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A Fuzzy Petri Net-Based Expert System and Its
Application to Damage Assessment of Bridges
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Abstract— In this paper, a fuzzy Petri net approach to
modeling fuzzy rule-based reasoning is proposed to bring
together the possibilistic entailment and the fuzzy reasoning
to handle uncertain and imprecise information. The three
key components in our fuzzy rule-based reasoning—fuzzy
propositions, truth-qualified fuzzy rules, and truth-qualified
fuzzy facts—can be formulated as fuzzy places, uncertain
transitions, and uncertain fuzzy tokens, respectively. Four types
of uncertain transitions—inference, aggregation, duplication,
and aggregation-duplication transitions—are introduced to fulfill
the mechanism of fuzzy rule-based reasoning. A framework of
integrated expert systems based on our fuzzy Petri net, called
fuzzy Petri net-based expert system (FPNES), is implemented in
Java. Major features of FPNES include knowledge representation
through the use of hierarchical fuzzy Petri nets, a reasoning
mechanism based on fuzzy Petri nets, and transformation of
modularized fuzzy rule bases into hierarchical fuzzy Petri nets.
An application to the damage assessment of the Da-Shi bridge
in Taiwan is used as an illustrative example of FPNES.

Index Terms—Damage assessment, fuzzy Petri net-based ex-
pert systems, fuzzy truth value, hierarchical fuzzy Petri nets,
possibilistic entailment.

I. INTRODUCTION

I T IS widely recognized that the trend of integrating expert
systems with other technologies will continue to the next

generation of expert systems [17], [24], [27], [32], [33]. A
number of researchers have reported progress toward the
integration of expert systems with Petri nets. Petri nets with
a powerful modeling and analysis ability are capable of
providing a basis for variant purposes, such as knowledge
representation [38], [47], reasoning mechanisms [3], [46],
knowledge acquisition [6], and knowledge verification [50],
[58]. There are several rationales behind which to base a
computational paradigm for expert systems on Petri net theory.

• Petri nets achieve the structuring of knowledge within
rule bases, which can express the relationships among
rules and help experts construct and modify rule bases
[12].

• The Petri net’s graphic nature provides the visualization
of the dynamic behavior of rule-based reasoning.
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• Petri nets make it easier to design an efficient reasoning
algorithm.

• The Petri net’s analytic capability provides a basis for
developing a knowledge verification technique.

• The underlying relationship of concurrency among rules
activation can be modeled by Petri nets, which is an
important aspect where real-time performance is crucial
[5].

To model fuzzy rule-based reasoning through the use of
fuzzy Petri nets, several important issues need to be addressed.

• Is partial matching considered?
• Does the Petri net’s firing rule that tokens will be removed

from the input places of a transition after the transition
fired remain unchanged? It should be noted that the firing
rule in Petri nets is a basis for controlling the evolution of
markings in the execution process. To modify the firing
rule is to change the evolution of markings.

• Is the proposed algorithm consistent with the rule-based
reasoning?

• Is the proposed algorithm consistent with the execution
of Petri nets?

We have examined a variety of related literature based on
these issues [30]. Looney’s approach [34] did not allow partial
matching and changed the firing rule: after firing an enabled
transition, the tokens in all input places of this transition are
not removed, and new tokens are generated and deposited in
all output places of this transition. Chenet al.’s approach [7]
takes care of not only fuzziness but also uncertainty (i.e.,
modeled as certainty factors) for representing a fuzzy rule
base. However, only exact matching is allowed. One of the
problems arising from their algorithm is in the case that the
intermediate places have more than one input arc. Therefore,
the algorithm cannot have two or more rules that will result
in a same conclusion. Bugarinet al.’s approach [3] is based
on compositional rule of inference. It is not appropriate for
large systems since the arrangement of the linking transitions
in a net and applied algorithm depend on the initial markings.
Konar et al.’s approach [25] has improved Chenet al.’s [7]
algorithm to deal with the case that there exist intermediate
places with multi-input arcs. However, adopting Looney’s
[34] modifications on the firing rule makes their algorithm
inconsistent with the execution of the Petri net. Scarpelli
et al. [45], [46] have proposed high-level fuzzy Petri nets
for modeling fuzzy reasoning based on the compositional
rule of inference. After carrying out their proposed algorithm
to extract the subnet from the entire net, the subnet with
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concurrency cannot be executed as a Petri net since only one
path is shown.

In this paper, a fuzzy Petri nets approach to modeling
fuzzy rule-based reasoning is proposed to bring together
the possibilistic entailment and the fuzzy reasoning in order
to handle uncertain and imprecise information. The three
key components in our fuzzy rule-based reasoning (fuzzy
propositions, truth-qualified fuzzy rules, and truth-qualified
fuzzy facts) can be formulated as fuzzy places, uncertain tran-
sitions, and uncertain fuzzy tokens, respectively. Four types of
uncertain transitions (inference, aggregation, duplication, and
aggregation-duplication transitions) are introduced to fulfill the
mechanism of fuzzy rule-based reasoning.

A framework of integrated expert systems based on our
fuzzy Petri net, called fuzzy Petri net-based expert system (FP-
NES), is implemented in Java with a client–server architecture.
Major features of FPNES include knowledge representation
through the use of hierarchical fuzzy Petri nets, a reasoning
mechanism based on fuzzy Petri nets, and transformation of
modularized fuzzy rule bases into hierarchical fuzzy Petri nets.
An application to the damage assessment of the Da-Shi bridge
in Taiwan is used as an illustrative example of FPNES.

The organization of this paper is as follows. Background
work on our fuzzy rule-based reasoning is described in the next
section. In Section III, a fuzzy Petri nets approach to modeling
fuzzy rule-based reasoning is introduced. In Section IV, a
framework of FPNES is proposed. In Section V, an application
of FPNES to the damage assessment of the Da-Shi bridge in
Taiwan is used as an illustration. Related work is described in
Section VI. Last, a summary of our approach and its potential
benefits are given in the Section VII.

II. BACKGROUND WORK ON FUZZY RULE-BASED REASONING

The distinction between imprecise and uncertain informa-
tion can be best explained by the canonical form representation
(i.e., a quadruple of attribute, object, value, confidence) pro-
posed by Dubois and Prade [10], [43]. Imprecision implies
the absence of a sharp boundary of the value component of
the quadruple, whereas uncertainty is related to the confidence
component of the quadruple, which is an indication of our
reliance on the information. To perform reasoning for both
imprecise and uncertain information, two important issues
need to be addressed.

• Any improvement of the confidence level for a piece of
information can only be achieved at the expense of the
specificity of the information, and vise versa [51], [56].

• The matching between a fact and the premise of a rule is
not exact, but only partial [2], [56].

We have roughly classified the existing approaches in dealing
with both imprecise and uncertain information into three
categories based on their treatments for the two issues [30],
[31].

1) An uncertainty-qualified fuzzy proposition is translated
into a proposition whose confidence level is certain but
with less specific information, while partial matching is
used to modify the intended meaning of conclusions.
This approach was advocated by Yager [51] and Zadeh

[56]. Zadeh proposed three uncertainty qualifications
for fuzzy propositions: probability, possibility, and truth
qualifiers; Yager focused on the certainty qualifier.

2) The degree of partial matching is used to influence the
confidence level of conclusions, which was adopted by
researchers such as Martin-Clouaireet al. [35], Ogawa
et al. [40], and Umano [49]. Ogawaet al. combined cer-
tainty factors and fuzzy sets to represent uncertain and
imprecise information in an expert system, SPERIL-2.
Martin-Clouaireet al. attached possibility and necessity
degrees to fuzzy propositions. Umano employed the
fuzzy truth value for the uncertainty qualifier of fuzzy
propositions.

3) No partial matching is allowed in Godoet al. [16] and
Ishizuka et al. [21]. Ishizuka et al. extended Demp-
ster–Shafer’s evidence theory to a fuzzy set in the expert
system SPERIL-1. Godoet al.used the fuzzy truth value
as an uncertainty qualifier of fuzzy propositions.

Note that the first kind of research results in a completely
certain conclusion whose intended meaning has been changed.
On the other hand, the second one produces a new confidence
level for a conclusion without modifying its intended meaning.
The third one can be viewed as a special case of the second
one. It is obvious that these inference strategies are somewhat
limited due to the fact that either the intended meaning is
required to be unchanged or the confidence level has to be
completely certain.

We have proposed the use of truth-qualified fuzzy proposi-
tions as the representation of imprecise and uncertain informa-
tion for its capability to express the possibility of the degree of
truth [30], [31]. The inference rule for the truth-qualified fuzzy
propositions has been developed based on our proposed pos-
sibilistic entailment. It is not only a generalization of Zadeh’s
generalizedmodus ponens[56] but also an uncertain reasoning
for classical propositions with necessity and possibility pairs.

A. Possibilistic Entailment

A possibilistic reasoning has been proposed for classical
propositions weighted by the lower bounds of necessity
measures and the upper bounds of possibility measures
[i.e., and ] [30], [31], which is
expressed as shown in (1) at the bottom of the next page,
where and are classical propositions
and , , and are the lower bounds of
necessity measures. , , and are the
upper bounds of possibility measures.

To infer and , we have proposed an approach called
possibilistic entailment, inspired by Nilsson’s probabilistic
entailment [39]. After performing the possibilistic entailment,
we can derive the conclusions

where and
. In the case that and
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(called partially inconsistent
[8], [29]) do not exist simultaneously, conclusions
then become , and

(see [30] and [31] for details).
When several rules having a same conclusion are fired,

these inferred conclusions with different confidence levels,
for example , should be aggre-
gated as a conclusion . This aggregation
can be viewed as a disjunction; we then obtain

and , , .

B. Rule-Based Systems with Uncertainty and Fuzziness

The truth-qualified fuzzy propositions are chosen as the
representation of imprecise and uncertain information for its
capability to express the possibility of the degree of truth [1],
[11], [55]. There are three steps involved in the inference
mechanism for truth-qualified fuzzy propositions.

• The fuzzy rules and fuzzy facts with fuzzy truth values are
transformed into a set of uncertain classical propositions
with necessity and possibility measures.

• The possibilistic entailment is performed on the set of
uncertain classical propositions.

• We reverse the process in the first step to synthesize all the
classical sets obtained in the second step into a fuzzy set
and to compose necessity and possibility pairs to form a
fuzzy truth value.

1) Representation:To represent uncertain imprecise infor-
mation, we have chosen a fuzzy proposition with a fuzzy
valuation [30], [31], denoted as , where is a fuzzy
proposition of the form “ is ” [51] (i.e., is a linguistic
variable [57] and is a fuzzy set in a universe of discourse

) and is a fuzzy valuation. It should be noted that for every
formula ( ) (called a truth-qualified fuzzy proposition), we
assume [i.e., is the real fuzzy truth value
derived from and a possibility distribution ], which means

is the upper bound of the possibility thatis true to a
degree . The fuzzy set is to represent the intended meaning
of imprecise information, while the fuzzy truth value serves as
the representation of uncertainty for its capability to express
the possibility of the degree of truth.

To develop inference rules for truth-qualified fuzzy propo-
sitions, we treat a truth-qualified fuzzy proposition ( ) as a
set of weighted classical propositions , , ,

, where denotes the lower bound of the necessity
measure that is true, whereas denotes the upper bound
of the possibility measure that is true, defined as

and .

The membership function of can be reconstructed in terms
of the set of the characteristic functions of its -level sets

, i.e.,

Sup (2)

Reconstruction of from the set of ( , ) pairs is through
the use of the principle of minimum specificity [9]

Inf (3)

where

if
if .

(4)

2) Inference: An inference rule for truth-qualified fuzzy
propositions is expressed as follows:

...
...

(5)

where , , , and are fuzzy propositions and
are characterized by “ is ,” “ is ,” “ is ,” and
“ is ,” respectively; and are fuzzy
valuations for truth values and are defined by . and

are the subsets of , while and are the subsets of .
There are three major steps for derivingand of (5).

Step 1—Transformation:The truth-qualified fuzzy
propositions in (5) can be transformed into a set of classical
propositions with necessity and possibility pairs as shown in
(6) at the bottom of the next page, where

,
, ,

and .

Step 2—Inference:Computing . is computed
through the use of compositional rule of inference, that is

(7)

where is a composition operator and denotes an impli-
cation operator. In our approach, “Sup-min” [54] and Gödel
are chosen as the composition operator and the implication
operator, respectively.

...
...

(1)
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Computing and . With the help of the principle
of minimum specificity [9], (6) can be transformed into a
set of classical propositions with necessity and possibility
pairs as shown in (8) at the bottom of the page, where

denotes a possibility distribution over
, derived by means of the

principle of minimum specificity
Inf , as shown in (9) at the
bottom of the page.

The possibilistic reasoning in Section II-A is then applied
to (8) to obtain the upper bound of the possibility measure and
the lower bound of the necessity measure of

where

and

Step 3—Composition:Based on (2), the construction of
the membership function of is performed by the following
equation: Sup . Meanwhile,
the construction of is calculated by (3), that is,

Inf , where

if
if . (10)

3) Aggregation of Conclusions:Several inferred conclu-
sions having a same linguistic variable should be aggregated.
For example, there are inferred conclusions having a same
linguistic variable, represented as

...
... (11)

where are fuzzy conclusions having the
form of “ is .” There are three major steps for deriving

and .
Step 1—Transformation:The inferred conclusions in

(11) can be transformed into a set of classical propositions

...
...

(6)

...
...

(8)

(9)
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with necessity and possibility pairs as follows:

...
... (12)

where , , and

.

Step 2—Aggregation:Computing

is computed through the use of-norm.
Computing and . With the help of the

principle of minimum specificity [9], (12) can be transformed
into a set of classical propositions with necessity and possi-
bility pairs

...
... (13)

and

, where denotes
a possibility distribution over , derived by the principle of
minimum specificity: Inf , where

.
(14)

The possibilistic aggregation in Section II-A is then applied
to (13) to obtain the upper bound of the possibility measure
and the lower bound of the necessity measure of

and

Step 3—Composition:Based on (2), the construction of
the membership function of is performed by the
following equation:

Sup

Meanwhile, the construction of is calculated by (3):
Inf , where

if

if .
(15)

III. FUZZY PETRI NETS

Petri nets are a graphical and mathematical modeling tool
applicable to many systems. In this section, fuzzy Petri nets
are defined for modeling fuzzy systems and used as knowledge
representation for fuzzy rules [30].

A. Petri Nets

A Petri net is a directed, weighted, bipartite graph consisting
of two kinds of nodes, called places () and transitions ( ),
where arcs are either from a place to a transition or from
a transition to a place [42]. Murata has formally defined
Petri nets as a five-tuple [37]: ,
where is a finite set of places,

is a finite set of transitions,
is a set of arcs, : is a weight

function, and : is the initial marking.
A marking is an -vector, , where

denotes the number of the tokens in place. The
incidence matrix is an matrix of integers,
and its typical entry is defined by , where
is the weight of the arc from a transition to its output place

and is the weight of the arc to a transition from its
input place . The reachability set of a Petri net is
defined as the set of all possible markings reachable from.
A place having two or more output transitions is referred to
as aconflict. Two transitions are said to be concurrent if they
are causally independent. The evolution of markings, used to
simulate the dynamic behavior of a system, is based on the
firing rule, such as: a transition is enabled if each input
place is marked with at least tokens, where
is the weight of the arc from to ; an enabled transition may
or may not be enabled. A firing of an enabled transition
removes tokens from each input placeof and adds

tokens to each output placeof , where is the
weight of the arc from to . Some notations are introduced
as follows: denotes the input places of, denotes the
output places of , denotes the input transitions of, and

denotes the output transitions of.

B. Fuzzy Petri Nets

A typical interpretation of Petri nets is to view a place as a
condition, a transition as the causal relationship of conditions,
and a token in a place as a fact used to claim the truth of the
condition associated with the place. However, fuzzy systems
include the following situations.

• The conditions are fuzzy.
• The causal relationships of fuzzy conditions are uncertain.
• The values of facts are fuzzy, and may partially match

the value of the associated fuzzy condition.
• The confidence about the truths of the facts is uncertain.

To take the above situations into account, we formally define
our version of fuzzy Petri nets below.

Definition 1—Fuzzy Petri Nets:A fuzzy Petri net is
defined as a five-tuple



LEE et al.: FUZZY PETRI NET-BASED EXPERT SYSTEM 355

is a finite set of
fuzzy places, where represents a fuzzy condition and
is a fuzzy subset of that represents the fuzzy set of the
condition. , , , is a finite
set of uncertain transitions, where represents the causal
relationship of fuzzy conditions and is a fuzzy truth value
to represent the uncertainty about the causal relationship of
fuzzy conditions. is a
set of arcs. : is a weight function.

is the initial marking,
where is the number of tokens in .

The fuzzy truth value serves as the representation of uncer-
tainty for its capability to express the possibility of the degree
of truth. In Definition 1, we assume that
of each means the upper bound of the
possibility measure that for which degree of truth is.

Each token is associated with a pair of fuzzy sets
(called an uncertain fuzzy token). Fuzzy places with uncertain
fuzzy tokens can be interpreted as uncertain fuzzy facts related
to the fuzzy conditions modeled by the fuzzy places. An
example is illustrated in Fig. 1(a): three fuzzy conditions
are modeled as three fuzzy places; their uncertain causal
relationship is modeled as an uncertain transition. Two truth-
qualified fuzzy facts concerning the preconditions are modeled
as two uncertain fuzzy tokens.

To simulate the dynamic behavior of a fuzzy system, a
marking in a fuzzy Petri net is changed according to the firing
rule: a firing of an enabled uncertain transitionremoves the
uncertain fuzzy token from each input placeof and adds
a new token to each output place of . The fuzzy set and
fuzzy truth value attached to the new token will be computed
based on the mechanism in fuzzy reasoning. Fig. 1 illustrates
the evolution of markings by the firing rule.

C. Analysis of Fuzzy Petri Nets

This section describes how fuzzy Petri nets can be analyzed.
Two major Petri net analysis methods, the coverability tree and
state equation, are used to analyze fuzzy Petri nets.

1) The Coverability Tree:The coverability tree represents
the reachability set of a fuzzy Petri net. Given a fuzzy Petri
net, a tree representation of the markings can be constructed
[37]. In this tree, a symbol is used to represent “infinity,”
nodes represent markings reachable from, and each arc
represents an uncertain transition firing that transforms one
marking to another. Some of the behavioral properties that
can be studied by using the coverability tree are boundedness,
safeness, and deadlock in uncertain transitions. For a bounded
fuzzy Petri net, the coverability tree is called the reachability
tree. Fig. 1(c) illustrates the reachability tree of a fuzzy Petri
net.

2) State Equation:The state equation that governs the dy-
namic behavior of concurrent fuzzy systems modeled by fuzzy
Petri nets is represented by , where

, is the incidence matrix, and is an 1
column vector called the firing count vector. Theth entry
of denoted the number of times that uncertain transition
must fire to transform to . The state equation is used to

(a)

(b)

(c)

Fig. 1. Illustration of a fuzzy Petri net: (a) before firingt1, (b) after firing
t1, and (c) the reachability tree.

solve the reachability problem, that is, the problem of finding
if for a given . If is reachable from ,
then the state equation has a solution in nonnegative integers.
If the state equation has no solution, then is not reachable
from .

D. Fuzzy Rule-Based Reasoning and Fuzzy Petri Nets

It is widely recognized that fuzzy Petri nets is a promis-
ing modeling mechanism for formulating fuzzy rule-based
reasoning [3], [7], [23], [25], [34], [45], [46], [52]. The
three key components in fuzzy rule-based reasoning—fuzzy
propositions, fuzzy rules, and fuzzy facts—can be formulated
as places, transitions, and tokens, respectively. However, there
is still one main issue that needs to be addressed: conflict. In
fuzzy rule-based reasoning, several fuzzy rules having a same
antecedent will be fired if a fuzzy fact matches the antecedent
of those rules. In Petri nets, these fuzzy rules and the fuzzy
fact are modeled as several transitions departing from a place
and a token in the place, respectively. However, only one of
these transitions will be fired since they are in conflict. As is
illustrated in Fig. 2, two fuzzy conclusions will be inferred, if
fact 1 partially matches rules 1 and 2. But, only one transition
will be fired since transitions and are in conflict.
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Fig. 2. The problem of modeling fuzzy rule-based reasoning by fuzzy Petri nets: conflict.

To overcome this problem, a subclass of Petri nets—marked
graphs—is used in this paper since each place in a marked
graph has exactly one input transition and exactly one output
transition, i.e., . Furthermore, among models
that can represent concurrent activities, marked graphs are the
most amenable to analysis [37]. The mapping between fuzzy
rule-based reasoning and fuzzy Petri nets is fully described
below.

• Fuzzy Places:Fuzzy places correspond to fuzzy propo-
sitions. The fuzzy sets, attached to the fuzzy places,
represent the values of fuzzy propositions. Fuzzy input
and fuzzy output places of a truth-qualified transition are
used to represent the antecedent and conclusion parts of
a truth-qualified fuzzy rule, respectively.

• Uncertain Fuzzy Tokens:An uncertain fuzzy token rep-
resents a truth-qualified fuzzy fact. The fuzzy sets and
fuzzy truth values are attached to uncertain fuzzy tokens
to represent the values and our confidence level about the
observed facts, respectively.

• Uncertain Transitions:Uncertain transitions are classified
into four types: inference, aggregation, duplication, and
aggregation-duplication transitions. The inference transi-
tions represent the truth-qualified fuzzy rules, the aggre-
gation transitions are designed to aggregate the conclusion
parts of rules that have the same linguistic variables,
the duplication transitions are used to duplicate uncertain
fuzzy tokens to avoid the conflict problem, and the
aggregation-duplication transitions link the fuzzy propo-
sitions with the same linguistic variables. These are
formally defined below.

Type 1—Inference Transition : An inference transi-
tion serves as a modeling of a truth-qualified fuzzy rule.
A truth-qualified fuzzy rule having multiple antecedents is
represented as

where and are of the forms of “ is ” and “ is ,”
respectively.

In Fig. 3, after firing the inference transition, the tokens
will be removed from the input places of, a new token will
be deposited into the output place of, and the fuzzy set and
the fuzzy truth value attached to the new token are derived by
three steps (see Section II-B2).

1) Transformation:The fuzzy facts and fuzzy rules with
fuzzy truth values are transformed into a set of uncer-
tain classical propositions with necessity and possibility
measures by means of-cut.

2) Inference:The possibilistic entailment is performed on
the set of uncertain classical propositions.

3) Composition:We reverse the process in the first step to
synthesize all the-level sets obtained in the second step
into a fuzzy set and to compose necessity and possibility
pairs to form a fuzzy truth value.

Type 2—Aggregation Transition : An aggregation
transition is used to aggregate the conclusions of several
truth-qualified fuzzy rules that have a same linguistic variable
and to link the antecedent of a truth-qualified fuzzy rule that
also has the same linguistic variable. For example, there are

truth-qualified fuzzy rules having a same linguistic variable
in the conclusions, denoted as

where is “ is .”
In Fig. 4, after firing the aggregation transition , the

tokens in the input places of will be removed, a new
token will be deposited into the output place of , and the
fuzzy set and the fuzzy truth value attached to the new token
are derived by three steps (see Section II-B3).

1) Transformation:The fuzzy facts with fuzzy truth values
are transformed into a set of uncertain classical proposi-
tions with necessity and possibility measures by means
of -cut.

2) Aggregation:The aggregation is performed on the set of
uncertain classical propositions.

3) Composition:We reverse the process in the first step to
synthesize all the-level sets obtained in the second step
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(a) (b)

Fig. 3. Modeling fuzzy rule-based reasoning through fuzzy Petri nets: (a) before and (b) after firingt
i
1

.

(a) (b)

Fig. 4. Modeling the aggregation of conclusions by an aggregation transition: (a) before and (b) after firingt
a
m+1

.

into a fuzzy set and to compose necessity and possibility
pairs to form a fuzzy truth value.

It should be noted that is dead if one of its input places
never received a token. To avoid deadlock in aggregation
transitions, we assume that for each source place, a token
will be inserted into , and that the fuzzy set and the fuzzy
truth value attached to the token are assigned to be their
universe of discourse if no fact matches the fuzzy proposition
in the place . That is, and are assigned.

Type 3—Duplication Transition : The purpose of du-
plication transitions is to avoid the conflict by duplicating the
token. For example, there are truth-qualified fuzzy rules
having a same linguistic variable in the antecedents, denoted
as

where means “ is .” They are linked by a duplication
transition shown in Fig. 5. After firing the duplication transi-
tion , the tokens in the input place of will be removed,
new tokens will be added into the output places of, and

the fuzzy sets and the fuzzy truth values attached to the new
tokens are not changed.

Type 4—Aggregation-duplication Transition : An
aggregation-duplication transition is a combination of an
aggregation transition and a duplication transition (see Fig. 6).
It is used to link all fuzzy propositions that have a same
linguistic variable. For example, there are truth-qualified
fuzzy rules having a same linguistic variable in the conclusions
and truth-qualified fuzzy rules having the same linguistic
variable in the antecedents, denoted as

where is of the form of “ is .” They are linked by
an aggregation-duplication transition shown in Fig. 7.

After firing the aggregation-duplication transition , the
tokens in the input places of will be removed and new
tokens will be deposited into the output places of. The
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(a) (b)

Fig. 5. Modeling the duplication of an uncertain fuzzy token through fuzzy Petri nets: (a) before and (b) after firingt
d
1

.

(a) (b)

Fig. 6. An aggregation-duplication transition is a combination of an aggregation transition and a duplication transition.

(a) (b)

Fig. 7. Modeling the aggregation-duplication of uncertain fuzzy tokens through proposed FPN: (a) before and (b) after firingt
ad
1

.

fuzzy sets and the fuzzy truth values attached to the new tokens
are derived by three steps (see Section II-B3).

1) Transformation:The fuzzy facts with fuzzy truth values
are transformed into a set of uncertain classical proposi-
tions with necessity and possibility measures by means
of -cut.

2) Aggregation:The aggregation is performed on the set of
uncertain classical propositions.

3) Composition:We reverse the process in the first step to

synthesize all the-level sets obtained in the second step
into a fuzzy set and to compose necessity and possibility
pairs to form a fuzzy truth value.

IV. FUZZY PETRI NET-BASED EXPERT SYSTEM

A framework of integrated expert systems based on our
fuzzy Petri net, called fuzzy Petri net-based expert system,
is described in this section. Major features of FPNES in-
clude knowledge representation through the use of hierarchical
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Fig. 8. Modules have importing and exporting linguistic variables.

fuzzy Petri nets, a reasoning mechanism based on fuzzy Petri
nets, and transformation of modularized fuzzy rule bases into
hierarchical fuzzy Petri nets.

A. Knowledge Representation: Hierarchical Fuzzy Petri Nets

Our fuzzy Petri nets are used as the knowledge represen-
tation to formulate fuzzy propositions, truth-qualified fuzzy
rules, truth-qualified fuzzy facts as fuzzy places, uncertain
transitions, and uncertain fuzzy tokens, respectively. Four
types of uncertain transitions—inference, aggregation, duplica-
tion, and aggregation-duplication transitions—are introduced
to fulfill the mechanism of a fuzzy rule-based reasoning.

To overcome the complexity arising from large sizes of rule
bases and fuzzy Petri nets, two important features, modularized
rule bases and hierarchical fuzzy Petri nets, are adopted in
FPNES. Modularization to partition rule bases into smaller
parts is a well-known method useful for organizing rules.
Each module may have importing linguistic variables and
exporting linguistic variables with respect to some specific
modules. As illustrated in Fig. 8, in module 1, the importing
linguistic variables and with respect to the main
module ( ) receive facts from the main module, and the
exporting linguistic variable with respect to the main
module exports facts to the main module after receiving facts.

In a hierarchical fuzzy Petri net, each hierarchy contains
a fuzzy Petri net, which may or may not contain other
hierarchies. The connections between hierarchies are achieved
by defining importing and exporting fuzzy places. That is, an
exporting fuzzy place with respect to a hierarchy is defined
as a fuzzy place that is connected to the hierarchy by an arc
from the fuzzy place to the hierarchy; meanwhile, an importing
fuzzy place with respect to a hierarchy is defined as a fuzzy
place connected to the hierarchy by an arc from the hierarchy
to the fuzzy place. In a graphical representation, a hierarchy
is drawn as a double-lined square to connect the importing
or exporting fuzzy places. A hierarchical fuzzy Petri net that
contains a main hierarchy and hierarchy is illustrated
in Fig. 9(a). The status of the fuzzy place in Fig. 9(a) is
shown in Fig. 9(b). In this figure, the fuzzy Petri net in the
middle window is the main hierarchy at the top level of the
hierarchical structure, and the fuzzy Petri net in the bottom
window is hierarchy at the second level. In , fuzzy

places and are the exporting fuzzy place with respect
to hierarchy , and fuzzy place is the importing fuzzy
place with respect to hierarchy . In the hierarchy , fuzzy
places and are the importing fuzzy places with respect
to , and fuzzy place is the exporting fuzzy place with
respect to . When a token is inserted into the fuzzy place

in , it will be transited into hierarchy and added to
place in hierarchy . Similarly, once a token enters into
place in , it will be sent into hierarchy and reach
the fuzzy place in . After firing transitions , , and

in hierarchy , the token arrives at the fuzzy place in
and then enters the fuzzy place in .

Hierarchical incidence matrices are introduced to solve the
complexity problem arising from the large size of fuzzy
Petri nets. A hierarchical incidence matrix is defined as an
algebraic form of a hierarchical fuzzy Petri net. For example,
the hierarchical incidence matrices of the main hierarchy
and hierarchy in Fig. 9(a) are presented in Fig. 10(a) and
(b), respectively. The symbol at shows that
there is an arc from the fuzzy place in to the fuzzy
place in hierarchy , and the symbol at
means that there is an arc from the fuzzy placein to the
fuzzy place in hierarchy . By defining this symbol, the
connections between hierarchies are identified in an algebraic
form.

There are two main benefits of having a hierarchical struc-
ture in our system: 1) the notion of hierarchy makes the
handling of complex systems easy through decomposition and
2) a hierarchical Petri net facilitates the reusability, namely,
each hierarchy can be considered as a reuse unit.

B. Reasoning Mechanism

To improve the efficiency of a fuzzy rule-based reason-
ing, it is crucial that fuzzy facts (input or inferred) find
the matched fuzzy rules efficiently, rather than scanning all
of the fuzzy rules. Fuzzy Petri nets offer an opportunity
to achieve this goal by using transitions and arcs to con-
nect fuzzy rules as a net-based structure [15]. A data-driven
reasoning algorithm is developed by defining an extended
fuzzy marking, denoted by . Each hierarchy has an
extended fuzzy marking. The elements of , denoted by

, are called extended fuzzy places, which are defined
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(a) (b)

Fig. 9. (a) A hierarchical fuzzy Petri net and (b) place status forP1 in H0.

(a) (b)

Fig. 10. Hierarchical incidence matrices for the hierarchical fuzzy Petri net in Fig. 9(a): (a) for the main hierarchyH0 and (b) for the hierarchyH1.

as . From
an extended fuzzy place , we know:

1) the fuzzy set and the fuzzy truth value are attached to
the token in (i.e., and );

2) the other tokens need to fire [i.e., ];
3) the kind of computation to carry out after the firing (i.e.,

the type of );
4) where to go for the new tokens after the firing [i.e.,

].

For details about the reasoning algorithm, see Appendix A.

C. Transforming Modularized Fuzzy Rule Bases
into Hierarchical Fuzzy Petri Nets

To bridge the gap between fuzzy rule-based expert systems
and fuzzy Petri nets, it is important to have a mechanism
to automatically transform modularized fuzzy rule bases into
hierarchical fuzzy Petri nets. In our approach, two algorithms
are involved in the transformation. One is to transform mod-
ularized fuzzy rule bases into a hierarchical incidence matrix.
The other is to transform the hierarchical incidence matrix into
a hierarchical fuzzy Petri net (see Appendix B).

D. An Overview of FPNES Tool

FPNES is implemented in Java with a client–server archi-
tecture, encompassing four main parts: fuzzy Petri net system
(FPNS), user interface, transformation engine, and knowledge
bases (see Fig. 11). Java is adopted as the programming
language for the FPNES tool for its capability of running on
multiple platforms and on the Internet.

FPNS is a modeling and analysis tool for fuzzy Petri nets
and serves as an inference engine and explanation facility in
FPNES. FPNS mainly contains the simulator and analyzer
for fuzzy Petri nets. It provides the basic constructs for
hierarchical fuzzy Petri nets (e.g., hierarchies, fuzzy places,
uncertain transitions, arcs, and uncertain fuzzy tokens). After
judging the firing conditions, the simulator will compute the
fuzzy sets and move tokens. The analyzer performs the tasks of
analyzing the properties of fuzzy Petri nets, such as incidence
matrix, reachability trees, and state equations.

Users can edit modularized fuzzy Petri rule bases in the
client site, including the assignments of linguistic variables,
truth-qualified fuzzy rules, the relationship of modules, and
modularized structures of input facts. When users finish editing
the modularized fuzzy rule bases and the corresponding facts,
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Fig. 11. An overview of FPNES tool.

and decide to run them, the data are then sent to the trans-
formation engine and transformed to a hierarchical fuzzy Petri
net in FPNS. After FPNS processes the hierarchical fuzzy Petri
net with the aid of our reasoning algorithm, it sends the results
back to the users. The results are presented in a hierarchical
fashion to provide a flexible explanation facility (see Fig. 18).

V. APPLICATION TO DAMAGE ASSESSMENT OFBRIDGES

In recent years, many countries have been aware of bridge
problems and initiated the development of bridge management
systems (BMS’s) to assist their decision makers in establishing
efficient repair and maintenance programs [19]. A key to
success in BMS’s relies heavily on the reliability of the
technique adopted for damage assessment. Damage assessment
for a bridge is defined as the process for evaluating the damage
state of the bridge based on visual inspection and empirical
testing on it.

A. Using FPNES for Damage Assessment

Damage assessment of a bridge is a difficult task due to a
lack of complete understanding of the mechanism of bridge
deterioration. Bridge structures are too complex to analyze
completely, and therefore numerical simulations require a

host of simplified assumptions. Nevertheless, an experienced
engineer who has closely studied these problems over years
could use his heuristic knowledge to achieve the task by
linking the observed defects with causes, evaluating the im-
pacts of these causes on bridge safety, assessing the damage
level, and proposing recommendations for a bridge. However,
there are far too few experts who can correctly inspect and
assess deficient bridges. Recently, researchers have begun
to investigate the use of expert systems to perform damage
assessment, for example, [13], [14], [18], [20], [26], [28],
[36], [40], [41], [44], [48], and [53]. Since heuristic knowledge
plays an important role in the process of damage assessment,
exploiting expert systems to capture the expertise and mimic
the reasoning patterns of experts for damage assessment is a
promising direction.

The descriptions of heuristic damage-assessment knowledge
from bridge engineers usually take the form of natural lan-
guage that contains intrinsic imprecision and uncertainty. For
example, a bridge engineer may make an imprecise statement
for assessing a crack observed on a prestressed-girder, such
as “If a shear crack has large extent, wide width and deep
depth, severe corrosion accompanied with rust stain occurs in
the crack, serious efflorescence comes out of the crack, and
water leaches from the crack, then the damage level of this
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Fig. 12. The inference procedure for damage assessment.

shear crack is very severe.” Furthermore, sometimes bridge
engineers are not completely confident about their imprecise
statements since various exceptions may occur due to the
complexity in damage assessment. Besides, descriptions on
the observed defects by bridge inspectors are often imprecise
and uncertain. For example, a statement “We are not that
confident that the delamination within a beam is extensive”
made by an inspector contains imprecision and uncertainty.
Therefore, a reasoning mechanism that can deal with uncertain
and imprecise information is expected for damage assessment.
In addition, in order to increase the confidence about the
assessment results, an explanation facility that can describe
how the conclusions are derived is crucial for a computer-aided
tool designed especially for damage assessment.

B. Development of Modularized Rule Bases

Damage assessment is based on the notion of functionality.
Each component of a bridge structure carries out several
functions simultaneously to keep the bridge working. A bridge
is considered damaged if some of its components are not
functioning correctly. The damage level will depend upon how
many functions are impaired.

The inference procedure for damage assessment of a bridge
is described as follows (see Fig. 12).

1) A group of inspectors visually investigates each compo-
nent of a bridge to record the observed defects, such as
scaling, cracks, delamination, spalls, honeycomb, efflo-
rescence, corrosions, leaching, etc., and their symptoms.

2) Based on defect symptoms such as defect positions,
defect patterns, etc., experienced bridge engineers can
identify the possible causes of the defects.

3) The damage level of each defect is evaluated according
to the symptoms, which contain quantitative descrip-
tions.

4) The possible causes induce what kinds of functions are
eliminated due to the defects.

5) The levels of functional derogation are inferred based
on the damage levels of the defects.

6) The assessment of damage can be obtained by aggregat-
ing both the functional derogation and its levels.

Fig. 13 shows the factors that are involved in the evaluation
of a shear crack in an-girder. Fig. 15 shows the fuzzy Petri
nets after the transformation of the rule bases of shear crack in
an -girder (see Fig. 14 for an example of fuzzy rules). Based
on the inference procedure, we construct the modularized rule
bases that contain 100 truth-qualified fuzzy rules and 133
recommendations (see Fig. 16).

C. Case Study

The Da-Shi bridge in north Taiwan is used to demonstrate
the use of FPNES. It was rebuilt in 1960 as a simply supported
and 12-spanned bridge that is of 550 m long and of 7.8 m wide
to cross the Da-Han river. This bridge consists of 12 decks,
36 prestressed-girders, 120 diaphragms, 11 piers, and two
abutments. In 1997, this bridge was inspected by the Center of
Bridge Engineering Research at National Central University.
Through visual inspection, many minor cracks accompanied
with efflorescence spread over eight panels within deck 7. The

-girders S9G1, S9G2, S9G3 in span 9 and S10G1, S10G2,
S10G3 in span 10 had severe flexure, shear cracks, and some
spalls. There were two diaphragms where several spalls were
found. The detailed descriptions on these defects can be found
in [4].

After executing FPNES for damage assessment of the Da-
Shi bridge, the hierarchical fuzzy Petri nets are constructed
based on the modularized rule bases, and uncertain fuzzy
tokens are transformed into these nets in order to fire tran-
sitions and perform the reasoning mechanism (see Fig. 17).
The results of damage assessment using FPNES for the Da-
Shi bridge are expressed in a hierarchical fashion to serve as
an explanation mechanism to facilitate the retrieval of detailed
information on damaged components from the top down to
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Fig. 13. Factors related to shear crack in a girder.

Fig. 14. Part of rule bases for shear crack in anI-girder.

lower levels (see Fig. 18). The recommendations embedded
in rule bases are also provided on an if-needed basis. As a
result, the damage of the superstructure of the Da-Shi bridge
is evaluated to be severe with common confidence (i.e., true)
since the overall damage of the decks is fairly slight with
fair confidence (i.e., fairly true), the overall damage of the

-girders is severe with common confidence, and the overall
damage of the diaphragms is very slight with strong confidence
(i.e., very true). This result matches the experts’ judgments in
the report; moreover, it is more informative than the report
itself because the explanation provided in the system and the
confidence level associated with the conclusions can be used as
a way of justification on whether to take the recommendations
into account or not.

VI. RELATED WORK

A number of researchers have addressed the use of expert
systems for damage assessment for a variety of structures. We
examine their studies below.

Ishizuka et al. developed a rule-based expert system
(SPERIL-I) to assess damage states of existing buildings
[20]. They advocated that the damage states of structures
had the nature of fuzziness; therefore, a fuzzy degree of
damage state was evaluated for a building based on the
accelerometer record and visual inspection after it suffered
earthquake excitation. The fuzzy rules with certainty factors
were employed jointly in their inexact inference to cope with
the continuous nature of the damage state. They also developed
a fuzzy extension of Dempster’s rule of combination to

aggregate similar conclusions [21]. Ogawaet al. intended
to represent damage states by not only fuzzy degrees but also
certainty factors in the new system (SPERIL-II). Therefore,
they improved the previous inference mechanism to handle
fuzzy facts with certainty factors.

A damage-assessment technique for protective structures
was proposed by Hadipriono and Ross [18]. The overall
damage level of a protective structure was evaluated to a fuzzy
degree after visual inspection. Fuzzy rules were constructed
based on three damage criteria: functionality, repairability,
and the structural integrity of the structure. Different from
Zadeh’s fuzzy reasoning, their inference mechanism for fuzzy
rules and facts was achieved by the notion of truth functional
modification.

Rather than giving a single fuzzy degree, Shiraishiet al.
assessed reinforced concrete bridge decks by three items:
damage pattern, damage propagation, and damage cause [48].
Although fuzzy sets and certainty facts were included in
their inference mechanism, partial matching was not allowed.
Meanwhile, they also used fuzzy truth values instead of
certainty factors as an uncertainty model to develop an-
other inference mechanism [14]. Recently, they made joint
use of genetic algorithms and neural networks to support a
knowledge-acquisition method [13].

Besides applying rule-based reasoning, most researchers
used numerical computations for damage assessment. Some
who implemented their techniques into expert systems are
described briefly as follows. Rosset al. used a fuzzy weight
average technique to assess reinforced concrete protective
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Fig. 15. The fuzzy rule Petri net transformed from the rule bases of a shear crack in anI-girder.

structures by providing damage modes and fuzzy degrees
[44]. Miyamoto et al. proposed a fuzzy mapping formalism
to evaluate the remaining life and soundness degrees for
concrete bridges [36]. They further improved their system
by substituting neural networks for their fuzzy mapping for-
malism [28]. Issaet al. established a bridge rating expert
system, in which the rating methods considered were inventory
rating, operating rating, rating factor rating, and sufficiency
rating [22]. A strength rating was based on the evaluation
of existing prestressed concrete bridges in accordance with
the American Association of State Highway Transportation
Officials specification, and inventory rating for all bridges
according to the Federal Highway Administration guide for
the Structure Inventory and Appraisal of the Nation’s Bridges.

Unlike other researchers, our approach does not impose any
restriction on the inference mechanism, that is, the intended
meaning is not required to be intact; meanwhile, the confidence
level can be partially certain. Furthermore, our approach offers
more informative results because the explanation provided in
the system and the confidence level of the conclusions can
be used as a way of justification on whether to take the
recommendations into account or not (see Table I).

VII. CONCLUSION

A fuzzy Petri nets approach to modeling fuzzy rule-based
reasoning is proposed to bring together the possibilistic
entailment and the fuzzy reasoning to handle uncertain
and imprecise information. The three key components in
our fuzzy rule-based reasoning—fuzzy propositions, truth-
qualified fuzzy rules, and truth-qualified fuzzy facts—can
be formulated as fuzzy places, uncertain transitions, and
uncertain fuzzy tokens, respectively. Four types of un-
certain transitions—inference, aggregation, duplication, and
aggregation-duplication transitions—are introduced to fulfill
the mechanism of fuzzy rule-based reasoning. We also propose
a framework of integrated expert systems based on our fuzzy
Petri net, called fuzzy Petri net-based expert system. Major
features of FPNES include: knowledge representation through
the use of hierarchical fuzzy Petri nets, a reasoning mechanism
based on fuzzy Petri nets, and transforming modularized fuzzy
rule bases into hierarchical fuzzy Petri nets. An application
to the damage assessment of the Da-Shi bridge in Taiwan
is used as an illustrative example of FPNES. FPNES offers
several benefits.
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Fig. 16. The modularized rule bases for damage assessment of superstructure.

Fig. 17. Simulation of damage assessment for the Da-Shi bridge.

• The efficiency of rule-based reasoning is improved by
designing an efficient reasoning algorithm based on fuzzy
Petri nets.

• The explanation of how to reach conclusions is expressed
through the movements of tokens in fuzzy Petri nets.

• The hierarchical fuzzy Petri nets make the handling of
complex systems easy and facilitate reusability.

Our future work consists of two tasks: 1) to develop a
knowledge verification scheme based on our fuzzy Petri nets
and 2) to apply the proposed approach to other applications.
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Fig. 18. Results of damage assessment for the Da-Shi bridge using FPNES.

APPENDIX A
REASONING ALGORITHM

Our reasoning algorithm is used to manage the evolution of
extended fuzzy marking. We describe it as follows:

Algorithm 1—Implementing Fuzzy Petri Nets:

1) Get the initial extended fuzzy marking , which
consists of all source fuzzy places.

2) For each , set a current extended fuzzy marking
and the next extended fuzzy marking

.
3) Select an element of the current extended fuzzy marking

.
4) a) If the output transition of is a duplication transi-

tion, then infer the extended fuzzy place
of each by duplication.
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TABLE I
A SUMMARY OF RELATED WORK ON EXPERT SYSTEMS FOR DAMAGE ASSESSMENT

b) Else if the output transition of is an inference
transition, and the extended fuzzy place of each

exists in , then infer the
extended fuzzy place of by
i) transformation, ii) inference, and iii) composition.

c) Else if the output transition of is an aggregation
transition, and the extended fuzzy place of each

exists in , then infer the extended
fuzzy place of by i)
transformation, ii) aggregation, and iii) composition.

d) Else if the output transition of is an aggregation-
duplication transition, and the extended fuzzy place
of each exists in , then
infer the extended fuzzy place of each

by i) transformation, ii) aggregation,
and iii) composition.

5) a) If the output transition of is fired, then insert the
inferred extended fuzzy place into the
next extended fuzzy marking .

b) If the output transition of is a hierarchy, then
insert the extended fuzzy place into the
hierarchy and wait for the final extended fuzzy
marking of the hierarchy to be inserted into the
current extended fuzzy marking.

c) Else insert this element and each
into the next extended

fuzzy marking .

6) Delete the element and each
from the current extended fuzzy marking.

7) Repeat steps 3)–6) until no element is in the current
extended fuzzy marking.

8) Repeat steps 2)–7) until all output transitions in the
current extended fuzzy marking are not fired.

9) Send the final extended fuzzy marking to the upper level
hierarchy.

APPENDIX B
TRANSFORMATION ALGORITHMS

A labeling system for fuzzy propositions in rule bases is
defined first. Each fuzzy proposition in a module is labeled
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by , where denotes the rule number
in this module, denotes right-hand side (RHS) or left-hand
side (LHS) of this rule (1 for LHS and 2 for RHS), denotes
the index of linguistic variable, denotes the index of fuzzy
set, and refers to the module number for which is an
importing or exporting linguistic variable. It should be noted
that means that this fuzzy proposition has neither
importing nor exporting linguistic variables. For example, in
Fig. 8, “ is very severe” in the first rule in main module

is labeled as , where denotes “very
severe.”

Algorithm 2—Transforming Modularized Fuzzy Rules into
Hierarchical Incidence Matrix:

1) Labeling: Label each fuzzy proposition in each truth-
qualified fuzzy rule in sequence as

.
2) Inference Transition Part:

a) Create the row of fuzzy places ( ), whose ele-
ments are defined as .

b) Create the column of uncertain transition (),
whose elements are defined as

means the fuzzy truth value of theth rule .

c) Create the incidence matrix , where is
1 if i) ’s is , ii) its is 1, and iii) its is

0; is 1 if i) ’s is , ii) its is two, and
iii) its is zero. is zero if ’s is not .

3) Aggregation-Duplication Transition Part: If 1) some
’s have the same and is zero and 2) parts of

1) have (called group 1) and the other parts of
1) have (called group 2), then:

a) insert an aggregation-duplication transition as the
last element in the column of uncertain transition

;

b) add a new row at the bottom of the incidence matrix
, where is 1 if is in group 2; is 1 if

is in group 1. is zero for the rest.

4) Repeat step 3) until no is satisfied.
5) Duplication Transition Part:If 1) some ’s have the

same and is zero and 2) all of 1) have
(called group 1), then:

a) insert a duplication transition as the last element in
the column of uncertain transition ;

b) insert a fuzzy place as the last element in the row
of fuzzy place ;

c) add a new row at the bottom and a new column at
the left end of the incidence matrix, where is

1 for the last element of the new row (or column),
is 1 if is in group 1, and is zero for the

rest.

6) Repeat step 5) until no is satisfied.
7) Aggregation Transition Part:If 1) some ’s have the

same and is zero and 2) all of 1) have
(called group 1), then:

a) insert an aggregation transition as the last element
in the column of uncertain transition ;

b) insert a fuzzy place as the last element in the row
of fuzzy place ;

c) add a new row at the bottom and a new column at
the left end of the incidence matrix, where is

1 for the last element of the new row (or column),
is 1 if is in group 1, is zero for the rest.

8) Repeat step 7) until no is satisfied.
9) Hierarchy Part: If 1) some ’s have the same and

is not zero and 2) part of 1) has (called group
1) and the other part of 1) has (called group 2),
then:

a) insert a hierarchy as the last element in the
column of uncertain transition ;

b) add a new row at the bottom of the incidence matrix
, where is if is in group 2 and , an

importing fuzzy place with respect to this hierarchy
in , has the same in related ; and is
if is in group 1 and , an exporting fuzzy place
with respect to this hierarchy in , has the same

in related . is zero for the rest.

10) Repeat step 9) until no is satisfied.

Based on the hierarchical incidence matrix, hierarchical
fuzzy Petri nets are constructed by an algorithm which is
described below.

Algorithm 3—Transforming Hierarchical Incidence Matrix
into Hierarchical Fuzzy Petri Nets:

1) Fuzzy Places:Draw fuzzy places based on the row of
fuzzy places .

2) Uncertain Transitions:Draw uncertain transitions based
on the column of uncertain transitions .

3) Arcs: Link fuzzy places and uncertain transitions based
on the incidence matrix .

a) If is 1, then draw an arc from fuzzy place
to uncertain transition .

b) Else If is 1, then draw an arc from uncertain
transition to fuzzy place .

c) If is 1/ , then draw an arc from fuzzy place
to hierarchy and an arc from hierarchy to

fuzzy place in .
d) Else if is 1/ , then draw an arc from fuzzy place

in to hierarchy and an arc from hierarchy
to fuzzy place .

e) Else if is zero, then there is no arc between
uncertain transition and fuzzy place .
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