

To put into perspective the impact of proliferation of this plan for change
(see Table 3), we take the universities sponsored by SEC as a baseline to
measure the degree of improvement by means of the total number of univer-
sities that offer SE-related courses and the total number of universities that
offer module programs.

Since 2003, referring to Figure 2(a), the number of universities that offer
SE-related courses was up 46 percent from 61 in 2003 to 92 in 2008; mean-
while, the number of universities sponsored by SEC dropped from the peak
of 54 to 10 in the time span from 2004 to 2007.

In Figure 2(b), it is clear that more universities, exploding by a factor of
nearly five, have developed the capacity from offering single courses to offer-
ing a comprehensive module program based on the SEC curriculum models;
on the other hand, the universities sponsored by SEC account only for a
small fraction of the total share.

5. Other Software Engineering Education Efforts

We have surveyed the recent publications in the CSEET, ICSE education
track and other sources. Since the body of literature is vast, we shall focus our
scope to three specific software engineering education efforts, the Graduate
Software Engineering 2009 (GSwE2009) [13], the Top SE program of Japan
[14] and the KAIST-CMU Master of Software Engineering (MSE) program of
Korea [15]. As with the SEC effort reported in this paper, all of the surveyed
efforts are either directly or indirectly influenced by SWEBOK [4], SE2004
[8], and the SEI graduate curriculum [16]. In addition, the latter two efforts
are included for the following reasons: (1) both are in the same geographical

13



(a)

(b)

Figure 2: Impact of Proliferation

14



region as Taiwan and traditionally strong in ICT products manufacturing
and export; and (2) both programs received government subsidy.

GSwE2009 [13] got started in 2007 using the SEI curriculum [16], SWE-
BOK [4] and SE2004 [8] as the foundation. GSwE2009 has evolved according
to the experiences obtained from 28 MS programs throughout mainly US
but with participating schools in Canada and UK as well [7]. GSwE2009 has
gained formal sponsorship from The IEEE Computer Society and the Associ-
ation for Computing Machinery (ACM). The SEC curriculum design, which
was started in 2004, shares many commonalities with GSwE2009, including
emphasis on an identified core and flexibilities for the adopting institutes to
tailor. In continuing the effort of SEC, GSwE2009 constitutes a good source
of reference, including the specification of defined capabilities of the gradu-
ates and the emphasis on integration with domain (e.g., telecommunications,
finance, medical, etc.) with software engineering.

The Top SE program of Japan aims to bridge the gap between academia
and industry by educating software professionals and graduate students into
what is called the “superarchitect”: software professionals with capability
to model, apply tools to practical problems, adapt to new technologies and
tools, and to promote the technologies and tools [14]. Top SE has produced
87 graduates in its first four years from 2007 to 2010. Note that the program
by itself does not offer a degree.

The KAIST-CMU MSE program is a master-degree program jointly of-
fered by KAIST of Korea and Carnegie Mellon University [15]. An applicant
to program is expected to have two or more years of experience in industrial
software development. The most recent experience report indicated that 47
graduates (out of 60 students initially enrolled) completed the degree pro-
gram from 2006 to 2009. The vast majority of graduates were able to get
good software development jobs in the Korean industry. The curriculum
design follows a core-elective-studio-master thesis structure: the student is
required to take five core courses, two to three elective courses, one software
studio project, and lastly the master thesis. The joint offer provides a unique
experience for the students, though it has been indicated that cultural issues
should be considered as the graduates will eventually work in Korea.

In comparison, the SEC curriculum focuses on reforming SE curriculum
both in undergraduate and graduate levels with the main objective of creat-
ing as many SE-ready graduates as possible. Thus, by its nature, the design
of the SEC curriculum lacks the kind of Top SE’s focus on tools and the
application domain, nor can it enforce a coherent set of core courses such as

15



in the KAIST-CMU MSE program. On the other hand, the SEC curriculum
adopting institutions choose their own focus. In particular, it is worth men-
tioning that many domain-specific education reform programs in Taiwan have
begun to incorporate some courses of the SEC curriculum into their program,
especially software process, software design and software testing. Programs
like Top SE and KAIST-CMU MSE can be seen as an effort towards a small
scale focus group in which application domain and use of tool can reap best
results. Furthermore, the software studio course in the KAIST-CMU MSE
program is obviously a good idea to follow, although finding enough indus-
trial partners/sponsors to provide the project subjects can be a challenge to
the SEC consortium members.

In summary, the following items constitute what makes the SEC curricu-
lum unique. (1) The SEC effort seeks to incite software engineering education
in Taiwan at the national level, whereas Japans Top SE and Koreas KAIST-
CMU MSE program operate at the institutional level. (2) Undergraduate
and graduate students without professional experience constitute the main
enrollment body. (3) The SEC curriculum emphasizes a module-oriented pro-
gram with certificate rather than a degree program, which has a low entry
barrier for most universities in the SEC to produce enough graduates to sat-
isfy national level demand in a short amount of time. (4) Less and incoherent
coverage of SWEBOK; unlike KAIST-CMU and Top SE where core courses
are mandatory and fixed, the SEC curriculum allows its members to tailor
the program. (5) Like the programs in Japan and Korea, government sub-
sidy was used very differently. In our case, spending the government money
wisely becomes a challenge since many universities are involved, which is
why we explain in some detail on the organization of people and activities
(Section 3.1). We believe the SEC experience could be useful to other regions
and countries seeking to revitalize software engineering education.

6. Concluding Remarks

Having just completed the first four-year funding cycle, the SEC effort
to establishing software engineering modules has been received with enthu-
siasm by faculty members and students of the participating institutes. The
endeavors have already created a number of new phenomena. Institutes are
setting up software engineering modules or offering core software engineering
courses and many students are signing up; more faculty positions are open
up to people specialized in software engineering; and above all, there is an

16



increasingly strong sense of community among people teaching, researching,
and practicing software engineering.

Current SEC effort has been recognized as a success and further fund
appropriation is underway. In the next stage, the objectives are to encour-
age the infusion of software engineering ingredients into four basic courses
offered in computer science, including Introduction to Programming, Object-
Oriented Programming, Data Structures, and Algorithms, to explore the
possibility of integrating open source software engineering tools with four
SE-related subjects: Software Testing, Configuration Management, Project
Management, and Issues/Defects Tracking, and to build a platform for initi-
ating a collaboration program with ICT industry sector in Taiwan to co-offer
SE-related courses in the university.

References

[1] A. L. Dahl, A. Lopez-Claros, The impact of information and commu-
nication technologies on the economic competitiveness and social devel-
opment of taiwan, Tech. rep., Global Information Technology Report
2005-2006, in Leveraging ICT for Development, edited by S. Dutta, A.
Lopez-Claros, I. Mia, Palgrave Macmillan (March 2006).

[2] The 2008 Year Book of the Information Services
Industry (In Chinese), III-MIC, III-0453-T702(97),
2008, available at http://www.itis.org.tw/pubinfo-
detail.screen?industry=1&ctgy=9&pubid=58471516.

[3] Y.-M. Lou, W.-T. Chao, S.-C. Fan, An Analysis of Taiwans Science and
Technology Human Resource Supply and Demand for 2005 2015, Coun-
cil for Economic Planning and Development, Taiwan, ROC, ISBNG986-
00-5419-3, 2006.

[4] SWEBOK Project Web Site, available at http://www.swebok.org.

[5] Software Engineering Institute (SEI) CMMI Web Site, available at
http://www.sei.cmu.edu/cmmi/.

[6] D. M. Ahern, J. Armstrong, A. Clouse, J. Ferguson, W. Hayes, K. Ni-
differ, CMMI SCAMPI Distilled: Appraisals for Process Improvement,
Addison-Wesley, 2005.

17



[7] A. Pyster, R. Turner, D. Henry, K. Lasfer, L. Bernstein,
Master’s degrees in software engineering: An analysis of 28
university programs, IEEE Software 26 (5) (2009) 94–101.
doi:http://doi.ieeecomputersociety.org/10.1109/MS.2009.133.

[8] Software Engineering 2004: Curriculum Guidelines for Undergrad-
uate Degree Programs in Software Engineering, 2004, available at
http://sites.computer.org/ccse/.

[9] P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L. Tripp, The guide
to the software engineering body of knowledge, IEEE Software 16 (6)
(1999) 35–44.

[10] D. M. Ahern, A. Clouse, R. Turner, CMMI Distilled: A Practical Intro-
duction to Integrated Process Improvement, Addison-Wesley, 2003.

[11] M. B. Chrissis, M. Konrad, S. Shrum, CMMI : Guidelines for Process
Integration and Product Improvement, Addison-Wesley, 2003.

[12] W. S. Humphrey, A Discipline for Software Engineering, Addison-
Wesley, 1995.

[13] Graduate Software Engineering 2009: Curriculum Guidelines for
Graduate Degree Programs in Software Engineering, available at
http://www.gswe2009.org/.

[14] S. Honiden, Y. Tahara, N. Yoshioka, K. Taguchi, H. Washizaki, Top
se: Educating superarchitects who can apply software engineering
tools to practical development in japan, in: ICSE ’07: Proceed-
ings of the 29th international conference on Software Engineering,
IEEE Computer Society, Washington, DC, USA, 2007, pp. 708–718.
doi:http://dx.doi.org/10.1109/ICSE.2007.89.

[15] S. Kang, I.-Y. Ko, J. Baik, H. Choi, D. Lee, Kaist-cmu mse program
- the past and the future, in: CSEET ’10: Proceedings of the 2010
23rd IEEE Conference on Software Engineering Education and Train-
ing, IEEE Computer Society, Washington, DC, USA, 2010, pp. 49–56.
doi:http://dx.doi.org/10.1109/CSEET.2010.24.

18



[16] G. Ford, SEI report on graduate software engineering
education, SEI (CMU/SEI-91-TR-2), 1991, available at
http://www.sei.cmu.edu/library/abstracts/reports/91tr002.cfm.

19


