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A Fuzzy Petri Net-Based Expert System and Its
Application to Damage Assessment of Bridges

Jonathan LeeMember, IEEE Kevin F. R. Liu, and Weiling Chiang

Abstract— In this paper, a fuzzy Petri net approach to ¢ Petri nets make it easier to design an efficient reasoning
modeling fuzzy rule-based reasoning is proposed to bring algorithm.

together the possibilistic er_ltailme_nt a_nd the _fuzzy reasoning The Petri net's analytic capability provides a basis for
to handle uncertain and imprecise information. The three

key components in our fuzzy rule-based reasoning—fuzzy developing a knowledge verification technique.
propositions, truth-qualified fuzzy rules, and truth-qualified » The underlying relationship of concurrency among rules
fuzzy facts—can be formulated as fuzzy places, uncertain activation can be modeled by Petri nets, which is an

transitions, and uncertain fuzzy tokens, respectively. Four types
of uncertain transitions—inference, aggregation, duplication, 5
and aggregation-duplication transitions—are introduced to fulffill [5]-

the mechanism of fuzzy rule-based reasoning. A framework of To model fuzzy rule-based reasoning through the use of

integrated expert systems based on our fuzzy Petri net, called fuzzy Petri nets, several important issues need to be addressed.
fuzzy Petri net-based expert system (FPNES), is implemented in « Is partial matching considered?

Java. Major features of FPNES include knowledge representation ) 0 )
through the use of hierarchical fuzzy Petri nets, a reasoning ¢ Does the Petri net’s firing rule that tokens will be removed

mechanism based on fuzzy Petri nets, and transformation of from the input places of a transition after the transition

modularized fuzzy rule bases into hierarchical fuzzy Petri nets. fired remain unchanged? It should be noted that the firing

An application to the damage assessment of the Da-Shi bridge . . . . . .

in Taiwan is used as an illustrative example of FPNES, rule in Petrl nets is a ba§|s for controlling the'evoluthn. of

markings in the execution process. To modify the firing

rule is to change the evolution of markings.

« |s the proposed algorithm consistent with the rule-based
reasoning?

* |Is the proposed algorithm consistent with the execution
|. INTRODUCTION of Petri nets?

T IS widely recognized that the trend of integrating expert We have examined a variety of related literature based on
systems with other technologies will continue to the nexhese issues [30]. Looney’s approach [34] did not allow partial
generation of expert systems [17], [24], [27], [32], [33]. Amatching and changed the firing rule: after firing an enabled
number of researchers have reported progress toward thsition, the tokens in all input places of this transition are
integration of expert systems with Petri nets. Petri nets wilibt removed, and new tokens are generated and deposited in
a powerful modeling and analysis ability are capable @fil output places of this transition. Chen al’s approach [7]
providing a basis for variant purposes, such as knowledggkes care of not only fuzziness but also uncertainty (i.e.,
representation [38], [47], reasoning mechanisms [3], [4§hodeled as certainty factors) for representing a fuzzy rule
knowledge acquisition [6], and knowledge verification [S0lpase. However, only exact matching is allowed. One of the
[58]. There are several rationales behind which to basepgplems arising from their algorithm is in the case that the
computational paradigm for expert systems on Petri net theoptermediate places have more than one input arc. Therefore,
+ Petri nets achieve the structuring of knowledge withithe algorithm cannot have two or more rules that will result
rule bases, which can express the relationships amdfga same conclusion. Bugarit al’s approach [3] is based
rules and help experts construct and modify rule basgs compositional rule of inference. It is not appropriate for

important aspect where real-time performance is crucial

Index Terms—Damage assessment, fuzzy Petri net-based ex-
pert systems, fuzzy truth value, hierarchical fuzzy Petri nets,
possibilistic entailment.

(2. _ _ ~large systems since the arrangement of the linking transitions
* The Petri net's graphic nature provides the visualizatiqR a net and applied algorithm depend on the initial markings.
of the dyﬂamlc behavior of rule-based reason|ng. Konar et a|_’s approach [25] has improved Ch@h al_’s [7]
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concurrency cannot be executed as a Petri net since only one [56]. Zadeh proposed three uncertainty qualifications
path is shown. for fuzzy propositions: probability, possibility, and truth

In this paper, a fuzzy Petri nets approach to modeling qualifiers; Yager focused on the certainty qualifier.
fuzzy rule-based reasoning is proposed to bring together2) The degree of partial matching is used to influence the
the possibilistic entailment and the fuzzy reasoning in order  confidence level of conclusions, which was adopted by
to handle uncertain and imprecise information. The three researchers such as Martin-Clouagteal. [35], Ogawa
key components in our fuzzy rule-based reasoning (fuzzy etal.[40], and Umano [49]. Ogawat al. combined cer-
propositions, truth-qualified fuzzy rules, and truth-qualified tainty factors and fuzzy sets to represent uncertain and
fuzzy facts) can be formulated as fuzzy places, uncertain tran-  imprecise information in an expert system, SPERIL-2.
sitions, and uncertain fuzzy tokens, respectively. Four types of  Martin-Clouaireet al. attached possibility and necessity
uncertain transitions (inference, aggregation, duplication, and degrees to fuzzy propositions. Umano employed the
aggregation-duplication transitions) are introduced to fulfillthe  fuzzy truth value for the uncertainty qualifier of fuzzy
mechanism of fuzzy rule-based reasoning. propositions.

A framework of integrated expert systems based on our3) No partial matching is allowed in Godet al. [16] and
fuzzy Petri net, called fuzzy Petri net-based expert system (FP- Ishizuka et al. [21]. Ishizuka et al. extended Demp-
NES), is implemented in Java with a client—server architecture.  ster—Shafer’s evidence theory to a fuzzy set in the expert
Major features of FPNES include knowledge representation  system SPERIL-1. Godet al. used the fuzzy truth value
through the use of hierarchical fuzzy Petri nets, a reasoning as an uncertainty qualifier of fuzzy propositions.

mechanism based on fuzzy Petri nets, and transformation of\ote that the first kind of research results in a completely
modularized fuzzy rule bases into hierarchical fuzzy Petri netsertain conclusion whose intended meaning has been changed.
An application to the damage assessment of the Da-Shi bridgg the other hand, the second one produces a new confidence
in Taiwan is used as an illustrative example of FPNES.  |evel for a conclusion without modifying its intended meaning.
The organization of this paper is as follows. Backgrounghe third one can be viewed as a special case of the second
work on our fuzzy rule-based reasoning is described in the ngye. It is obvious that these inference strategies are somewhat
section. In Section IlI, a fuzzy Petri nets approach to modelingnited due to the fact that either the intended meaning is
fuzzy rule-based reasoning is introduced. In Section IV, raquired to be unchanged or the confidence level has to be
framework of FPNES is proposed. In Section V, an applicatigtbmpletely certain.
of FPNES to the damage assessment of the Da-Shi brldge IN/Ve have proposed the use of truth-qua"ﬁed fuzzy proposi-
Taiwan is used as an illustration. Related work is describedtigns as the representation of imprecise and uncertain informa-
Section VI. Last, a summary of our approach and its potentign for its capability to express the possibility of the degree of
benefits are given in the Section VII. truth [30], [31]. The inference rule for the truth-qualified fuzzy
propositions has been developed based on our proposed pos-

Il. BACKGROUND WORK ON FUZZzY RULE-BASED REASONING  Sibilistic entailment. It is not only a generalization of Zadeh'’s
L . . . eneralizednodus ponenfb6] but also an uncertain reasoning
The distinction between imprecise and uncertain informg- : o ; : - .
. . . or classical propositions with necessity and possibility pairs.
tion can be best explained by the canonical form representation
(i.e., a quadruple of attribute, object, value, confidence) prg- Lo .

posed by Dubois and Prade [10], [43]. Imprecision implie%’ POSSIb-I|I-S.tIC- Entallme-nt _
the absence of a sharp boundary of the value component ofv possibilistic reasoning has been proposed for classical
the quadruple, whereas uncertainty is related to the confidemgepositions-; weighted by the lower bound,. of necessity
component of the quadruple, which is an indication of ouneasures and the upper bounids of possibility measures
reliance on the information. To perform reasoning for bothe., N(ri) = N, andIl(r;) < IL.] [30], [31], which is
imprecise and uncertain information, two important issu&xpressed as shown in (1) at the bottom of the next page,
need to be addressed. wherer; (i = 1 ~ n) and ¢ are classical propositions

« Any improvement of the confidence level for a piece otNd Vs Ny, ANA Ny ary p-oonr, ) —q @r€ the lower bounds of
information can only be achieved at the expense of tRgcessity measuresl,, I, and Il s n...ar,)—q @€ the
specificity of the information, and vise versa [51], [56]. UPPer bounds of possibility measures.

« The matching between a fact and the premise of a rule is1© infer N, andll,, we have proposed an approach called
not exact, but only partial [2], [56]. possibilistic entailment, inspired by Nilsson’s probabilistic

%ntailment [39]. After performing the possibilistic entailment,

We have roughly classified the existing approaches in deahg/% can derive the conclusions

with both imprecise and uncertain information into thre

categories based on their treatments for the two issues [30], V¢ = min{max[N. nrsacnr,)—qr 1= 1],
[31]. max[l — Il apacnr)—q> Val}
1) An uncertainty-qualified fuzzy proposition is translated IT, = max{min[Il,, - Am)—g 14,

into a proposition whose confidence level is certain but min[II 1— N}
with less specific information, while partial matching is (riAr2 /A )= Rl
used to modify the intended meaning of conclusionsthere Nj, = min[N, , N,,, ---, N, ] andII;, = min[II,. ,

This approach was advocated by Yager [51] and Zadéh,, ---,II. ]. In the case thatll;, < 1 and
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W aronnm)—q < 1 (called partially inconsistent The membership function aF can be reconstructed in terms
[8], [29]) do not exist simultaneously, conclusionf the set of the characteristic functiopg, of its A-level sets
then becomeN, = min{Ny rmr.nr)—e Nuy and Fy ie.,

Iy = M argnenr)—q (S€€ [30] and [31] for details).

When several rules having a same conclusion are fired, pjp(u) = SUPfA - pp (w)[A € (0, 1]} wel. (2)
these inferred conclusions with different confidence level
for example(q, (N}, II,)) (i = 1 ~ n), should be aggre-
gated as a conclusiofy, (N1, II7+1)). This aggregation
can be viewed as a disjunction; we then obtaiff*! = (1) = Inf{p o0 (H)|A € (0, 1]} telo, 1] (3)
max[N(}, N(IQ, e N7 andH;“HL = max[H;, Hg, ey 117

Reconstruction of from the set of Vs, , I1;, ) pairs is through
the use of the principle of minimum specificity [9]

where

B. Rule-Based Systems with Uncertainty and Fuzziness oo (£) = {111:”]\7 II i > i @)
" " T — Nz, fFt<A
The truth-qualified fuzzy propositions are chosen as the A

representation of imprecise and uncertain information for its 2) Inference: An inference rule for truth-qualified fuzzy
capability to express the possibility of the degree of truth [1propositions is expressed as follows:

[11], [55]. There are three steps involved in the inference
mechanism for truth-qualified fuzzy propositions.

¢ The fuzzy rules and fuzzy facts with fuzzy truth values are ~,
transformed into a set of uncertain classical propositions 2 3 (5)
with necessity and possibility measures. : :

« The possibilistic entailment is performed on the set of
uncertain classical propositions.

* We reverse the process in the first step to synthesize all the
classical sets obtained in the second step into a fuzzy séteres;, 7;(i = 1 ~n), ¢, and§’ are fuzzy propositions and
and to compose necessity and possibility pairs to formame characterized by.X; is F};,” “ X, is F; “Y is G,” and
fuzzy truth value. "Y is G',” respectively; andr;(j = 1 ~ n + 2) are fuzzy

1) RepresentationTo represent uncertain imprecise inforvaluations for truth values and are defined by(t). £; and

mation, we have chosen a fuzzy proposition with a fuzzl are the subsets @f;, while G andG’ are the subsets df.
valuation [30], [31], denoted a&, 7), where+ is a fuzzy There are three major steps for deriviigand 7,2 of (5).
proposition of the form X is I [51] (i.e., X is a linguistic Step 1—TransformationThe  truth-qualified  fuzzy
variable [57] andF is a fuzzy set in a universe of discoursepropositions in (5) can be transformed into a set of classical
U) andr is a fuzzy valuation. It should be noted that for everpropositions with necessity and possibility pairs as shown in
formula ¢, 7) (called a truth-qualified fuzzy proposition), we(6) at the bottom of the next page, Whe¥g i, ai, a-..Af, ) —d)x
assumer > 7(7|r) [i.e., 7(7|r) is the real fuzzy truth value = 1 — max{p~ (£)[t € [0, N}, Hiamnni)—an =
derived from# and a possibility distributionr], which means max{s,, ()|t € [A, 1]}, N, =1-max{u,, (t)|t € [0, )},
u-(t) is the upper bound of the possibility thatis true to a gnd I, = maX{unﬂ(t)ﬁ\ e [\ 1]}

degreet. The fuzzy set is to represent the intended meaning

A ~
- o ;s
of imprecise information, while the fuzzy truth value serves aarousf 2h2e u':ge(;?g%emczr;%tr'];? qulee. ofGi?w felrsenggnlf]:ieig
the representation of uncertainty for its capability to expreg 9 P ’

(7~’1/\7~‘2/\"'/\7~’n)—>(17 T1

=1
15 T2

~!
7 n? Tn+1

q’/7 Tn+2

the possibility _of the degree of truth. 3 G = (F{ ANELA - A Fﬁ)
To develop inference rules for truth-qualified fuzzy propo- A
sitions, we treat a truth-qualified fuzzy proposition ) as a o ((ﬁl AEYA A ﬁn) - @) @)
A

set of weighted classical propositiof&, (Nx,, 15, )), A €

(0, 1]}, where N, denotes the lower bound of the necessitwhere o is a composition operator ane- denotes an impli-
measure thak, is true, wherea$l;:, denotes the upper boundcation operator. In our approach, “Sup-min” [54] anddel

of the possibility measure that, is true, defined asVz;, = are chosen as the composition operator and the implication
1—max{p,(t)|t € [0, N} andIlz, = max{u(t)|t € [\, 1]}. operator, respectively.

(7)1 ANro N A Tn) - q, (N(1‘1/\1’2/\~~~/\1*n)—>qa H(1’1/\1‘2/\~~~/\rn)—>q)

T, (N,,l, H,,l)
72, (er ) Hrz )

. . 1)
Tn, (NTn ) HTn)

q, (N’I’ H’I)
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Computing Ny, and g . With the help of the principle Step 3—CompositionBased on (2), the construction of
of minimum specificity [9], (6) can be transformed into @ahe membership function &’ is performed by the following
set of classical propositions with necessity and possibiliquation: sz, (v) = Sup{A - e (v)|A € (0, 1]}. Meanwhile,
pairs as shown in (8) at the bottom of the page, whetge construction of,.» is calculated by (3), that ig;,. (1)
w(uy, us, -+, up, v) denotes a possibility distribution over—= Inf{tr, 0 (®)IA € (0, 1]}, where
U x Uyx,. .-, xU, x V, derived by means of the
principle of minimum specificitym(uy, ug, -+, up, v) = I i +> )\

Inf{ma(ur, u2, -, un, v)|A € (0, 1]}, as shown in (9) at the P o () (t) = {1 DN i t< A, (10)
bottom of the page. 4

The possibilistic reasoning in Section II-A is then applied . ) )

to (8) to obtain the upper bound of the possibility measure ang3) Adgregation of ConclusionsSeveral inferred - conclu-

the lower bound of the necessity measureff sions having a same Imgwsuc variable §hould b(_e aggregated.
For example, there are inferred conclusions having a same

linguistic variable, represented as

N(;f\ =minq N, ) N Nz, A AoonF .

’leg\ /\7*2;\/\.../\1’”;\ —qy A A A q11, T1
~!

Iy =11 12, 72

A = = = 14
77 NTgr N AT — . .
( 1t\ Zt\ nt\) a5 (11)

~I

Q1m.> Tm

where =
ql(m-l—l)’ Tm41
Nz, Afy Ao, = Min [Nfl, s Ny, s ooy Ny, }

A A A A A

wheregy; (i = 1 ~ m + 1) are fuzzy conclusions having the
form of “Y is G,.” There are three major steps for deriving
C7l1(m+1) and 7,,41.
. Step 1—TransformationThe inferred conclusions in
H’F//\’F//\---/\’F/_Inln H’F/a]:[’F/a"'7H’f’/ . . . e
TR " 2 (11) can be transformed into a set of classical propositions

and

A A

((FLATa N ATR) = Dar (NiGafanAi ) —d)ns L A AAR ) —d)r)

7’:1;’ (N’Fl/\a H’flr\)
T2 (N7, , 17, )
A A A ©6)
7’:71,;’ (N’Fn/)\a H’Fﬂ/}\)
Qs (N(i;7 H(i;)
(T, ATa Ao ATy ) = Qs (N(f‘];/\f*Q; Ao ATy )= H(ﬁ;/\@; /\~~~/\1~*n;)—>(j;\)
flt\7 (N’I:l/)\7 H’Fl;\)
Tor (Ni, » s, )
i ®)
Tl s (wan;, wan;)
dx (Ng . g)
Ny meontsg i, =1 = micln(un, -t ), - ) & (B, A, Ao A ) = G
i, A i oy, = Ao, = i, (s 2, s 0) € (B, AT, A+ A F ) = G}
IL i psop ni Vs Up, Uy oy U, V) E (FLAF A ANEY) — G
TA(Ur, U,y + ooy Up, V) = ((FLAF2 A AT )G (u1, uz, s Un, v) € (( ‘1AL n) N))\ ©)
L= N nigne nin)—dyn (U1, U2, ooy i, v) € (FL ALY A A L) — Gy
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with necessity and possibility pairs as follows: lll. Fuzzy PeTRI NETS
qur, (N, > g, ) Petri nets are a graphical and mathematical modeling tool
1o (N; * - A) applicable to many systems. In this section, fuzzy Petri nets
q127 q12/

are defined for modeling fuzzy systems and used as knowledge
(12) representation for fuzzy rules [30].

dim’, > (qum;7 H(flm;)

~ A. Petri Nets
(JI(nH—l)’)\v (N(fl(erl)’)\? H(il(erl)f)\) A Petri . . . . . L
etri net is a directed, weighted, bipartite graph consisting
whereX € (0, 1], N, = 1—max{u- ()|t € [0, \)}, and of two kinds of nodes, called places;) and transitions#(),
th_; = max{pu,, (t)|t < A1} (=1 ~m). where arcs are eitr;er fr([)rg]a place toh a t;ansitilclan grffrog]
a transition to a place [42]. Murata has formally define
Step 2—AggregationComputingCiy (m-1); Petri nets as a five-tuple [37]PN = (P, T, F, W, M),
Grimtry, = (GUAGL A NG)N \;vhereP = {pi, D2, -f- < Dm} isfa finite set of pzlaces‘I)z
= ~ t1, ta, ---, t, } is a finite set of transitionsy” C (P x T) U
= G A Cig Ao A Gy (T x P) is a set of arcsW: F — {1, 2, 3, ---} is a weight
is computed through the use @Fnorm. function, andM,: P — {0, 1, 2, 3, -- -} is the initial marking.
ComputingNg, .., andIl; . . With the help of the A marking M is anm-vector, (M(pl) -+, M(pm)), where

principle of minimum specificity [9] (12) can be transformedV/ (p;) denotes the number of the tokens in plage The
into a set of classical propositions with necessity and posgicidence matrixA = [ay] is ann x m matrix of integers,

bility pairs and its typical entry is defined by;; = afjr - ay, whereajjr
G (ma1y, (N It ) is the weight of the arc from a transitiagp to its output place
A Tembny T lim) p; anday; is the weight of the arc to a transitian from its

Qi(m+1), > (N(%(mm;v H(iumH);) input placep,. The reachability seR(1A,) of a Petri net is

defined as the set of all possible markings reachable fifyn

. (13) A place having two or more output transitions is referred to
Qmyry,, (NG L) as aconflict Two transitions are said to be concurrent if they
o 2 - are causally independent. The evolution of markings, used to
N(m+1), (N51<m+1>’ ’ H51<m+1>' ) simulate the dynamic behavior of a system, is based on the
ngl(mﬂy =1 —max{m;(v)|v ¢ Gl(rn—l—l)’ } andII . = firing rule, such as: a transition is enabled if each input
A placet is marked with at least(p, t) tokens, whereu(p, t)

max {7, (v)|v € él_(m-l—_l);} (¢ = 1 ~m), wherer;(v) denotes s the weight of the arc from to £; an enabled transition may
a possibility distribution ovel’, derived by the principle of or may not be enabled. A firing of an enabled transition
minimum specificity:m;(v) = Inf{mix(v)|A € (0, 1]}, where  removesw(p, ¢) tokens from each input plageof ¢ and adds

I, ve G w(t, p) tokens to each output plageof ¢, wherew(t, p) is the
mia(v) = A 0 (14) weight of the arc fron¥ to p. Some notations are introduced
1= N” v ¢ G- as follows:et; denotes the input places of, t;e denotes the

put places of;, ep; denotes the input transitions pf, and

ut|
The possibilistic aggregatlon in Section II-A is then applle8 « denotes the output transitions pf.

to (13) to obtain the upper bound of the possibility measu &*

and the lower bound of the necessity measureVef )
and II; B. Fuzzy Petri Nets

1(m+1)) . . . . . .
A typlcal interpretation of Petri nets is to view a place as a

N; N} 2 . NI condition, a transition as the causal relationship of conditions,
Tu(mr1y, = max N +04 7 Tmt 1)) 7T (et 1 i i
A A and a token in a place as a fact used to claim the truth of the
- _ e 2 o condition associated with the place. However, fuzzy systems
Dimeny, = PN R0 ey T ey | include the following situat
A m+1), m+1), m+1 g situations.

Step 3—CompositionBased on (2), the construction of * The conditions are fuzzy. N .
the membership function o€’ ) is performed by the * The causal relationships of fuzzy conditions are uncertain.

following equation: Homtt * The values of facts are fuzzy, and may partially match
the value of the associated fuzzy condition.
“G’1<m+1>( v) = Sup{)\ ney (v)|X € (0, 1]}_ » The confidence about the truths of the facts is uncertain.
To take the above situations into account, we formally define
Meanwhile, the construction of,,,; is calculated by (3): our version of fuzzy Petri nets below.
fir o (8) = Inf{pr oy (D)X € (0, 1]}, where Definition 1—Fuzzy Petri NetsA fuzzy Petri netF PN is
11, - if £> )\ defined as a five-tuple
1(m+1 7 —_—
NTm+1()\)(t) = { 1— N- . if ¢ A (15)
Gompnyr TP A FPN = (FP, UT, F, W, My)
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FP = {(p1, ), (p2, ), -+, (pm, F)} is a finite set of ~
fuzzy places, where,; represents a fuzzy condition arfd
is a fuzzy subset ot/; that represents the fuzzy set of the
condition.lUT = {(t1, 1), (2, 72), -+, (tn, 7)} is @ finite
set of uncertain transitions, whetg represents the causal
relationship of fuzzy conditions and is a fuzzy truth value
to represent the uncertainty about the causal relationship of
fuzzy conditions.F" C (FP x UT) U (UT x FP) is a
set of arcsW: F — {1,2,3,---} is a weight function.
Mo = (M(p1), M(p2), ---, M(pm)) is the initial marking,
where M(p,) is the number of tokens ip;. (@)
The fuzzy truth value serves as the representation of uncer-
tainty for its capability to express the possibility of the degree p.F,
of truth. In Definition 1, we assume that. (¢) (¢ € [0, 1])
of eachr; (¢ = 1 ~ m 4+ n) means the upper bound of the
possibility measure that for which degree of trutht.is
Each token is associated with a pair of fuzzy s(efc$, )
(called an uncertain fuzzy token). Fuzzy places with uncertain
fuzzy tokens can be interpreted as uncertain fuzzy facts related
to the fuzzy conditions modeled by the fuzzy places. An
example is illustrated in Fig. 1(a): three fuzzy conditions
are modeled as three fuzzy places; their uncertain causal
relationship is modeled as an uncertain transition. Two truth-
qualified fuzzy facts concerning the preconditions are modeled
as two uncertain fuzzy tokens.
To simulate the dynamic behavior of a fuzzy system, a 1
marking in a fuzzy Petri net is changed according to the firing \ L
rule: a firing of an enabled uncertain transitignremoves the v
uncertain fuzzy token from each input plageof ¢; and adds M,={0, 0, 1}
a new token to each output plapg of ¢;. The fuzzy set and
fuzzy truth value attached to the new token will be computed ©
based on the mechanism in fuzzy reasoning. Fig. 1 illustratég 1. lllustration of a fuzzy Petri net: (a) before firing, (b) after firing
the evolution of markings by the firing rule. t1, and (c) the reachability tree.

W FL FyT,T,T)
T, =g(F,F, 5T0T0T5)

(b)

M,={1, 1, 0}

) ) solve the reachability problem, that is, the problem of finding
C. Analysis of Fuzzy Petri Nets if M,, € R(M,) for a givenM,,. If M,, is reachable from/p,

This section describes how fuzzy Petri nets can be analyz#iien the state equation has a solution in nonnegative integers.
Two major Petri net analysis methods, the coverability tree affdhe state equation has no solution, thif, is not reachable
state equation, are used to analyze fuzzy Petri nets. from M.

1) The Coverability Tree:The coverability tree represents
the reachability set of a fuzzy Petri net. Given a fuzzy Petri
net, a tree representation of the markings can be construck
[37]. In this tree, a symbob is used to represent “infinity,” It is widely recognized that fuzzy Petri nets is a promis-
nodes represent markings reachable frafg, and each arc ing modeling mechanism for formulating fuzzy rule-based
represents an uncertain transition firing that transforms oreasoning [3], [7], [23], [25], [34], [45], [46], [52]. The
marking to another. Some of the behavioral properties thitee key components in fuzzy rule-based reasoning—fuzzy
can be studied by using the coverability tree are boundednga®positions, fuzzy rules, and fuzzy facts—can be formulated
safeness, and deadlock in uncertain transitions. For a boundsdlaces, transitions, and tokens, respectively. However, there
fuzzy Petri net, the coverability tree is called the reachabilifg still one main issue that needs to be addressed: conflict. In
tree. Fig. 1(c) illustrates the reachability tree of a fuzzy Peffizzy rule-based reasoning, several fuzzy rules having a same
net. antecedent will be fired if a fuzzy fact matches the antecedent

2) State Equation:The state equation that governs the dyef those rules. In Petri nets, these fuzzy rules and the fuzzy
namic behavior of concurrent fuzzy systems modeled by fuzfgct are modeled as several transitions departing from a place
Petri nets is represented by”x = AM, where AM = and a token in the place, respectively. However, only one of
M, — My, A is the incidence matrix, and is annx 1 these transitions will be fired since they are in conflict. As is
column vector called the firing count vector. Thiln entry illustrated in Fig. 2, two fuzzy conclusions will be inferred, if
of z denoted the number of times that uncertain transition fact 1 partially matches rules 1 and 2. But, only one transition
must fire to transfornd/, to M,,. The state equation is used towill be fired since transitions; andt, are in conflict.

dFuzzy Rule-Based Reasoning and Fuzzy Petri Nets
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Fig. 2. The problem of modeling fuzzy rule-based reasoning by fuzzy Petri nets: conflict.

To overcome this problem, a subclass of Petri nets—markedn Fig. 3, after firing the inference transitidf), the tokens
graphs—is used in this paper since each place in a markeitl be removed from the input places ¢f, a new token will
graph has exactly one input transition and exactly one outyagé deposited into the output place#f and the fuzzy set and
transition, i.e.]ep,| = |p;®| = 1. Furthermore, among modelsthe fuzzy truth value attached to the new token are derived by
that can represent concurrent activities, marked graphs arefttivee steps (see Section 1I-B2).

most amenable to analysis [37]. The mapping between fuzzy1) Transformation: The fuzzy facts and fuzzy rules with
rule-based reasoning and fuzzy Petri nets is fully described  fuzzy truth values are transformed into a set of uncer-
below. tain classical propositions with necessity and possibility
e Fuzzy Placesfuzzy places correspond to fuzzy propo- measures by means ofcut.
sitions. The fuzzy sets, attached to the fuzzy places,2) Inference:The possibilistic entailment is performed on
represent the values of fuzzy propositions. Fuzzy input  the set of uncertain classical propositions.
and fuzzy output places of a truth-qualified transition are 3) Composition:We reverse the process in the first step to
used to represent the antecedent and conclusion parts of synthesize all th&-level sets obtained in the second step
a truth-qualified fuzzy rule, respectively. into a fuzzy set and to compose necessity and possibility
* Uncertain Fuzzy TokensAn uncertain fuzzy token rep- pairs to form a fuzzy truth value.

resents a truth-qualified fuzzy fact. The fuzzy sets and Type 2—Aggregation Transitiofi®): An  aggregation
fuzzy truth values are attached to uncertain fuzzy tokef@nsition is used to aggregate the conclusions of several
to represent the values and our confidence level about thgth-qualified fuzzy rules that have a same linguistic variable
observed facts, respectively. and to link the antecedent of a truth-qualified fuzzy rule that
* Uncertain TransitionsUncertain transitions are classifiedalso has the same linguistic variable. For example, there are

into four types: inference, aggregation, duplication, ang, truth-qualified fuzzy rules having a same linguistic variable
aggregation-duplication transitions. The inference transjy the conclusions, denoted as
tions represent the truth-qualified fuzzy rules, the aggre-
gation transitions are designed to aggregate the conclusion (71 — qi1, 71), (72 = Gi2, 72), =5 (Fm = Gims Tm)
parts of rules that have the same linguistic variables e e
the duplication transitions are used to duplicate uncertaiyiere dui is "Y' is Gu. . .

In Fig. 4, after firing the aggregation transitiaf), . ;, the

fuzzy tokens to avoid the conflict problem, and th? 4 : X
; o o . okens in the input places af,, ., will be removed, a new
aggregation-duplication transitions link the fuzzy propo- v

e . T . token will be deposited into the output placetff, ;, and the
sitions with the same linguistic variables. These ar
. uzzy set and the fuzzy truth value attached to the new token
formally defined below.

L . . are derived by three steps (see Section 1I-B3).
Type 1—Inference Transitiofd’): An inference transi- L .
. : g 1) Transformation:The fuzzy facts with fuzzy truth values
tion serves as a modeling of a truth-qualified fuzzy rule.

I . . . are transformed into a set of uncertain classical proposi-
A truth-qualified fuzzy rule having multiple antecedents is . . : o
tions with necessity and possibility measures by means
represented as

of A-cut.
(FL ATy A Ny) = G, 1 2) Aggregation:The aggregation is performed on the set of
N N uncertain classical propositions.
where7; and§ are of the forms of X; is F;” and “Y is G,” 3) Composition:We reverse the process in the first step to

respectively. synthesize all thé-level sets obtained in the second step
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Step 1: Transformation
Step 2: Inference
Step 3: Composition

(@) (b)

Fig. 3. Modeling fuzzy rule-based reasoning through fuzzy Petri nets: (a) before and (b) afterfiring
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Fig. 4. Modeling the aggregation of conclusions by an aggregation transition: (a) before and (b) aftet;firing

into a fuzzy set and to compose necessity and possibilitye fuzzy sets and the fuzzy truth values attached to the new
pairs to form a fuzzy truth value. tokens are not changed.

It should be noted thaf, ., is dead if one of its input places ~ Type 4—Aggregation-duplication Transitioft™): An
never received a token. To avoid deadlock in aggregati@ggregation-duplication transition is a combination of an
transitions, we assume that for each source pﬁca token aggregation transition and a duplication transition (see Flg 6)
will be inserted intgp;, and that the fuzzy sdf! and the fuzzy It is used to link all fuzzy propositions that have a same
truth valuer; attached to the token are assigned to be thdipguistic variable. For example, there are truth-qualified
universe of discourse if no fact matches the fuzzy propositid#zzy rules having a same linguistic variable in the conclusions
in the placep;. That is,Fi’ = U, andr; = T are assigned.  and ! truth-qualified fuzzy rules having the same linguistic

Type 3—Duplication Transitioft): The purpose of du- Variable in the antecedents, denoted as
plication transitions is to avoid the conflict by duplicating the
token. For example, there ave truth-qualified fuzzy rules ("1 — Gu1, 1), (P2 = Qu2, 72), *++, (P = Qums Tn)
having a same linguistic variable in the antecedents, denoted(q’l(mﬂ) — 51, Tma1), (Qu(mt2) = 525 Tme2),
as Tty ((jl(rn-i—l) i 517 7_rn+l)
(F11 = G, 71), (F12 = G2, 72), =+, (Fu — @, 1) ~
where g;; is of the form of Y} is Gy;.” They are linked by
wherery; means ‘X; is Fi;.” They are linked by a duplication an aggregation-duplication transition shown in Fig. 7.
transition shown in Fig. 5. After firing the duplication transi- After firing the aggregation-duplication transitigi?, the
tion ¢¢, the tokens in the input place #f will be removed, tokens in the input places af! will be removed and new
new tokens will be added into the output placestpfand tokens will be deposited into the output placestit. The
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Fig. 7. Modeling the aggregation-duplication of uncertain fuzzy tokens through proposed FPN: (a) before and (b) aqu#firing

fuzzy sets and the fuzzy truth values attached to the new tokens synthesize all the--level sets obtained in the second step
are derived by three steps (see Section 1I-B3). into a fuzzy set and to compose necessity and possibility
1) Transformation:The fuzzy facts with fuzzy truth values pairs to form a fuzzy truth value.

are transformed into a set of uncertain classical proposi-
tions with necessity and possibility measures by means IV. Fuzzy PeTRI NET-BASED EXPERT SYSTEM

of )\'CUt-_ o A framework of integrated expert systems based on our
2) Aggregation:The aggregation is performed on the set alizzy Petri net, called fuzzy Petri net-based expert system,
uncertain classical propositions. is described in this section. Major features of FPNES in-

3) Composition:We reverse the process in the first step tolude knowledge representation through the use of hierarchical
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Main Module
IF X1 1s very severe THEN X2 is very severe, very true.
IF X3 1s severe THEN X4 is fairly severe, true. T e
IF X5 is fairly severe THEN X6 is severe, fairly true. T
Exporting Linguistic Variable
w.r.t. Main Moduk?: X5.
Importing Li‘nguistic Variable Module 1

w.r.t. Main Module: X2,X4,

IF X2 is severe THEN X5 is very severe, true.
---- —» [F X4 is fairly severe THEN X35 is severe, true.

Fig. 8. Modules have importing and exporting linguistic variables.

fuzzy Petri nets, a reasoning mechanism based on fuzzy PptacesP2 and P4 are the exporting fuzzy place with respect
nets, and transformation of modularized fuzzy rule bases irttw hierarchyH1, and fuzzy placeP5 is the importing fuzzy
hierarchical fuzzy Petri nets. place with respect to hierarchiy 1. In the hierarchyi{ 1, fuzzy
placesP1 and P3 are the importing fuzzy places with respect
to H0, and fuzzy place”5 is the exporting fuzzy place with

A. Knowledge Representation: Hierarchical Fuzzy Petri Netﬁespect toH0. When a token is inserted into the fuzzy place

Our fuzzy Petri nets are used as the knowiedge represé)rg in HO, it will be transited into hiel’archﬁl and added to
tation to formulate fuzzy propositions, truth-qualified fuzzplaceP1 in hierarchyH1. Similarly, once a token enters into
rules, truth-qualified fuzzy facts as fuzzy places, uncertaface’4 in HO, it will be sent into hierarchy{1 and reach
transitions, and uncertain fuzzy tokens, respectively. Fotife fuzzy placeP’3 in H1. After firing transitionst1, 2, and
types of uncertain transitions—inference, aggregation, duplida-in hierarchyH1, the token arrives at the fuzzy plaé in
tion, and aggregation-duplication transitions—are introducdé! and then enters the fuzzy plaé¢& in HO.
to fulfill the mechanism of a fuzzy rule-based reasoning. Hierarchical incidence matrices are introduced to solve the

To overcome the complexity arising from large sizes of rulgomplexity problem arising from the large size of fuzzy
bases and fuzzy Petri nets, two important features, modulariZ&efri nets. A hierarchical incidence matrix is defined as an
rule bases and hierarchical fuzzy Petri nets, are adoptedalgebraic form of a hierarchical fuzzy Petri net. For example,
FPNES. Modularization to partition rule bases into smalléRe hierarchical incidence matrices of the main hierargty
parts is a well-known method useful for organizing rulestnd hierarchyH 1 in Fig. 9(a) are presented in Fig. 10(a) and
Each module may have importing linguistic variables arid), respectively. The symbet1/P1 at(H1, P2) shows that
exporting linguistic variables with respect to some specififere is an arc from the fuzzy plade2 in HO to the fuzzy
modules. As illustrated in Fig. 8, in module 1, the importinglaceP1 in hierarchyH 1, and the symbol /P5 at (H1, P5)
linguistic variablesX2 and X4 with respect to the main Means that there is an arc from the fuzzy pl&ein 1 to the
module (/0) receive facts from the main module, and théizzy placePs5 in hierarchyH0. By defining this symbol, the
exporting linguistic variableX5 with respect to the main connections between hierarchies are identified in an algebraic
module exports facts to the main module after receiving facferm.

In a hierarchical fuzzy Petri net, each hierarchy contains There are two main benefits of having a hierarchical struc-
a fuzzy Petri net, which may or may not contain otheltire in our system: 1) the notion of hierarchy makes the
hierarchies. The connections between hierarchies are achielf@gdling of complex systems easy through decomposition and
by defining importing and exporting fuzzy piaces_ That iS, agb a hierarchical Petri net facilitates the reusabi”ty, namely,
exporting fuzzy place with respect to a hierarchy is defin€®fch hierarchy can be considered as a reuse unit.
as a fuzzy place that is connected to the hierarchy by an arc
from the fuzzy place to the hierarchy; meanwhile, an importin . )
fuzzy place with respect to a hierarchy is defined as a fuzZy Reasoning Mechanism
place connected to the hierarchy by an arc from the hierarchyTo improve the efficiency of a fuzzy rule-based reason-
to the fuzzy place. In a graphical representation, a hierarcimg, it is crucial that fuzzy facts (input or inferred) find
is drawn as a double-lined square to connect the importittie matched fuzzy rules efficiently, rather than scanning all
or exporting fuzzy places. A hierarchical fuzzy Petri net thatf the fuzzy rules. Fuzzy Petri nets offer an opportunity
contains a main hierarch¥ 0 and hierarchyH1 is illustrated to achieve this goal by using transitions and arcs to con-
in Fig. 9(a). The status of the fuzzy plad¢&l in Fig. 9(a) is nect fuzzy rules as a net-based structure [15]. A data-driven
shown in Fig. 9(b). In this figure, the fuzzy Petri net in theeasoning algorithm is developed by defining an extended
middle window is the main hierarchy at the top level of théuzzy marking, denoted by'A/”. Each hierarchy has an
hierarchical structure, and the fuzzy Petri net in the bottoaxtended fuzzy marking. The elementsof/”, denoted by
window is hierarchyH1 at the second level. 1tHO0, fuzzy FMZE(p;), are called extended fuzzy places, which are defined
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@ (b)
Fig. 9. (a) A hierarchical fuzzy Petri net and (b) place status #dr in H0.

. (P1,VSe) (P2,FSI) (P3,VSe) (P4,Se) (P5,FSe) (P6,Se) (P1,FS1) (P2,VSe) (P3,Se) (P4,VSe) (P5,UK)

V1) -1 1 0 0 0 ] .1 -1 1 0 0 0

©T) 0 0 -1 1 0 0 .\ T) ] 0 -1 1 0

(t,\FT) 0 0 0 ] -1 | ", UK) 0 -1 0 -1 1
H1 0 -1/P1 0 -1/P3  1/P5 0

@ (b)
Fig. 10. Hierarchical incidence matrices for the hierarchical fuzzy Petri net in Fig. 9(a): (a) for the main hiek&iciuyd (b) for the hierarchy/ 1.

as FME(p;) = [pi, F,, 7, pie, o(p;®)\{p:}, (pi®)e]. From D. An Overview of FPNES Tool

E .
an extended fuzzy placEM*(p;), we know: FPNES is implemented in Java with a client-server archi-
1) the fuzzy set and the fuzzy truth value are attached §&cture, encompassing four main parts: fuzzy Petri net system

the token inp; (i.e., F%; and 7;); (FPNS), user interface, transformation engine, and knowledge
2) the other tokens need to fifge [i.e., o(p;®)\{p; }]; bases (see Fig. 11). Java is adopted as the programming
3) the kind of computation to carry out after the firing (i.e.anguage for the FPNES tool for its capability of running on
the type ofp;e); multiple platforms and on the Internet.
4) where to go for the new tokens after the firing [i.e., FPNS is a modeling and analysis tool for fuzzy Petri nets
(pi®)e]. and serves as an inference engine and explanation facility in

For details about the reasoning algorithm, see Appendix AFPNES. FPNS mainly contains the simulator and analyzer
for fuzzy Petri nets. It provides the basic constructs for
hierarchical fuzzy Petri nets (e.g., hierarchies, fuzzy places,
uncertain transitions, arcs, and uncertain fuzzy tokens). After
judging the firing conditions, the simulator will compute the
To bridge the gap between fuzzy rule-based expert systefuszy sets and move tokens. The analyzer performs the tasks of
and fuzzy Petri nets, it is important to have a mechanisamalyzing the properties of fuzzy Petri nets, such as incidence
to automatically transform modularized fuzzy rule bases intnatrix, reachability trees, and state equations.
hierarchical fuzzy Petri nets. In our approach, two algorithms Users can edit modularized fuzzy Petri rule bases in the
are involved in the transformation. One is to transform modient site, including the assignments of linguistic variables,
ularized fuzzy rule bases into a hierarchical incidence matrixuth-qualified fuzzy rules, the relationship of modules, and
The other is to transform the hierarchical incidence matrix intaodularized structures of input facts. When users finish editing
a hierarchical fuzzy Petri net (see Appendix B). the modularized fuzzy rule bases and the corresponding facts,

C. Transforming Modularized Fuzzy Rule Bases
into Hierarchical Fuzzy Petri Nets
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Fuzzy Petri Net-Based Expert System
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Fig. 11. An overview of FPNES tool.

and decide to run them, the data are then sent to the trahsst of simplified assumptions. Nevertheless, an experienced
formation engine and transformed to a hierarchical fuzzy Pesmgineer who has closely studied these problems over years
netin FPNS. After FPNS processes the hierarchical fuzzy Petauld use his heuristic knowledge to achieve the task by
net with the aid of our reasoning algorithm, it sends the resulisking the observed defects with causes, evaluating the im-
back to the users. The results are presented in a hierarchigadts of these causes on bridge safety, assessing the damage
fashion to provide a flexible explanation facility (see Fig. 18)evel, and proposing recommendations for a bridge. However,
there are far too few experts who can correctly inspect and

V. APPLICATION TO DAMAGE ASSESSMENT OFBRIDGES assess (_1ef|C|ent bridges. Recently, researchers have begun
to investigate the use of expert systems to perform damage

In recent years, many countries have been aware of brid&fsessment, for example, [13], [14], [18], [20], [26], [28],
problems and initiated the development of bridge managem?:%], [40], [41], [44], [48], and [53]. Since heuristic knowledge
sy;tgms (BMS’S) to assi§t their decision makers in establishiB%1yS an important role in the process of damage assessment,
efficient repair and maintenance programs [19]. A key 1v@&(ploiting expert systems to capture the expertise and mimic

success in BMS's relies heavily on the reliability of they,q yeag0ning patterns of experts for damage assessment is a
technique adopted for damage assessment. Damage asses sing direction

for a bridge is qefined as the process for eval_uating the daf“. 9%he descriptions of heuristic damage-assessment knowledge
state of the bridge based on visual inspection and emplrlq%m bridge engineers usually take the form of natural lan-
testing on it.

guage that contains intrinsic imprecision and uncertainty. For
example, a bridge engineer may make an imprecise statement
for assessing a crack observed on a prestresggaier, such
Damage assessment of a bridge is a difficult task due t@a “If a shear crack has large extent, wide width and deep
lack of complete understanding of the mechanism of bridgepth, severe corrosion accompanied with rust stain occurs in
deterioration. Bridge structures are too complex to analy#iee crack, serious efflorescence comes out of the crack, and
completely, and therefore numerical simulations require veater leaches from the crack, then the damage level of this

A. Using FPNES for Damage Assessment
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Fig. 12. The inference procedure for damage assessment.

shear crack is very severe.” Furthermore, sometimes bridges) The levels of functional derogation are inferred based
engineers are not completely confident about their imprecise on the damage levels of the defects.

statements since various exceptions may occur due to th&) The assessment of damage can be obtained by aggregat-
complexity in damage assessment. Besides, descriptions on ing both the functional derogation and its levels.

the observed defects by bridge inspectors are often imprecisgig. 13 shows the factors that are involved in the evaluation
and uncertain. For example, a statement “We are not thgta shear crack in ad-girder. Fig. 15 shows the fuzzy Petri
confident that the delamination within a beam is extensiveiets after the transformation of the rule bases of shear crack in
made by an inspector contains imprecision and uncertaing J-girder (see Fig. 14 for an example of fuzzy rules). Based
Therefore, a reasoning mechanism that can deal with uncertgifithe inference procedure, we construct the modularized rule

and imprecise information is expected for damage assessmggkes that contain 100 truth-qualified fuzzy rules and 133
In addition, in order to increase the confidence about thecommendations (see Fig. 16).

assessment results, an explanation facility that can describe
how the conclusions are derived is crucial for a computer-aided
tool designed especially for damage assessment. C. Case Study

The Da-Shi bridge in north Taiwan is used to demonstrate
the use of FPNES. It was rebuilt in 1960 as a simply supported
and 12-spanned bridge that is of 550 m long and of 7.8 m wide

Damage assessment is based on the notion of functionaltty.cross the Da-Han river. This bridge consists of 12 decks,
Each component of a bridge structure carries out sevegg prestressed-girders, 120 diaphragms, 11 piers, and two
functions simultaneously to keep the bridge working. A bridggoutments. In 1997, this bridge was inspected by the Center of
is considered damaged if some of its components are mydge Engineering Research at National Central University.
functioning correctly. The damage level will depend upon howhrough visual inspection, many minor cracks accompanied

B. Development of Modularized Rule Bases

many functions are impaired. with efflorescence spread over eight panels within deck 7. The
The inference procedure for damage assessment of a brigggirders S9G1, S9G2, S9G3 in span 9 and S10G1, S10G2,
is described as follows (see Fig. 12). S10G3 in span 10 had severe flexure, shear cracks, and some

1) A group of inspectors visually investigates each compgpalls. There were two diaphragms where several spalls were
nent of a bridge to record the observed defects, suchfasind. The detailed descriptions on these defects can be found
scaling, cracks, delamination, spalls, honeycomb, effloy [4].
rescence, corrosions, leaching, etc., and their symptomsAfter executing FPNES for damage assessment of the Da-

2) Based on defect symptoms such as defect positioi bridge, the hierarchical fuzzy Petri nets are constructed
defect patterns, etc., experienced bridge engineers dmsed on the modularized rule bases, and uncertain fuzzy
identify the possible causes of the defects. tokens are transformed into these nets in order to fire tran-

3) The damage level of each defect is evaluated accordisifons and perform the reasoning mechanism (see Fig. 17).
to the symptoms, which contain quantitative descripFhe results of damage assessment using FPNES for the Da-
tions. Shi bridge are expressed in a hierarchical fashion to serve as

4) The possible causes induce what kinds of functions aaa explanation mechanism to facilitate the retrieval of detailed
eliminated due to the defects. information on damaged components from the top down to
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Damage of shear Crack in GirderJ
: = =

Crack Level

Crack Cause: -
Over Shear Force

—

1
Corrosion Grade Leaching Grade
. — i ] :
Crack Location: || Crack Pattern; Corosion || Conosion || Rust Leaching || Leaching
At Support Diagonal Extent | Degree | Stain Extent Degree
Crac;kErode Effiorescence Grcia(;|
I R —  E— 1
Crack || Crack || Crack Efflorescence || Effflorescence
Extent || Width || Depth Extent _ Degree

Fig. 13. Factors related to shear crack in a girder.

Rule 3: IF crack extent is very severe AND crack width is very severe AND crack depth is very severe
THEN crack measure very severe, very true
Rule 4: TF corrosion extent is very severe AND corrosion degree is very severe AND rust stain is very severe
THEN corrosion grade is very severe, very true
Rule 5: IF efflorescence extent is very severe AND efflorescence degree is very severe
THEN efflorescence grade is very severe, very true
Rule 6: IF leaching extent is very severe AND leaching degree is very severe THEN leaching grade is very severe, very true

Fig. 14. Part of rule bases for shear crack in Bgirder.

lower levels (see Fig. 18). The recommendations embeddsghregate similar conclusions [21]. Ogawa al. intended

in rule bases are also provided on an if-needed basis. Asoaepresent damage states by not only fuzzy degrees but also
result, the damage of the superstructure of the Da-Shi bridgertainty factors in the new system (SPERIL-Il). Therefore,
is evaluated to be severe with common confidence (i.e., trubgy improved the previous inference mechanism to handle
since the overall damage of the decks is fairly slight witfuzzy facts with certainty factors.

fair confidence (i.e., fairly true), the overall damage of the A damage-assessment technique for protective structures
I-girders is severe with common confidence, and the overalhs proposed by Hadipriono and Ross [18]. The overall
damage of the diaphragms is very slight with strong confidengamage level of a protective structure was evaluated to a fuzzy
(i.e., very true). This result matches the experts’ judgments dggree after visual inspection. Fuzzy rules were constructed
the report; moreover, it is more informative than the repofased on three damage criteria: functionality, repairability,
itself because the explanation provided in the system and #®4 the structural integrity of the structure. Different from
confidence level associated with the conclusions can be usedgg8en’s fuzzy reasoning, their inference mechanism for fuzzy
a way of justification on whether to take the recommendatiofgies and facts was achieved by the notion of truth functional

into account or not. modification.
Rather than giving a single fuzzy degree, Shiraishil.
VI. RELATED WORK assessed reinforced concrete bridge decks by three items:

A number of researchers have addressed the use of exg@fage pattern, damage propagation, and damage cause [48].
systems for damage assessment for a variety of structures. Mi@ough fuzzy sets and certainty facts were included in
examine their studies below. their inference mechanism, partial matching was not allowed.

Ishizuka et al. developed a rule-based expert systeffleanwhile, they also used fuzzy truth values instead of
(SPERIL-l) to assess damage states of existing buildingertainty factors as an uncertainty model to develop an-
[20]. They advocated that the damage states of structufdBer inference mechanism [14]. Recently, they made joint
had the nature of fuzziness; therefore, a fuzzy degree ugie of genetic algorithms and neural networks to support a
damage state was evaluated for a building based on #wwledge-acquisition method [13].
accelerometer record and visual inspection after it sufferedBesides applying rule-based reasoning, most researchers
earthquake excitation. The fuzzy rules with certainty factorssed numerical computations for damage assessment. Some
were employed jointly in their inexact inference to cope wittvho implemented their techniques into expert systems are
the continuous nature of the damage state. They also develogedcribed briefly as follows. Ross al. used a fuzzy weight
a fuzzy extension of Dempster's rule of combination taverage technique to assess reinforced concrete protective
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B} Fuzzy Petri Net: beam-crack 1le

Fle
-~
-
«| | i 3
xi~3)| |JavaApplet Window
Fig. 15. The fuzzy rule Petri net transformed from the rule bases of a shear crack/iyiegter.
structures by providing damage modes and fuzzy degrees VII. CONCLUSION

[44]. Miyamoto et al. proposed a fuzzy mapping formalisSm A f,,,y Petri nets approach to modeling fuzzy rule-based

to evaluate_the remaining life and _soundness dggrees lfgésoning is proposed to bring together the possibilistic
concrete bridges [36]. They further improved their SySte'ghtailment and the fuzzy reasoning to handle uncertain
by substituting neural networks for their fuzzy mapping for-

malism [28]. Issaet al. established a bridge rating expertand imprecise information. The three key components in

system, in which the rating methods considered were inventoorgr .fgzzy rule-based reasomng—fuz_z.y propositions, - truth-
alified fuzzy rules, and truth-qualified fuzzy facts—can

rating, operating rating, rating factor rating, and sufficienc . "
rating [22]. A strength rating was based on the evaluati formulated as fuzzy places,_uncertaln transitions, and
of existing prestressed concrete bridges in accordance V\Hmce.rtaln fu,z_zy tokgns, respectively. .Four tyPeS_Of un-
the American Association of State Highway Transportatio(l"lertaln tr_ansﬂmn;—ynference_,_aggregatpn, duplication, a_nd
Officials specification, and inventory rating for all bridgegggregatlon.-dupl|cat|on transitions—are mtroduced to fulfill
according to the Federal Highway Administration guide tdgihe mechanism of fuzzy rule-based reasoning. We also propose
the Structure Inventory and Appraisal of the Nation’s Bridged& framework of integrated expert systems based on our fuzzy
Unlike other researchers, our approach does not impose &iji net, called fuzzy Petri net-based expert system. Major
restriction on the inference mechanism, that is, the intendt&#tures of FPNES include: knowledge representation through
meaning is not required to be intact; meanwhile, the confideni&e use of hierarchical fuzzy Petri nets, a reasoning mechanism
level can be partially certain. Furthermore, our approach offdpgsed on fuzzy Petri nets, and transforming modularized fuzzy
more informative results because the explanation providedrifie bases into hierarchical fuzzy Petri nets. An application
the system and the confidence level of the conclusions danthe damage assessment of the Da-Shi bridge in Taiwan
be used as a way of justification on whether to take the used as an illustrative example of FPNES. FPNES offers
recommendations into account or not (see Table I). several benefits.
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I

Module 0:
Damage Assessment
of Superstructure
l |
Module 1-1: Module 1-2: Module 1-3:
Damage Assessment Damage Assessment Damage Assessment
of Deck of Girder of Diaphragm
I [ L I 1
Module 2-1: Module 2-2: Module 2-1: Module 2-2: ngg%;i;ljc e o
Loss of Loss of Loss of Loss of of Diaphragm of Diaphragm
Shear Resistance Flexure Resistance Shear Resistance Flexure Resistance
I | [ ]
[ 1 I ] Module 3-8:
Modle 3-1: Module 3-3: Module 3-4: Module 3-6: Delamination Damzge
Crack Damage Spall Damage Crack Damage Spall Damage phragm
of Deck of Deck of Girder of Girder
Module 3-2; Module 3-5:
Delamination Damage Delamination Damage
of Deck of Girder
Fig. 16. The modularized rule bases for damage assessment of superstructure.
Fuzzy Petri Net: damage_of_superstructure xle
Fle Settings Ernrconment Pragerty Anslysis Windooy Help
Lty
Fuzzy Petri Net: damage_of_bean [0 x]
Fle Seitings Environment Propaty Analyns Window Hep
o
13

Fuzzy Petni Net. beam-crack

{ Damage Assessment of Girder

sl Java hopie Window

Fig. 17. Simulation of damage assessment for the Da-Shi bridge.
* The efficiency of rule-based reasoning is improved by ¢ The hierarchical fuzzy Petri nets make the handling of
designing an efficient reasoning algorithm based on fuzzy complex systems easy and facilitate reusability.
Petri nets. Our future work consists of two tasks: 1) to develop a
» The explanation of how to reach conclusions is expresskdowledge verification scheme based on our fuzzy Petri nets
through the movements of tokens in fuzzy Petri nets. and 2) to apply the proposed approach to other applications.
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ze_of_superstructure xle
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Conclusion

It is true that the overall damage of superstructure is severe,

It is fairly true that the overall damags of deck is Fairly sight

{1 ¢ true that the overall damage of beams is severe.

It is veiy tie that the overall damage of diaphragms is very sight.

------------------------------

:_J

More Information about: damage_of_beam

B Reconunendations

it is tue that ow recommendations is as folow,

The observed defects or deficiencies may affect the load
catiying capacity of the superstiuctute. Fai the safely of the
lravaling public, this bridge is recommanded to imit the use of
taffic. The further inspaction and load capacily evaiuation
should be canried out. The furthes inspection is performing to
identify the compressive stiength of concrete, the catbonation
depth in conciete, the content of chionde i concrete, the
cotrosion of reinforcement, the crack depth in concrate etc.
The load capacity evaluation is performing to asceitain the
salety load capacity for the curent condition of the
superstiucture. Based on the results of the load capacity
evaluation, the plan on rehabiitation, srengthening of
1eplacing can be made.

damage_of panel
damage_of_diaphragm
The number: 1
- SRR = 1I!istmelhathss
: 2 Itis true that loss
H g Show detail infol
: 5 )

zlsal [JavaApplet Window

It is true that damage of beam is severe.

of sheat tesistance in this beam is severe.
of bending resistance in this beam is severe.

B8 % Reconunendatons

{lt is true that our recommendations is s follow.
The observed defects o deficiencies may affect Y

More Infaimation about, beam-crack

canying capacity of the beam For the safety of thy
public, this bridge 1s 1ecommendad to imit the use
The further inspection and load capacity evaiuati
carmied out. The further inspection is performing to

loss_of bendin

on rehabilitation. strengthening or replacing can b

]

sl Jave Applet Window

Z/38) JavaApplet Window

loss_of_shear_resistance

resistance

beam-delamination

ithe compressive strength of concrete, the catbon beam-spall

in concrete, the content of chioride in conciete, t

of rainfarcament, the ciack depth in concrete etc, The rumber |
capacity evaluation is petforming to ascentain the §

capacity for the current condition of the superstiug
Based on the results of the load capacity evaluati{ 2

Show detal information about beam-crack No.1

e |

Fig. 18. Results of damage assessment for the Da-Shi bridge using FPNES.

APPENDIX A
REASONING ALGORITHM

2) For eachi, set a current extended fuzzy marking
FME = FMFE and the next extended fuzzy marking
FMgrl = {1

Our reasoning algorithm is used to manage the evolution 0f3) Select an element of the current extended fuzzy marking

extended fuzzy marking. We describe it as follows:
Algorithm 1—Implementing Fuzzy Petri Nets:
1) Get the initial extended fuzzy markingM£, which
consists of all source fuzzy places.

~ /

FME(p;) = [pj, Fj 755 pje, ojo)\p;}, (pje)e].
4) a) If the output transition op; is a duplication transi-
tion, then infer the extended fuzzy plagé/f , (px)
of eachp,. € (p;e)e by duplication.
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DAMAGE ASSESSMENT

SYSTEM

E_ENGINE IMPLEMENTATION
OUTPUT INPUT KNOWLEDGE UNCERTAINTY INFERENCE CONTROL
REPRESENTATION | MODEL | MECHANISM | STRATEGY |
M. ISHIZUKA DAMAGE STATE: VISUAL INSPECTION|  FUZZY RULES + C.F. CERTAINTY FACTOR F-> G, CF FOLLOW THE c
ET AL {A FUZZY DEGREE) E1 ORDERS OF
(SPERIL-1) 1981 ACCELEROMETER a1 RULES
R.C. STRUCTURES RECORD
H. OGAWA DAMAGE STATE: VISUAL INSPECTION| FUZZY RULES + C.F. CERTAINTY FACTOR F -> G, CF1 METARULES PROLOG
ETAL (A FUZZY DEGREE + C.F.)
(SPERILAI 1965 ACCELEROMETER G .CF3
R.C. RE RECORD
F.HADIPRIONO  [DAMAGE LEVEL: VISUAL INSPECTION FUZZY RULES NONE UNKNOWN UNKNOWN
ETAL (A FUZZY DEGREE) F>G
1991 F1
(R.C. PROTECTIVE G1
RE:
N. SHIRAISHI 1.DAMAGE PATTERN: VISUAL INSPECTION| FUZZY RULES + C.¥. CERTAINTY FACTOR METARULES LIsP
ETAL (APATTERN +C.F.) F -> G, CF1
1991 2. DAMAGE PROPAGATION:
(RC. BRIDGE DECK) | (A PATTERN +CF.) G.CF3
3. DAMAGE CAUSE:
(A CAUSE + CF)
H. FURUTA 1.REMAINING LIFE: PAST RECORD FUZZY RULES + T.V. FUZZY TRUTH VALUE METARULES FRANZ LISP
ETAL (YEARS + T.V.) F>G ™1
1991,1996 2 DAMAGE DEGREE : VISUAL INSPECTION E1 . Tv2
(R.C. BRIDGE DECK) | (A FUZZY DEGREE + T.V.) G, V3
3.DAMAGE PROPAGATION:
(A FUZZY DEGREE + T.V.)
4 DAMAGE CAUSE:
{A GAUSE + TV.}
T.J. ROSS 1.DAMAGE MODE TESTING DATA HIERARCHICAL NONE FuzzY METARULES EXSYS
ETAL 2. DAMAGE LEVEL: STRUCTURE WEIGHTED
(DAPS) 1990 (A FUZZY DEGREE) VISUAL INSPECTION AVERAGE
(R.C. PROTECTIVE
STRUCTURES)
A MIYAMOTO 1.REMAINING LIFE: YEAR  [INSPECTION DATA HIERARCHICAL NONE FUZZY MAPPING |  METARULES PROLOG
ETAL 2. 8SOUNDNESS: (0~100) ENVIRONMENT STRUCTURE
1083 3 PROBABILITIES OF FUZZY|CONDITION
(R.C. BRIDGE) DEGREES TRAFFIC VOLUME
M. KUSHIDA 1.REMAINING UFE: YEAR  |INSPECTION DATA HIERARCHICAL NONE NEURAL METARULES PROLOG
ETAL 2. SOUNDNESS: (0100} ENVIRONMENT STRUCTURE NETWORKS
1997 3.PROBABILITIES OF FUZZY | CONDITION +
| DEGREES JRAFFIC YOLUME |
MA ISSA 1.INVENTORY RATING NUMERICAL DATA EQUATIONS NONE EQUATIONS METARULES EXSYS
ET AL 2.OPERATION RATING
(BRES) 1895 3. RATING FACTOR
(PC.BRIDGES) |4 SUFFICIENCY RATING
OURAPPROACH  [ALL INFORMATION IS VISUAL INSPECTION|  FUZZY RULES +T.V. FUZZY TRUTH VALUE Fuzzy FPNES
FPNES SHOWN HIERARCHIGALLY F->G TV PETRI NETS (IN JAVA)
1997 FROM OVERALL DAMAGE
(P.C.FGIRDER LEVEL TO INSPECTION G1.Tv3
BRIDGES) DETAILS, SUCH AS: .
1.DAMAGE LEVEL:
(A FUZZY DEGREE + T.V.)
2. DAMAGE CAUSE:
(A CAUSE +T.V)
3 RECOMMENDATIONS

1.E.: C.F.: CERTAINTY FACTOR; T.V.. FUZZY TRUTH VALUE; F1 AND G1 ARE CLOSE TO F AND G, RESPECTIVELY.

b)

Else if the output transition op; is an inference

transition, and the extended fuzzy place of each

pr €

o(p;je)\{p;} exists in FME, then infer the

extended fuzzy plac&'M /], (px) of i = (p;e)e by
i) transformation, ii) inference, and iii) composition.

Else if the output transition gf; is an aggregation

transition, and the extended fuzzy place of each

o(p;®)\{p;} exists inFME, then infer the extended

(px) of pr = (pje)e by i)
transformation, ii) aggregation, and iii) composition.

fuzzy place FME

d)

of eachp; €

7+1

Else if the output transition gi; is an aggregation-
duplication transition, and the extended fuzzy place 8)
e(p;o)\{p;} exists in FME, then
infer the extended fuzzy placEM , (pi) of each

rr € (pje)e by i) transformation, ii) aggregation,
and iii) composition.

5) a)

7+1

next extended fuzzy marking' A% ;.

(pr) into the

If the output transition of; is fired, then insert the
inferred extended fuzzy placEME

6)

7

9)

b) If the output transition ofp; is a hierarchy, then
insert the extended fuzzy pladeM F(p;) into the

hierarchy and wait for the final extended fuzzy
marking of the hierarchy to be inserted into the

current extended fuzzy marking.

c)

Else insert this elementFME(p;) and each

FME(p)(pi € o(pj®)\{p;}) into the next extended
fuzzy marking FME ;.

Delete the element M " (p,) and each"M " (p;)(p; €

o(p;®)\{p;}) from the current extended fuzzy marking.

extended fuzzy marking.

Repeat steps 3)-6) until no element is in the current

Repeat steps 2)-7) until all output transitions in the

current extended fuzzy marking are not fired.

hierarchy.

APPE

NDIX B

Send the final extended fuzzy marking to the upper level

TRANSFORMATION ALGORITHMS

A labeling system for fuzzy propositions in rule bases is
defined first. Each fuzzy proposition in a module is labeled
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by L;(a;, b, ¢;, d;, ¢;), wherea; denotes the rule number
in this moduleb; denotes right-hand side (RHS) or left-hand
side (LHS) of this rule (1 for LHS and 2 for RHS); denotes
the index of linguistic variabled; denotes the index of fuzzy
set, ande; refers to the module number for whial) is an
importing or exporting linguistic variable. It should be noted
that ¢; = 0 means that this fuzzy proposition has neither g
importing nor exporting linguistic variables. For example, in g
Fig. 8, “X2 is very severe” in the first rule in main module
MO is labeled asl»(1, 2, 2, 1, 1), where I} denotes “very
severe.”

Algorithm 2—Transforming Modularized Fuzzy Rules into
Hierarchical Incidence Matrix:

1) Labeling: Label each fuzzy proposition in each truth-
qualified fuzzy rule in sequence &as(a;, b;, ¢;, d;, €;)
(=1~ m)

2) Inference Transition Part:

a) Create the row of fuzzy placed'f), whose ele-
ments are defined a®;, Fy,) (j =1 ~m).

b) Create the column of uncertain transitiofy’l(),
whose elements are defined @s, 7;) (t = 1 ~
n, 7; means the fuzzy truth value of thth rule).

c) Create ther x m incidence matrix4, wherea; is
—1ifi) L;'s a; is ¢, ii) its b; is 1, and iii) itse; is
0; aj; is +1 if i) L;'s a; is 4, ii) its b; is two, and
iii) its e; is zero.ay is zero if L;’s a; is nots.
3) Aggregation-Duplication Transition Partlf 1) some
L;'s have the same; and¢; is zero and 2) parts of

1) havet; = 1 (called group 1) and the other parts of 2)

1) haveb; = 2 (called group 2), then:
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b) insert a fuzzy place as the last element in the row
of fuzzy placeF'P;

¢) add a new row at the bottom and a new column at
the left end of the incidence matri®, wherea;; is
+1 for the last element of the new row (or column),
aij is —1if L; is in group 1,a; is zero for the rest.

) Repeat step 7) until nd; is satisfied.
) Hierarchy Part: If 1) some L,’s have the same; and

¢; is not zero and 2) part of 1) has = 1 (called group

1) and the other part of 1) hdg = 2 (called group 2),

then:

a) insert a hierarchyH, as the last element in the
column of uncertain transitiob/7;

b) add a new row at the bottom of the incidence matrix
A, wherea;; is —1/ P, if L; is in group 2 andP, an
importing fuzzy place with respect to this hierarchy
in H,, has the same; in relatedL; anda;; is 1/F;
if L; is in group 1 and?;, an exporting fuzzy place
with respect to this hierarchy if/,, has the same
¢; in related L. a;; is zero for the rest.

10) Repeat step 9) until nb; is satisfied.

Based on the hierarchical incidence matrix, hierarchical
fuzzy Petri nets are constructed by an algorithm which is
described below.

Algorithm 3—Transforming Hierarchical Incidence Matrix
into Hierarchical Fuzzy Petri Nets:

1) Fuzzy PlacesDraw fuzzy places based on the row of

fuzzy placesF'P.
Uncertain TransitionsDraw uncertain transitions based
on the column of uncertain transitiod&l".

a) insert an aggregation-duplication transition as the 3) Arcs: Link fuzzy places and uncertain transitions based

last element in the column of uncertain transition
ur,

b) add a new row at the bottom of the incidence matrix
A, wheregq;; is —1 if L; is in group 2;a;; is +1 if
L; is in group l.a; is zero for the rest.

4) Repeat step 3) until nd; is satisfied.

5) Duplication Transition Part:If 1) some L,’s have the
samec; ande; is zero and 2) all of 1) havé; =1
(called group 1), then:

a) insert a duplication transition as the last element in
the column of uncertain transitioti’7’;

b) insert a fuzzy place as the last element in the row
of fuzzy placeF'P;

c) add a new row at the bottom and a new column at
the left end of the incidence matri®, wherea;; is

on the incidence matrix.

a) If ay is —1, then draw an arc from fuzzy plage
to uncertain transitiors;.

b) Else If aj; is +1, then draw an arc from uncertain
transitiont; to fuzzy placep;.

c) If ay is —1/P, then draw an arc from fuzzy place
p; to hierarchyH; and an arc from hierarch¥ 1 to
fuzzy placeF;. in H1.

d) Else ifa; is 1/P;, then draw an arc from fuzzy place
Py in H1 to hierarchyH 1 and an arc from hierarchy
H1 to fuzzy placep;.

e) Else if a; is zero, then there is no arc between
uncertain transitiort; and fuzzy placep;.
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—1 for the last element of the new row (or column) gy this project.

a;; is +1if L, is in group 1, andy; is zero for the
rest.
6) Repeat step 5) until n@; is satisfied.
7) Aggregation Transition Partif 1) some L;'s have the
samec; ande; is zero and 2) all of 1) havé; = 2
(called group 1), then:

a) insert an aggregation transition as the last elemel?g]
in the column of uncertain transitioti’Z";
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