Fuzzy Logic as a Basis for Reusing
Task-Based Specifications

Lein F. Lai, Jonathan Lee,* Stephen J. Yang
Software Engineering Laboratory, Department of Computer Science and
Information Engineering, National Central University, Chungli, Taiwan

In this paper, we propose an approach to reusing requirements specification, called
task-based specifications in conceptual graphs (TBCG). In TBCG, task-based specifica-
tion methodology is used to serve as the mechanism to structure the knowledge captured
in conceptual models, and conceptual graphs are adopted as the formalism to express
requirements specification. TBCG provides several mechanisms to facilitate the reuse of
formal specifications: a contextual retrieval mechanism to support context-sensitive
specifications retrieval and incremental context acquisition, a graph matching mechanism
to compute the similarity between two graphs based on the semantic match and fuzzy
logic, and a paraphraser to serve as an explanation mechanism for the retrieval specifica-
tions. © 1999 John Wiley & Sons, Inc.

I. INTRODUCTION

Software reuse has been recognized as an important research topic in
software engineering.'® Reusing components provides many benefits over the
traditional designing from scratch: (1) increasing productivity by reducing the
production cost in future development efforts, (2) improving system quality by
reusing components that have been successfully used, and (3) reusing compo-
nents that have been proven correct to enhance reliability and thus for ease
maintenance.

Software reuse could be implemented at several levels including the speci-
fication level, the design level, and the code level. However, design and codes
are not only usually too detailed to understand, but also difficult to match
against other artifacts. Since the specification level is at higher levels of
abstraction than others, matching and adapting specifications are easier. There-
fore, reuse at the specification level can yield great benefits in software produc-
tivity and quality early in the software life cycle. As a means to precisely
characterize a specification and to facilitate automation, a formal representation
becomes increasingly important in specification reuse.*”°

*Author to whom correspondence should be addressed: e-mail: yjlee@se01.csie.
ncu.edu.tw.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 14, 331-357 (1999)
© 1999 John Wiley & Sons, Inc. CCC 0884-8173 /99 /040331-27

332 LAIL, LEE, AND YANG

This paper summarizes an approach to reusing requirements specification,
called task-based specifications in conceptual graphs (TBCG). TBCG uses
task-based specification methodology’ '' as the mechanism to structure the
knowledge captured in conceptual models, and conceptual graphs as the formal-
ism to express requirements specification. TBCG provides several mechanisms
to facilitate the reuse of formal specifications:

® A contextual retrieval mechanism is used to support context-sensitive specifica-
tions retrieval and incremental context acquisition. By taking contexts into
account, irrelevant specification will be excluded out. Reducing the number of
possible candidates for selection thus increases the efficiency of reusing require-
ments specifications. In addition, TBCG provides incremental context acquisition
by using user feedback to either reinforce or correct the system’s knowledge in
case of success or failure.

® A graph matching approach is used to compute the similarity between two graphs
based on fuzzy logic, the semantic match, and the analogical match. The fuzzy
similarity between two sets of TBCG graphs can be calculated by computing the
degree of implication and the degree of consistency. The notion of the semantic
distance and the type hierarchy in CGs provides a basis for matching two types on
the semantic aspect. By comparing a complete network of knowledge rather than
unrelated facts, the analogical match can address the structural mapping between
two graphs.

® A TBCG paraphraser is used to serve as an explanation mechanism for the
retrieved specifications. The explanation can increase user’s understanding and
guide the adaptation of retrieved specifications.

In Section II, we first give an overview on how to express task-based
specifications in conceptual graphs. In Section III, basic components for reusing
TBCG specifications are introduced. A contextual retrieval mechanism to re-
trieve and select reusable TBCG specifications is discussed in Section IV. TBCG
paraphraser is described in Section V. Section VI outlines the implementation
of the TBCG system. Finally, we summarize the potential benefits of TBCG
approach and outline our future research plan in Section VII.

II. TASK-BASED SPECIFICATIONS IN CONCEPTUAL GRAPHS

Task-based specification methodology acquires and organizes domain
knowledge, functional requirements, and high level problem solving methods
around the general notion of tasks. A specification can be described at various
abstraction levels and thus pieces of abstract specification can be refined into a
more detailed one in a lower abstraction level. The specification has two
components: a model specification that describes static properties of the system
and a process specification that characterizes dynamic properties of the system.
The static properties of the system are described by two models: a model about
domain objects, and a model about the problem solving states which we refer to
as a state model. The dynamic properties of the system are characterized by (1)
using the notion of state transitions to explicitly describe what the functionality
of a task is, and (2) specifying the sequence of subtasks and interactions between

REUSING TASK-BASED SPECIFICATIONS 333

subtasks (i.e., behavior of a system) using task state expressions (TSE). A TSE
uses the following operators that can be divided into three groups: (1) sequenc-
ing: follow operator and immediately follow operator, (2) branching: selection,
optional operator and conditional operator, and (3) iteration: iteration operator.
Both the model and the process specification can be first described in their high
level abstract forms, which can be further refined into more detailed specifica-
tions in the next level. The notion of task structure (i.e., task—method—
subtask)? is adopted for the process refinement. A more detailed description of
TBSM can be found in Refs. 10 and 11.

The conceptual graph® is a directed, finite, connected graph and consists of
concepts, concept instances (referents), and conceptual relations. Concepts and
relations represent declarative knowledge. Procedural knowledge can be at-
tached through actors. Actors represent processes that can change the referents
of their output concepts, based on their input concepts. Concepts are repre-
sented in square brackets, relations in parentheses, and actors in angle brackets.
Delugach has extended conceptual graphs to include a new type of node,
demons (in double angle brackets), to cause creation and retraction of input and
output concepts.'* A demon’s algorithm causes each of its actual output con-
cepts with referents to be asserted (i.e., marked), while each of its actual input
concepts is to be retracted. If there is more than one input concept, no demon
action occurs until all of its input concepts have been asserted. The notion of
constraint overlays has also been incorporated into the conceptual graphs, which
provides a method to attach constraints to objects and collections of objects that
make up world states.'>'® Constraint overlays, represented in angle brackets and
linked to concepts with dash lines, can overlay actors (procedures or constraints)
on a conceptual graph to describe the changes to a model state.

Conceptual graphs have several useful features that can facilitate the
mapping from task-based specifications to their counterpart graphs. For exam-
ple, terms and relations in the domain of TBSM can be directly mapped to
concepts and conceptual relations, and the notion of partial conceptual graphs
corresponds to the notion of the partial model in our methodology. An overview
of the proposed approach depicting the mapping from task-based specifications
to conceptual graphs is shown in Figure 1. Components of task-based specifica-
tions in conceptual graphs (TBCG) are described below (refer to the Appendix
for the notations of conceptual graphs and TBCG).

Domain Model. Since models are similar to entity-relationship models, the
transformation of terms, attributes, and relations to conceptual graphs is
straightforward. First, a term becomes a concept of type ENTITY. Second, an
attribute associated with a term is represented by a relation (attr), and an
attribute name is characterized by a concept type as a data type through a
relation (chrc). Finally, a relation becomes a conceptual relation.

State Model. A conceptual graph representation for a state model should
capture two main semantics in the model: the stages of completion and con-
straints satisfaction. Our translation rules are summarized as follows: (1) To
overlay constraint actors on the conceptual graph of state objects. The con-
straint overlays are used to show the relationships among state objects. All state

334 LAIL, LEE, AND YANG

Task-Based Specifications CGs
Domain Model
Term —_
Relation \\\J\.‘ Concept I
Constraint I
I Conceptual Relation ‘ :
State Model ,\
Stages of Completion_| \A(Actor 1
Constraint Satisfaction. | ™~
N

\.[Demon ’
><‘{f Actor Overlay I

P e
:EI Proposition \

,,,Fanonical Formation Rule]

Precon‘gition

Protection s

Postconditio

Behavioral Specificati

Task-State Expression.
TSEs Composition—""

¥

Figure 1. Expressing task-based specifications in conceptual graphs.

objects associated with a constraint actor are required to satisfy the relationship
expressed by the actor. (2) To use demons for state transitions whose inputs and
outputs are state objects as referents of the type STATE, and input tokens are
of the type TASK. No demon action occurs until all input concepts are asserted
and all input tokens are enabled. The performance of tasks (in the form of input
tokens) is thus essential for state transitions.

Functional Specifications. Preconditions, protections and rigid postcondi-
tions are represented by propositions. A soft postcondition can be viewed as a
fuzzy proposition with fuzzy concepts and fuzzy conceptual relations.

Behavioral Specifications. TSE is an extension of regular expressions, and
therefore, can be represented using state transition diagrams. To transform
TSEs into conceptual graphs, we have adopted the notion of demons to
represent transitions, which possesses the semantics of an actor node with
respect to output concepts’ referents, with the additional semantics that a
demon actually asserts its output concepts and then retracts its input concepts.'
We also assume that here is a mapping ¢ that maps an expression to its state
where the postcondition after progressing through the expression is true. The
distinction between the follow and the immediately follow operator is noted by
using the demon for the immediately follow operator with the task before and
after the operator being marked, whereas the follow operator is transformed
into a demon whose inputs are not yet completely marked.

In the cases of selectional, iteration, conditional and optional operators,
two convention are adopted. First, we follow the tradition of demons by using an
initiator demon (i.e., {{T))) and a START concept (a subtype of STATE) for

REUSING TASK-BASED SPECIFICATIONS 335

the beginning state. Second, the convention of viewing a conditional test as a
task (e.g., see Ref. 17) is also adopted, denoted as B?, where B is a condition.
That is, B? is a special control flow task that is invoked only when B is tested to
be true, whereas — B? is another special control flow task that is invoked only
when — B is tested to be true. A final state is denoted by attaching the monadic
relation (final). The difference between selectional and conditional operators is
that the expression &, is not be performed unless the conditional test for 3,? is
tested to be true, both of which are not marked. The optional operator is treated
as a special case of selectional operator. The iteration operator is implemented
using three demons. The first demon is invoked by performing an expression &,
while the second demon is invoked by two input tokens, 87 and &, to represent
the notion of iteration condition. The third demon is to indicate the exit
condition.

Method Specifications. A method in TBSM is to accomplish its parent
task. Generally, a method consists of a collection of subtasks, a guard condition
to invoke the method, and a TSE to specify the temporal relationship among
those subtasks.

Details of task-based specifications in conceptual graphs can be found in
Ref. 8. The library system is used as an example to illustrate various components
of task-based specifications in conceptual graphs. The problem description of
the library system is summarized below'®:

Consider a small library database with the following transactions:

(1) Check out a copy of a book. Return a copy of a book.

(2) Add a copy of a book to the library. Remove a copy of a book from the library.
(3) Get the list of books by a particular author or in a particular subject area.

(4) Find out the list of books currently checked out by a particular borrower.

(5) Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions
(1), (2), (4), and (5) are restricted to staff users, except that ordinary borrowers
can perform transaction (4) to find out the list of books currently borrowed by
themselves. The database must also satisfy the following constraints:

® All copies in the library must be available for check-out or be checked out.

® No copy of a book may be both available and checked out at the same time.

® A borrower may not have more than a predefined number of books checked out
at one time.

The specifications in conceptual graphs for the task structure and tasks relevant
to this example are shown in Figures 2 and 3.

III. REUSING TASK-BASED SPECIFICATIONS IN
CONCEPTUAL GRAPHS

Requirements given by users are usually incomplete and inconsistent.
Moreover, the problems of incompleteness and inconsistency are aggravated

LAI, LEE, AND YANG

336

"W9ISAS ATRIQI] 9Y) JO 2INIONIIS Se) oY, T dIn3ig

Ados-ppe
x00q -10§300q
~8-ppe RIS EETTE)
nooq zeo g o
1amou0g -ino PINIIY
o oy -105-Adoa
E ag-pue
i oy A e
g A £dos ZE0- oW mes
1omotiog 1009 . L)
-puy s S Jamoioq “gned
hind dog -anowss “ppe ~anowas e
-s05-
.ou e amoiroq -ropyms -loyyms o} Jomowioq -aaouor anowaz oy Adoo-ppe A
__i.. . am-pue -eod eos -rmouoq ppetoy o £dos -10y-Adoo
...w_.ﬂ.s qyw-e P p -0 ~samoLioq ooq [z “PPY-10] sq-pme
-wuguoo -gus-e ue -pur-yus g —ouppux £dos-aq “100q-o Pmes
-wmyues WA .-..Ecn.ao pue-pes ki -aAouIal UKy -wnynoa
gm0 s g
A
s UCdM FY » sardos Kdos-3a0mss wnjases0§
uod [20! Mouoq mouoq re-pae -103-Adoo-ay3 -Adoo-ay
<q o 2n o 400q-20 s mmyuoy
- - L nopp “HIsT -213)3p. ~uasut 30w ~S-uLuo
@é_u@ @é@ = * o
e 60y ¢ Loy Loy is0g E
(243 g
-~ @__.uz @é@ OO
60910 209N L0 90-q1-oW
\ - . e . mi__.w Cowrany
joog-e-jo -e-£g-jno " g
-Adoo-e-Jno PR
~PRYO3Y2-158] Al ’
-I19MOLI0q -5%00q soyne-Aq joog-e-jo Joog-e jooq-e
RS -jeym -${00q-30 yeys-e- Jeas-e IDMOLI0q 13M01I0q 1doo-[y -jo-Ad -Jo-Ad Adoo-e Adoa-e
~nQ-put, “nQ-pur, -151]-8-30! - -e- 8- ~3A0WD -2A0U B - -jno-
0 Q-putd o O-puly o BHERD |l amouy || o PPV || -e-oaowsy i3 -B-PPY || 2| o) A |lo PPY (o -wmay O -mo-Y234)

<

_ (0-qrD) woysdg-Areaqry _

REUSING TASK-BASED SPECIFICATIONS 337
[TASK:Check-Out-a-Copy]-
(domain-modely> | [Library-SGi@1}- [Bormow@1] -
—(attr)—>[SSN@1] —(agent)—~[Borrower@1]
—(attr)—>{Password@1] — (paticnty—~[Copy:{*}@n]
[Book@1]-
[Copy@1])-
P —(attr)—~{ISBN@1 | —(attr)—~{ISBN@1]
—(attr)—~[Status@1] —(instance)—>[Copy:(*} @]
—+(last-borrowed-by)» [Borrower@1] —>(sttn)—~[Author:{*) @]
~+{att)~[Author: {*} @a] —>(attn)=(Title@1]
—(atr)—>[Title@1] [C 1} {(chre)—~(B 1]
[Borrower@1]- [Current-Copy@1 }>(chrc)—~{Copy@1]
—(aitr)~[SSN@1]
—(attr)-»[Max-Available-Number@1}
(precondition)—>§ Proposition:
{Current-Bomrower] , [Current-Copy]
(protection)—> | Proposition:
Proposition: Proposition:
[Copy]—(attr)—[Status:available] g—»(or [Copyl—(attr)—[Status:checked-out] |
| Proposition:
('NEG)—> [Status:checked-out}«—(attr}«—[Copy]—>(attr)—>[Status:available]
Proposition:
(less-than-or-equal-toy l
[Number:*b}«—{(count)«—{Copy:{*a} }«(patient)«—[Borrow}>(agent}—> T (attr)—[M: i Number]
Proposition:
(NEG)—~ [Borrower}<—{(agent)«{Borrow}-+{patient}-[Copy: { *c} @greater-than-one}— (instance}«[Book]
(postcondition)—>
Proposition: Proposition:
(NEG)—~ [Current-Borrower}->(check-out)— [Current-Copy] i—(or [Current-Borrower}(check-out)— [Current-Copy]

[Method:Check-Out-a-Copy] —(1se)—>

[TASK: ib-011) i

A
[After-State:lib-011]% - - <<transition>>
v,

[START] - * <<transition>> = *[Afler-State:lib-011]~ =» <<transition>> - = *[Afer-State:ib-012]
»)

[TASK Tib-012]

AN

Proposition:
[Cutrent-Borower}=(confirmed-for)—[Borrow]
(Current-Copyl—{confirmed-for)—->{Borrow}

P

[
i
E (NEG)-

Proposition:
{Current-Borrower}—{confirmed-for)—[Borrow]
[Current-Copy}—(confirmed-for)—=[Borrow]

Figure 3. The task Check-Out-a-Copy.

since most of the requirements are expressed by informal representations such
as natural languages. In our approach, we construct task-based specifications via
the reuse of existing TBCGs to refine skeletal task-based specifications. A
skeletal task-based specification is created based on the informal requirements
from users. Figure 4 shows an example of skeletal task-based specifications,
which consists of a task structure and tasks of an internal telephone directory

system.

An overview of TBCG approach is shown in Figure 5. In TBCG, skeletal
task-based specifications is refined one task at a time from the highest level task
until all tasks are considered. Each task in the skeletal task-based specification
would be matched against existing TBCG specifications by means of contextual

338 LAI, LEE, AND YANG

(a) Internal-Telephone-Directory J

Method-tel-0

Add-an- O] Remove- O Adda- O] Remove-s.O Adda- O Remove a0 Flnd-o-n;-o Fina-Oat- O
entry an-entry member member telephone- telephone- :h“““' - the-set-of-
elephone- members
by-a-
-by-s- telephane-
member extenslon

(b) [TASK:Add-an-Entry]-
(domain-model}— [Hold@1]-
—(agent)->[Menber: {*}@n]
—»(patient)—[Telephone: {*} @n]
[Member:@1}1>(attr)—~{SSN@1]
[Telephone@1]— (attr)—[Phonc-Number@1]

[Current-Member@ 1} (chrc)—~[Member@]1]

[Current-Telephone@1}—>(chrc)—[Telephone@1]

(state-model)—} State:
[Current-Member}—(allocate)— [Current-Telephone]

(precondition)—>{ Proposition:
[Current-Member] , [Current-Telephone]

(postcondition)—~>

Proposition:

(NEG)y—~ [Current-Member}—(allocate}—> [Current-Telephone]

¢
(or)
{

Proposition:

[Current-Member}->(aliocate)— [Current-Telephone]

Figure 4. The skeletal task-based specification of the internal telephone directory
system. (a) The task structure. (b) The task Add-an-Entry.

retrieval mechanism. This mechanism matches and retrieves reusable TBCG
specifications based on the concept of contextual links. Through TBCG matcher,
a list of candidate TBCG specifications will be retrieved. The order of these
candidates can be ranked by computing their fuzzy similarities to the query
graph and their reinforcement values. The reinforcement value expresses the
past success rate of each candidate in this context. In the case of failure, the
abnormal condition would be recorded and the next candidate TBCG would be
selected in turn. A TBCG paraphraser and a verification facility are used to
guide the adaptation of TBCG specifications. The paraphraser helps explain

REUSING TASK-BASED SPECIFICATIONS 339

Repository

S

task analysis

Skeletal Task-Based
Specification in CGs

. Customized
—* TBCG

Figure 5. An overview of TBCG approach.

what and why the retrieved TBCG is doing. The verification facility checks the
consistency within the TBCG specifications.

IV. CONTEXTUAL RETRIEVAL MECHANISM

A context is an abstract entity which enables to relativize the truth of a
formula.”®?’ That is, both the meaning and assertion of a formula may be
different in variant contexts. Since context dependency is an important character
of knowledge in requirements specifications, surrounding contexts play a crucial
role in describing and reusing formal specifications. Unfortunately, most of the
existing techniques for reusing formal specifications neglected the effect of
surrounding contexts. To avoid retrieving many unwanted specifications whose
contexts are irrelevant, more researches are required to introduce the notion of
contexts into reusability.

In this section, we propose a contextual retrieval mechanism to match and
retrieve reusable task-based specifications based on the concept of contextual
links used in hypertext retrieval.’! The contextual retrieval mechanism consists
of a trigger condition, a set of contextual conditions, and a list of referents (see
Fig. 6). A trigger condition can be a query graph which specifies a model of a
task (e.g., domain, state, precondition, protection, postcondition, TSE, or

TSince verification is not the focus of this paper, for more detailed discussion of the
TBCG verifier, refer to Ref. 9.

340 LAIL, LEE, AND YANG

(Trigger-Condition (Graph,,..))

(Contextual-Condition (Graph,, e Graphe,.es GTaph, o))

(Referents (Task enr 75 (Graph o conions 1))
(TasK ctyene 73 (Graphymconsiionz 12))
(TasK ens +2)

(TaSkreferch +1)

Figure 6. An example of the contextual retrieval mechanism.

method). Contextual conditions build up the context around the trigger condi-
tion. A referent contains a candidate graph that is retrieved from the TBCG
repository, a reinforcement slot to indicate how often the candidate graph was
successful, and a set of abnormal conditions together with failure rates resulting
from them.

Contextual retrieval mechanism offers several advantages that are useful
for the reuse of TBCG. First, reducing the number of possible candidates
narrows the search by excluding out inappropriate specifications. Second, it
provides incremental context acquisition by using user feedback to either
reinforce or correct the system’s knowledge in case of success or failure. Third,
the notion of contextual conditions facilitates the computation of fuzzy similarity
between two graphs. To apply the contextual retrieval mechanism to reusing
TBCG specifications, there are still several issues that need to be addressed:

® A context cannot be completely described,?* therefore, a way to construct the
context around a TBCG specification is in need.

® As we are interested in spotting the similarity between two sets of graphs rather
than that of two graphs, traditional graph matching methods for computing the
similarity between two graphs are no longer sufficient. We will be forced to
consider both the similarity between two TBCG specifications for some contex-
tual condition and for all contextual conditions. Therefore, to address the dual
concern for what may possibly apply and what must necessarily hold is needed in
graph matching.

e After a query graph is matched, many candidate TBCG specifications may
become eligible for reuse. Therefore, the computation for selecting a best fit
candidate is required.

A. Describing Context

At any time, we might have only a partial description of the context
surrounding a TBCG graph. Since no context can be completely described, the
mechanism for building up a context incrementally is needed. Our approach
provides a way to describe the content of a context in an incremental fashion. In
TBCG, the context around a graph can be manifested by diverse views such as

REUSING TASK-BASED SPECIFICATIONS 341

domain, state, functionality, and behavior. Domain and state describe static
properties of a context; whereas, functionality and behavior characterize dy-
namic properties of a context. Based on the sketchy knowledge given by users at
the beginning, the context surrounding the query graph can be built roughly by
adding views into contextual conditions. As the development of the system
progressed, the user’s knowledge is increased. Hence, either existing contextual
conditions may be refined iteratively or new views can be incorporated into
contextual conditions.

As was advocated by Delugach,” the multiple-viewed approach alleviates
the difficulty in specifying and analyzing requirements of a complex system.
Delugach also points out that the main drawback of many existing approaches is
the lack of a formal basis from which to automatically analyze the resulting
multiple-viewed requirements. To express the context surrounding a require-
ments specification, a uniform knowledge representation to capture the informa-
tion in multiple views is in need. In TBCG, different views for constructing a
context are represented in their conceptual graphical specification (i.e., in a
uniform representation). By reducing the effort of translation between different
views, the internal common representation makes the process of specifications
matching much easier.

Consider the domain model of the task Check-Out-a-Copy in Library-
System (see Fig. 3). The context of this graph is composed of multiple views
containing a precondition, a protection, a postcondition, and a method. Each of
them can be a contextual condition to match against contextual conditions in
other TBCG specifications.

B. Computing Similarity

To compare specifications based on their graphical descriptions, TBCG
quantifies its degree of fuzzy similarity by computing a distance between its
corresponding graphs. Distances between two graphs can e obtained from
aggregating semantic distances of all pairs of corresponding nodes. In concep-
tual graphs, the semantic distance between two types is evaluated by adding up
paths from each type to their most specific common supertype in the type
hierarchy.>* The most specific common supertype of two types ¢, and ¢,
indicates the most specific type that subsumes ¢, and ¢,. Its formal definition is
described below.

DEFINITION 1 (The Most Specific Common Supertype of Two Types). Let the most
specific common supertype of two types t, and t, be denoted by G (t,,t,). We have

G(T,,t,) = {glgeneral(g,t,) A general(g,t,) A (Vi # g)(general(t,t,)
Ngeneral(t,t,)) = general(t,g)}

where general(x, y) is a predicate to indicate that x is more general than y (i.e., x is
a supertype of y).

342 LAIL, LEE, AND YANG

Consider the concept type hierarchy in Figure 7, in which the most specific
common supertype of Borrower and Book is Entity. Distances from Borrower
and Book to Entity are 3 and 1, respectively. Therefore, the distance from
Borrower to Book is 4.

DEFINITION 2 (Distance Between Two Types). Let the distance between two types t,
and t, be denoted by D/(t,,t,). D(t,,t,) is defined as the distance of the shortest
path from t, to t,in the type hierarchy. We have

(1) DSt,t,) = DJ(t;,G(t,1,)) + D(¢,,G(t,,1,))
() DSt,,t,)=0.Ift; =,
(3) D[t,t,) = +o. If G(t,1,) =T (i.e., the universal type in conceptual graphs)

A TBCG graph is composed of a set of nodes and links. Some nodes may be
more valuable to the query graph than others. In our approach, a criticality can
be assigned to each node in the query graph based on user’s own judgments.

DEFINITION 3 (Criticality of a Node in the Query Graph). The criticality (i.e., the
degree of importance) of a node is quantified by length. The length indicates the
maximal admissible path through which a node’s type can match other types in the
type hierarchy. The higher the criticality of a node, the larger the set of matchable
nodes and the propositional weight of this node in the query graph. The criticality of
a node n is denoted by Criticality,(n).

Enmy ﬁm\ Situation
Hold

Ammaf Boo

Telephone appellation Number Remove

Return Proposition
Pel on
Name
Cop y Password Max- Avallable Number Add State

ISBN
Author Phone-Number

Borrower Member

Figure 7. Concept type hierarchy.

REUSING TASK-BASED SPECIFICATIONS 343

The distance between nodes can be calculated by the semantic distance
between their types, which serves as the basis for semantic match. Unlike
syntactic match that must be satisfied exactly, semantic match permits a relaxed
match for close semantics.?

DEFINITION 4 (Distance Between Two Nodes). Let ny and n, be nodes in the query
graph and the candidate graph, respectively. The distance between n, and n, is
denoted by D,(n,, n,). We have

D,(ny,n,) = min{D,(t,,1,), Criticality,(n,)}

where t, and t, are type labels of nodes n, and n,, respectively.

Our approach achieves graph matching through analogical reasoning that
processes a complete network of knowledge rather than unrelated facts. Many
matching techniques, especially the keyword-based matching, overleap the struc-
tural mapping between specifications. However, specifications are usually too
complex to be described comprehensively using keywords. Analogical match in
TBCG not only captures the meanings of nodes, but also compares the struc-
tural relationship between graphs. We formally define the concept of a compati-
ble set in Definition 5, and outline an algorithm for finding compatible sets
below.

DEFINITION 5 (A Compatible Set Between Two Graphs). Let g, be a query graph
that contains nodes n; where i = 1+ p, and g, be a candidate graph that contains
nodes m; where j = 1+ q. A compatible set between two graphs g, and g, contains
P pairs of nodes to indicate the possible correspondence of all nodes in g, and g,.

ALGORITHM 1. Find compatible sets between two graphs G, and G,.
Create a product pair (N;, N,),VYN; € G, and N, € G,
generate a compatible set {(N, N;)),(N,, N;,)}, whenever (N;;, N;) and
(N5, N;y) are compatible
repeat
for each compatible set S, do
for each product pair P, do
if compatible(P,, S,) then join(P,, S,)
until no change occurs

The distance between two graphs can then be computed by summing up all
the distances of correspondence pairs of nodes in their compatible sets.

DEFINITION 6 (Distance Between Two Graphs). Let g, be a query graph that
contains nodes n;, i = 1--- p, and g, be a candidate graph that contains nodes m

344 LAIL, LEE, AND YANG

where j =1 q. The distance between two graphs g, and g, is denoted by
Dg(gl’ gz) We have

Digvg) = min | T D(nem))

ng(gl’ 82) (n;, m]-)e CSg(glng)

where CS g(g1, &,) indicates a collection of compatible sets between g, and g,.

Similarly, the criticality of a query graph can be computed by summing up
all the criticalities of nodes in the graph.

DEFINITION 7 (Criticality of the Query Graph). Let g be a query graph that contains
nodes n;, i = 1--+ p. The criticality of the query graph g is denoted by Criticality (g).
We have

Criticality,(g) =) Criticality,(n;)

nsg

The distance between a candidate graph and its query graph will decrease
the degree of importance (i.e., the criticality) of the candidate graph. Therefore,
the relative criticality of a candidate graph can be obtained by subtracting the
distance from the criticality of the query graph.

DEFINITION 8 (Relative Criticality of a Candidate Graph). Let g, be a query graph
and g, be a candidate graph. The relative criticality of the candidate graph g, is
denoted by Criticality, (g,|g,). We have

Criticality,(g,|g,) = Criticality,(g,) — D,(&:,&>)

Due to the imperfect information inherited in contexts, it is difficult to
come up with a crisp similarity degree between two contexts. Therefore, we
adopt the notion of “necessity” and “possibility” in fuzzy logic as an interval to
capture the fuzzy similarity between two contexts. Our approach defines fuzzy
similarity between two graphs based on the degree of implication and the degree
of consistency advocated by Enrique Ruspini.”® The interpretation of the degree
of implication and the degree of consistency is shown in Figure 8. By stretching
the context of the query graph to encompass the context of the candidate graph,
formulas that are true in the candidate graph may hold to a degree « in the
context of the query graph. Let Q and and C be contexts surrounding the query
graph g and the candidate graph c, respectively. We can say that the context C
implies the context Q to a degree «, if and only if for every contextual condition
x in C there exists a contextual condition x’ in Q that is at least a-similar to it.

REUSING TASK-BASED SPECIFICATIONS 345

* ST
query-graph-context Q

candidate-graph-context C

.....................

© e X
y query-graph-context Q Hpé‘)

candidate-graph-context C | -

= (C=>—1Q) = {x - Q| 3x,x = C}

Figure 8. (a) Contexts of a query graph and a candidate graph. (b) The degree of
implication. (c) The degree of consistency.

The formal definition of the degree of implication is described below:
C=1,0={x+I,0Vx,x+ C}

where II, means “possibly true to a degree «” and +~ stands for “is true in.”
On the other hand, the degree of consistency can be viewed as stretching the
context of the query graph to intersect some contextual condition in the context
of the candidate graph. We can say that the context C is consistent with the
context Q to a degree 3, if and only if there exists some contextual condition x
in C and some contextual condition x’ in Q that are at least B-similar. The
degree of consistency is formally defined below,

—-(C = ~M,0) = {x+1,03x, x - C}

Figure 8(b) and (c) show the dual notion of the degree of implication and the
degree of consistency, where the former reflects the degree of “inclusion” with

346 LAIL, LEE, AND YANG

respect to the notion of necessity and the latter expresses the degree of
“intersection” with respect to the notion of possibility. By means of comparing
contextual conditions of the candidate graph with that of the query graph, an
interval (i.e., [implication degree, consistency degree]) is formed to represent the
similarity between two graphs.

DEFINITION 9 (Fuzzy Similarity Between Two Graphs). Let g, be a query graph in
a task k, and g, be a candidate graph in a task k,. The task k, contains several
contextual conditions x;, i = 1 -+ p and the task k, contains contextual conditions
Vi, J =1 q. The fuzzy similarity between two graphs g, and g, is denoted by
FS,(g,, &,)- We have

Criticality,(y;|x;) Criticality,(y;|x;)

FS , = inf s ST
<(81,82) xilgkl y/_g; Criticality,(x;) x?g:] yfgfz Criticality,(x;)

C. Selecting Candidate Task-Based Specifications
in Conceptual Graphs Specifications

As the query graph has been matched against specifications in the reposi-
tory, many candidate TBCG specifications may be retrieved. Each of them is
recorded as a referent in the contextual link. To enhance the accuracy of
selection, we adopt the notion of purpose-directed analogy?’ to ensure that the
mapped analogy of each selected candidate can satisfy the purpose of the query
task. Our approach consists of four stages: retrieve, explain, map, and justify
(see Fig. 9). For each retrieved candidate specification, the system first explains
how this base task satisfies its purpose. A task can satisfy its purpose only when
the purpose is true in its after state description. The after state description of a
task can be obtained from progressing through its TSE. States and conditions in
TSE will be further explained by corresponding state models which specify the
satisfied constraints. Next, the system maps the explanation derived for the base
task to that of the target task, and attempts to justify that the mapped task
satisfies its purpose. If the mapped TSE and explanation cannot justify the
purpose of the query task, this base task will be excluded from the referent list.
By explanation-based learning, we can justify that the selected reusable task is
appropriate to achieve the purpose of the query task.

To rank order the list of referents, a rule-based approach is proposed.
Several crucial factors are exploited to form our heuristics: reinforcement value,
implication degree, and consistency degree. The heuristics implemented in the
rule base are summarized below. First, rules for selecting a best fit reusable
TBCG are focused on the reinforcement in referents. The reinforcement of a
referent expresses how often the candidate graph was successful. The higher the
reinforcement value of a candidate, the higher the past success rate of the
candidate TBCG in the contextual link. Second, the candidate with the higher
degree of implication would be selected under the situation of a same reinforce-
ment. Finally, the degree of consistency is also considered as a basis for

347

REUSING TASK-BASED SPECIFICATIONS

“A3oreue pajoadp-asoding ¢ aan3ig

{ptoy :smoms}--

4 -~ - i T~ ~
» .~
l 1eaumg)] Agpou> ! (Aq-p ism)«fhdog-enng] g
—»<Ayppou p .a..m_L) “ueung] -7 [mo-payoogs :mymg] At oAt isums] «—{Aw)ofAdog-wauno]
UMb QI N

[eaoydatay.- «BEG_iﬁu-el_._o:ToEn.le::z.En::o_ b HEQE_LEE&LEEEL.E..I!B:S weung) -y
XSAIN>-- Ko JueunD] 'g
a . mms) Tenbo: [rmms]«(mm)Ados-uenns] ‘p

1 bs: - [roymg e {ze) M UW .v AITXFIOU-NIIYD e er 1 vones N
o . mN-alqe uaunole [Adop-iaaimp))«-{a00g} 1)+ [£d0] «—(1uotyed)o{mosiog] (1usBs)-famouog-iuenna] g

[3qumN-ojqepusy :_le.vrr.:
HEE:EL.EST:L Sﬁ&_u._.ul.&a.e.;zaai.su-vtoai nd) 'z

100 wauns] 'y

[zqump-oqemeay-Xe W] «(aw)
_E_E_EL_SST:L »&oH.L“En.sL;EsnTeE.YrEES juein)) -z

<AXI-X2aY;

0] L

\

[PtoH]«~(10j-pouniguos)«—{suogdstor -juanny)

/

[P1oF] «~{10j-parusguos) «{ 13quIN-103LN))

). JaR

[suoydajaL-1usmy)]« (21890][8) < [10qUIoN-Jusny] :asodmyg

AALLSNr

v

I waamo) |

To:en_.xééuse__if;&u..g

[
L

1
O]

Anug-ue-ppy :yse], 18],

~ -
llllll

VQA

A
NIVIdXH

[Adon-wanmy]« (1no-yooyn) « [1omon10g-juarmyy] :osodmg

AdoD-e-3nQ-yooq) yse], oseq

348 LAIL, LEE, AND YANG

selection. The candidate with the higher degree of consistency would be selected
when both the same reinforcement value and the same degree of implication are
obtained.

After a referent has been selected, the user responds either “success” or
“failure.” The system automatically records this selection by adding +1 to the
reinforcement slot in the case of success. When a failure occurs, the system
attempts to obtain from users the reason for this failure. Users may state that
some condition of the candidate graph is not suitable for the query graph.
Hence, users either describe an abnormal condition or select an existing
abnormal condition in the contextual link. If an abnormal condition is observed
for three times, its negation will be added into contextual conditions in the
contextual link automatically.

V. PARAPHRASING TASK-BASED SPECIFICATIONS IN
CONCEPTUAL GRAPHS SPECIFICATIONS

To make the reuse of TBCG specifications easy, it is important that the
specifications can be explained to and understood by the users. With the direct
mapping to natural languages, the conceptual graph serves as an intermediate
language for translating TBCG specifications to natural language.f Paraphrasing
TBCG specifications provides an explanation to enhance the user’s understand-
ing for the retrieved graph. Understanding what and why the retrieved TBCG is
doing would facilitate the adaptation of the retrieved TBCG.

Important features in translating CGs to English in TBCG paraphraser
include:

® Subject—verb agreement. The paraphraser obeys basic English grammar rules,
including the subject and verb agreement rule. For example, [Person: {*}@many]
— (eat) — [Pie] will be translated into “Many persons eat one pie.”

® Treatment of enclosure. An enclosure delimits a group of information. Our
approach deals with several types of enclosure, including proposition, graph, state,
etc. For example, (NEG) — [Proposition: [Borrower: {John, David}@two] —
(check-out) — [Book: {#}@3-to-5]] will be translated into “There is a negation of
the proposition as follows: Two borrowers John and David check out 3 to 5
books.”

® [solated concepts. The system will precede the translation with the phrase “There
exist(s)” as shown in the next example. [Person: John] will be translated into
“There exists one person John.”

® Actors. Actors are used for expressing constraints in state models of TBCG
specifications. This is achieved by preceding the word “must” in the sentence.
[Number: 20] — {equal-to) — [Number: * x] will be translated into “The number
*x must be equal to the number 20.”

® Demons. Demons represent state transitions in TSEs and methods of TBCG
specifications. Figure 10 shows an example of paraphrasing the method of the
task Check-Out-a-Copy (in Fig. 11). The paraphraser explains the sequence,
trigger events, and state changes in the method of Tj.

$This is achieved by adopting the work by Slagle et al.*® that translates CGs to
English.

REUSING TASK-BASED SPECIFICATIONS 349

' The method of the task specification Check-Out-a-Copy (T8). is :

EE EEmEmomsoscossssss=ssE=oenRs mme

The task T8 is achieved by performing several sub-tasks:
[1] Confirm-the-Borrower-and-the-Copy-for-Checked-Out (T15)
[2] Check-Out {T18)

The sub-task T15 can be performed first, and the before state "There is one current-borrower.
There is one current-copy. * will be changed to an after state "A negation of the proposition ”
One current-borrower confirmed-for one borrow. One current-copy confirmed-for one borrow. "

or one proposition "One current-borrower confirmed-for one barrow. One current-copy
confirmed-for one borrow. * "

The sub-task T18 is performed behind T15, and the before state "One current-berrower
confirmed-for ane borrow. One current-copy confirmed-for one borrow. " will be changed to an
after state "One current-borrower check-out one current-copy. and confirmed-for one borrow.
One current-copy confirmed-for one borrow. "

The execution terminates after performing the sub-task T16.
The execution will be haited on the sub-task T15 when the condition "There is a negation of the

proposition "One current-borrower confirmed-for one borrow. One current-copy confirmed-for
one borrow. " " is true.

Figure 10. Paraphrasing the method of the task Check-Out-a-Copy.

VI. IMPLEMENTATION

The TBCG case tool provides a Java interface as the front-end. Users can
use this tool on a HTML browser in the Internet. We use CLIPS, an expert
system development tool, to implement the reasoning engine for the contextual
retrieval, graph-matching, and paraphrasing components, each of which is de-
scribed below (see Fig. 12 for an overview of the system).

We adopted Java as the programming language for the TBCG case tool. It
provides the capability to run on multiple platforms and in the Internet. Java
calls C library at run-time by the native method. We use this characteristic to
invoke the CLIPS engine when users request the tool to match or retrieve a
TBCG specification at run-time. The client provides the basic notation of the
conceptual graph and task-based specifications (e.g., concept, conceptual rela-
tion, actor, demon, and propositions), and users use these notations to specify
the specifications on the workplace directly. Users can construct the task
structure and the type hierarchy of a system and specify the model (e.g., domain,
state, precondition, postcondition, protection, TSE, method model) of tasks in
the system. The canonical graph of a type can also be described. Figure 11 is a
demonstration of the method of the task Check-Out-a-Copy.

350 LAI, LEE, AND YANG

39 START @ C4l efter-state T15 /‘ <® —3|_C42 aftersteteT16
Py

1’1 ; S e,
7 ; -
7 / J —

/ C43 task:TI6 B proposition
C45 current-borrower] [C46 bonmd

/ R332 confimmed.-for

B /\. l C47 current-copy lC48 bomw]
C44 after-state T15 —
‘\“
.

X1 proposition

X9 proposition

€ v

Figure 11. The method of the task Check-Out-a-Copy.

When users finish inputting the TBCG specifications on the client, it sends
these data to the server through the network. After the server processes the
received data, it sends the result back to the client. The client then shows the
result as conceptual graphs for users to evaluate. Users evaluate the retrieved
graphical specifications as an aid for reusing. Figure 13 is a demonstration of
matching the domain model of task Add-an-Entry with contextual conditions of
precondition and postcondition (in Fig. 4). Information appearing in the Refer-
ent List window indicates that a task 7 is a referent with a reinforcement value
4, and an interval of [0.5625,0.7840] for representing the degree of similarity.

When the message dispatcher in the server receives the messages from the
client, it analyzes the messages to determine whether to invoke the JDBC layer
or the CLIPS engine. If the message is a database operation request, such as
inserting a conceptual graph or deleting a graph from a specification, the
message dispatcher uses SQL APIs on the database repository through the
JDBC layer. JDBC is a set of SQL-based APIs that Java uses to retrieve and

REUSING TASK-BASED SPECIFICATIONS 351

/f| Message Dlspatcher \
A \ﬁa\stteam

data stream CLIPs

Java Applel

or

HTMIL
Browser

data stream Engine

facts
\ stream DBMS-based
SQL Repository
JDBC Layer >
-
data stream

Client Server Database

Figure 12. An overview of the system.

modify the data stored in the DBMS. However, if the messages are CLIPS
operation requests, then the server makes up the facts necessary to the CLIPS
program and invokes the CLIPS engine to execute. The CLIPS uses these facts
to do the contextual retrieval, graph matching, and paraphrasing the TBCG
specification. The server then sends these results back to the client.

We use DBIII as the database file format. This is because the ODBC (open
data base connectivity) takes it as one of the standard data exchange format.
ODBC can work with the standard database through SQL, and JDBC can
incorporate with ODBC. In this way, Java can manipulate the database through
JDBC and ODBC. In addition, we can use SQL statement to query the graph
data much easier.

VII. CONCLUSION

In this paper, we propose an approach to reusing the requirements specifi-
cation, called task-based specifications in conceptual graphs (TBCG). In TBCG,
task-based specification methodology is used to serve as the mechanism to
structure the knowledge captured in conceptual models, and conceptual graphs
are adopted as the formalism to express requirements specification. TBCG
provides several mechanisms to facilitate the reuse of formal specifications: a
contextual retrieval mechanism to support context-sensitive specifications re-
trieval and incremental context acquisition, a graph matching mechanism to

352

LAIL, LEE, AND YANG

Select Task gAdd—an—enlry

state
precondition
postcondition

Trigger Condition

Contexutal Condition

protection
tse
method

Current State

T15:2:[0.5321.0.6432]
T16:0:[0.5211.0.5325]
T18:0:[0.5011.0.5212]

Referent List

Figure 13. The result of the graph matching.

compute the similarity between two graphs based on the semantic match and
fuzzy logic, and a paraphraser to serve as an explanation mechanism to explain
retrieved specifications.

Contextual retrieval mechanism offers several benefits that are useful for

reusing formal specifications:

® To exclude irrelevant specifications to reduce the number of possible candidates
for selection. By this way, the efficiency of reusing requirements specification will
be increased.

® To provide an incremental context acquisition to help elicit detailed information
of contexts. The multiple-viewed approach also helps to build up a context
incrementally.

® Support the computation of fuzzy similarity, semantic match, and analogical
match. The computation of fuzzy similarity not only facilitates the matching
between two sets of graphs but also deals with the uncertainty inherent to
contexts that cannot be completely described. Unlike syntactic match that must
be satisfied exactly, semantic match in TBCG permits relaxed match for close
semantics. Unlike keyword-based match that overleaps the structural mapping,
analogical match in TBCG addresses the structural relationship between graphs.

® To offer a plug-in environment that facilitates the reuse of different specifica-

tions. The matching engine in contextual retrieval mechanism can be used as a
plug-in component for different kinds of modeling notations.

REUSING TASK-BASED SPECIFICATIONS 353

® To provide a TBCG paraphraser to explain what and why the retrieved TBCG
specification is doing. The explanation mechanism offers a basis to increase user’s
understanding and guide the adaptation of retrieved specifications.

Our future research plan will consider the following tasks: (1) to extend the

current framework to fuzzy logic for modeling imprecise requirements, and (2)

to

apply the contextual retrieval mechanism to unified modeling language

(UML).

We thank Yu Fei for his early work on this subject. This research is partially

sponsored by National Science Council (Taiwan, R.O.C.) under Grant NSC86-2213-E-
008-006.

15.

16.

17.

18.
. McCarthy, J.; Buvac, S. Formalizing Context: Expanded Notes; Tech Rep STAN-CS-

20.
21.

22.

23.
24.

References

. Krueger, C. W. ACM Comput Surveys 1992, 24, 131-183.
. Mili, H.; Mili, F.; Mili, A. IEEE Trans Software Eng 1995, 21, 528—-562.
. Ostertag, E.; Hendler, J.; Diaz, R. P.; Braun, C. ACM Trans Software Eng Methodol-

ogy 1992, 1, 205-228.

. Cheng, B. H. C,; Jeng, J. J. IEEE Trans Knowledge Data Eng 1997, 9, 341-349.

. Maiden, N. A_; Sutcliffe, A. G. Software Eng J 1996, 281-292.

. Zaremski, A. M.; Wing, J. M. ACM SIGSOFT 1995, 6-17.

. Lee, J. Int J Intell Syst 1997, 12, 167-190.

. Lee, J.; Lai, L. F.; Huang, W. T. IEEE Expert 1996, 11, 60-70.

. Lee, J.; Lai, L. F. Information and Software Technology 1998, 39, 913-923.

. Lee, J.; Yen, J.; Passtor, J. Int J Intell Syst 1994, 9, 839-851.

. Yen, J; Lee, J. IEEE Expert 1993, 8, 8§-15.

. Chandrasekaran, B. Al Mag 1990, 11, 59-71.

. Sowa, J. F. Conceptual Structures: Information Processing in Mind and Machine;

Addison-Wesley: Reading, MA, 1984.

. Delugach, H. S. Dynamic Assertion and Retraction of Conceptual Graphs, Sixth

Annual Workshop on Conceptual Graphs; 1991; pp 15-26.

Eshner, D.; Hendler, J.; Nau, D. Incremental Planning Using Conceptual Graphs,
Sixth Annual Workshop on Conceptual Graphs; 1991; pp 283-294.

Pfeiffer, H. D.; Hartley, R. T. In Conceptual Structures: Current Research and
Practice; Nagle, T. E.; Nagle, J. A.; Gerholz, L. L.; Eklund, P. W., Eds.; Ellis
Horwood: England, 1992; pp 87-107.

Warren, D. H. D. Generating Conditional Plans and Programs, Summer Conference
on Artificial Intelligence and Simulation of Behavior; 1976; pp 344-354.

Wing, J. M. IEEE Software 1988, 66—76.

TN-94-13; Computer Science Department, Stanford University, Stanford, CA, 1994.
Akman, V.; Surav, M. Al Mag 1996, 55-72.

Boy, G. A. Indexing Hypertext Documents in Context, Third ACM Conference on
Hypertext; 1991; pp 51-61.

Guha, R. V. Contexts: A Formalization and Some Applications; Tech Rep ACT-
CYC-423-91; MCC, Austin, TX, 1991.

Delugach, H. S. J Syst Software 1992, 19, 207-224.

Foo, N.; Garner, B. J.; Rao, A.; Tsai, E. Conceptual Structures; Current Research
and Practice; Ellis Horwood: London, 1992; pp 149-154.

354

25.

LAIL, LEE, AND YANG

Ryan, K.; Mathews, B. Matching Conceptual Graphs as an Aid to Requirements

Re-Use, IEEE International Symposium on Requirements Engineering; IEEE Press:
Piscataway, NJ, 1992; pp 112-120.

26.
27.

Ruspini, E. Int J Approx Reasoning 1991, 5, 45-88.
Kedar-Cabelli, S. Readings in Machine Learning; Shavlik, J. W.; Dietterich, T. G,

Eds.; Morgan Kaufmann: San Mateo, CA, 1990; pp 647-656.

28.

Dogru, S.; Slagle, J. R. A System that Translates Conceptual Structures into English,

7" Annual Workshop on Conceptual Structures; 1992; pp 283-292.

APPENDIX: A SUMMARY OF CONCEPTUAL GRAPHS

AND TASK-BASED SPECIFICATIONS IN

CONCEPTUAL GRAPHS NOTATIONS

For a summary of conceptual graphs and task-based specifications in
conceptual graphs see Figures A.1-A.4.

Summary of Conceptual Graphs Notation

Nodes in Conceptual Graphs:

Node Notation Explanation
concept [T:R] A concept contains a type label to indicate the concept
' type and a referent field to specify the instance.

relation (1) A relation specifies the relationship between concepts.

actor <T> An actor represents a process that can change the referent
of its output concepts based on its input concepts.

demon <<T>> A demon causes each of its output concepts to be asserted,
and each of its input concepts to be retracted.

** Remarks: (1) T denotes the type label of a node. (2) R denotes the referent field of a concept. **

Referents in Concept Nodes:

Referent Types Expression Semantics Example English Expression
Generic [T:*] 3x,x €T [Cat:*] a cat or some cat
Individual [T:#n] #n eT [Cat:#02] the cat #02
Proper Name [T:Name] Name€T [Cat:Kitty] the cat named Kitty
Unique [T:@1] A x,x €T [Cat:@1] one and only one cat
Set [T:{N,,...N}] {N,,...,N}T | [Cat:{Kitty,Garficld}]| Kitty and Garfield
Plural Set [T:{*}] 38,SCT [Cat: {*}] cats or some cats

Counted Plural Set| [T:{*}@n] 3T and [S}=n [Cat: {*}@4] four cats
Definite Set [T:#{*}] #SCT [Cat:#{*}] the cats
Universal [T:V] vx x €l [Cat:V] every cat
Negative [T:=] Vx xeT [Cat:—] no cat

** Remarks: (1) T denotes the type label of a concept. (2) S denotes a set. (3) #8 denotes a designated set, **

Figure A.1.

355

REUSING TASK-BASED SPECIFICATIONS

"'V a3y

‘s1deouod Jndur zaty uo paseq sydeouod

ndino 1121y Jo syus1ajal oY) aSuelyd 0) s3pa[morny| [rmpasod yseye
ues jety; 0308 ue Aq pajuswe[dur st Apoq s[ni oy L, 'Apoq anl € pue
SUIBU 3] B JO $ISISUOD JR) SN S} PUE JUIRLSUOD B J93UUOI 0} P3SN sI
(uooe) UOR[aI AY [, "INQLIE 511 pue 1daoU0d € J03Uuoes 0) pasn st (17e)
uone[al ay], “Apadoid pue ‘Surddews ‘pBuans ‘edoos are sjaoey asay],
‘Jurensuod e o3 sjadino pue syndur axe syred 'sa[n pue ‘s3eoey ‘sired Aq

[badinQ] <---<roe> <. [1nduf]]«—(£poq)«[omy] «(wooE)
[A&nadorg}«—(omo) < [2ane8aN | 2anisod] «(me)
[Burddey] <~ (o)« [ponfeanmy | panfea-s[8uis]«(1me)
[w8usngl«—(om2) |- - "D} «—(mr)
[odoag]«—(o1ya)«[reqo[D | (2207}« (11¥)
[{+}:uoumBry]«(ured)

PAZLI)OBIEYD ST YITYM JULEISUOD B sjussaidal [yurensuop)] ydeouos v -[urensucy] | [urensuo)]
[HdvaO]<(os1)
syseqns osoyp Suowe [{4} SV —(ed)
drysuonepaa ferodws) o1y £310ods 03 HG.1 B pue ‘POYIat Itf) 94OAUL 03 [wontsodozg]«(uontpuoa-piens)
uonIpuos prend e ‘s)seiqns Jo UOO[[OD € JO SISISUOD POYIAW Y "}SE) [MSVL](Asei-juared)
Juared syt ysydmonoe o3 poypew e sjuasardar [poryiay] 1daouos v -[poyan] [powon]
‘(sgS.L) suoissaidxa ajeys-ysey [HAVAO]<(25))
Aq payrads st {apows 101aeYRq oY, ‘suonipuod)sod pue ‘suonosiord [uonisodor]«(uonrpuosisod)
‘suon1puodaid surejuod [apow [euonduny oy, ydeid {emdasuod [worisodoag]<-(uonssjord)
© Jo pasodwos 1xa1u09 ¢ St [HIV D] 1deouod e Jo juaigpar sy f [uonsodo1g]«(uonipuosard)
[HdvaD] 1deouos ydeid e se pajuasardal st gorm [9pow UrewIop _
s s (S L] 1deouoo ysey © 105UU05 0) Pasn St ([opOW-UIWOop) [HdVuD]}«([Ppow-3123s)
UOLR[a Y [, [OPOWI IOIARYS] B PUR [3POW [RUONOUN] © ‘[oPOW 918)S [Hdv O]« (pow-urewiop)
® ‘[3pOt UleTOp € Sy YoTqm Jse) e sjussaxdar [Y§y] 1deouod v -[Msvil [¥svil
uoneuedxg auo,j [e10uUa) sYJ ad4], 3desuo))

DHgIL ut s3daouo) o1svg

LAI, LEE, AND YANG

356

'€’V 2an3g

[avonssodoxg) [1svi]
@sxyun
«€ 93E38 03 PaSURYD 3q [[A v els oY ‘pounopisd aq A T, Jse o S -7 SUOLIPUOd [[IM
pue ann st 4 uonisodoxd uoym,, 18y} SUBSW UOLISURY 3je)S Y], [a:arvis] <-- |AA=og.avv <-- Jviaivis] o ’
[Didasuop)] € - —<ove> [L:3sVL]
-, (1opow aje)s u)

'€ 2138 03 pofueyd
9q (1M Y 2Je1S A} ‘paysies st (10398 1) AB[IOAO JUIRJSUOD Jf)

pue pouiojiad s1 YSe) o) USYM, 38T} SUBSUI [IPOW 3838 YL

(o1yo)

e

'

7’
Eﬁ»&.mu <-- |AA§€¢§VV <-- IvHiIvLs]

[£e[10A0 s10708 1M

uoneue[dxy

Lo, [ISUSD) YL,

sad4], wasagiq

DDEL Ul SUOISUDL] 2IDIS

357

REUSING TASK-BASED SPECIFICATIONS

bV 231y

(reuy)
N|
E [ed] (9]

N LIRS (oaNll

'ana 9q 0 palss) st (g 10J 159} [RUOHIPUOD I* Mﬁm % «(3d) uoneIs)|
oy ssajun AjeAneIan pouuopsd 9q 10U [[14 3 uotssoxdxe [<<UOHE AA: - Ammmwmcu VM L3l
AL ‘UOnIpuOd e SI ¢ 2I0YM ‘O 2q 03 palsa) 81 ¢ usym ﬁv
AJuo psyoAUI St JeY) sk} MO [01u0 [edads e §1 i f ()9]<- <<uonsuerh&- [ravisl€-<<I>>
DBl
L
[LaVLS]€- <<uonisuens>>«- [LIVLS]€-<<1>> [3] [euondo
P\E
‘SAO[J JOIUOD AISNIIXA A[[emn bl- ,. ;.
omy Junuasaidar are 2 pue > ‘uopersdo fjnu e ST 3 [(9]€- <<uonsien>><- [1VIS]C-<<L>>
) . *SAISR[OX3 Alfenynw a1e % pue 'g PR TRS %2
o0} 0 0 PAYSI) St ;% 10§ 159) UOLIPUOD oY) J1 pauntofsod . 4 b
aq |[14 *3 gorssaxdxo a1y ‘Ape[ung ‘any 9q 03 Pajsaj st [(3)0}<- <<uontsuen>><€- [1V1S] € <<L>> @gniatg) | renonrpuo
¢'d 105 1593 vonIpuod 2y} J1 pauutoyiad aq (['3 uoissardxa L 'dl e [euonrpuo’
9L ‘UOHIPUOD € SI ¢ aIyMm ‘ony) oq 0} Pajsa) s1 ¢ udym ¢ L
AJuo paxoAUT st 1e) Jsel mo]J [onuoo [eads e st ¢d [('3)d] - <<uotnsten>>&- [VL SI€C-<<L>>
F [*3]
23)h]«€- <<UOHISUEN>>«C - 2 << I>>
‘SMO]J [OIUOD JAISN]IXS Ajjenynul om) Suguasaidar ()01 <o . ﬁ_&A LvLSI< [*3A'3] [RUONIII[3S
SgS], sle 3 pue '3 ‘ajess Suruuidaq oy Sulssardxa o] pasn F
are 3doouod [JTUVIS] € pue << >> UOWAP IOJBHIUL 3 [('3)d]«€- <<uomisuens>- [IIVILS]€-<<L>>
o (1) Lz o lital (o]
("1 L) syse) payiadsun ‘ajeipsuLIoyul . - MO[[0]
30 9ouanbas 10ye '] yse} oY SMOJ[O] 1L H5¥) AL (1o} - <<uontsuenss &-[(| 1)b] &-<<uonisuens>> -
. Lkl -l i Moo
I] , L e 3 swoljo) . , yas el L , AR Ajarerpouy
[S3eIpatul [, 3Se) OU) PUB 1SIYJ PONOAUT st ' | Jse) oy [CL)0}E-<<uonisuenss> & -[(' 1)d]€-<<uohisuen>>
uoneuerdxg syde1n remdsouo)) uy XBJUAS 10pe1adQ

D04l Ut s401p42dQ) FS[

	I. INTRODUCTION
	II. TASK-BASED SPECIFICATIONS IN CONCEPTUAL GRAPHS
	Figure 1.

	III. REUSING TASK-BASED SPECIFICATIONS IN CONCEPTUAL GRAPHS
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

	IV. CONTEXTUAL RETRIEVAL MECHANISM
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.

	V. PARAPHRASING TASK-BASED SPECIFICATIONS IN CONCEPTUAL GRAPHS SPECIFICATIONS
	Figure 10.

	VI. IMPLEMENTATION
	Figure 11.
	Figure 12.

	VII. CONCLUSION
	Figure 13.

	References
	APPENDIX: A SUMMARY OF CONCEPTUAL GRAPHS AND TASK-BASED SPECIFICATIONS IN CONCEPTUAL GRAPHS NOTATIONS
	Figure A. 1.
	Figure A. 2.
	Figure A. 3
	Figure A. 4.

