
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 1427-1445 (2009)

1427

BPEL Extensions to User-Interactive Service Delivery*

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

Department of Computer Science and Information Engineering
National Central University

Chungli, 320 Taiwan

Web service technologies are best exploited by composing services, and BPEL

(Web Services Business Process Execution Language) is adopted industrial-wide as the
de facto service composition standard. However, a BPEL composite service is typically
treated as a fully automated service flow that orchestrates multiple web services and in-
volves no user interactions – a desirable feature for service delivery, and is presently not
included in the BPEL standard. In this work, we propose an extension to BPEL to infuse
user interactions into composite services along three dimensions: (1) to develop two
BPEL extension activities to describe the inner workings of user interactions in BPEL
service and the rendering of service user interfaces; (2) to provide a wizard-style mecha-
nism to guide the user to interact with the service flow in accordance with the sequence
of service execution; and (3) to devise a UI service communication protocol to facilitate
secure cross-domain communication among UI services from various domains. An en-
hanced BPEL engine with a service UI rendering engine has been accordingly devel-
oped.

Keywords: service composition, user interaction, BPEL, service delivery, user interface

1. INTRODUCTION

Service-orientated architecture (SOA) has become a main trend in software engi-
neering, motivating the construction of software applications based on the notion of ser-
vices. As noted by Maamar and his colleagues [18] that composing multiple web services
is more beneficial to users than a single service. Several languages for web service com-
position have emerged, for example, WSFL [8], WS-BPEL [1], WSCI [2] and etc.. WS-
BPEL (Web Services Business Process Execution Language, also known as BPEL) com-
bines the best of other standards for web service composition and allows for a mixture of
block-structured and graph-structured process models [31]; and consequently, BPEL has
been adopted industrial-wide as the de facto service composition standard [5, 14, 15].

A BPEL composite service is typically treated as a fully automated service flow that
orchestrates activities of multiple software components exposed as web services and in-
volves no user interactions – a desirable feature for service delivery advocated by [12,
28], but is presently not included in the BPEL standard.

Several industrial research groups, as a result, have developed human work-flow
services that leverage the BPEL support for user interaction by means of asynchronous
services [11]. BPEL4People [6] was developed atop the BPEL specifications for the or-
chestration of role-based human activities. In BPEL4People, a people activity is defined
as a BPEL activity to specify user interactions and to associate with human tasks that

Received November 17, 2008; accepted December 4, 2008.
Communicated by Jonathan Lee, Wei-Tek Tsai and Yau-Hwang Kuo.
* This work was supported by the National Science Council of Taiwan, R.O.C. under grant No. NSC 97-2631-

H-008-001.

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1428

users perform. The Oracle BPEL Process Manager (OPRM) [24] integrates standard
BPEL functionality with workflow services that are deployed on a supported application
server. The workflow service requires a powerful set of programming and WSDL inter-
faces in order to build UI workflow interfaces. Neither BEPL4Peole nor OPRM does
specify explicitly how to render or integrate user interfaces; and therefore, the feature of
user interfaces can only be supported through external client applications.

Missing supports with respect to user interactions in BPEL can be summarized as
follows:

• BPEL developers have to program specific service user interfaces for each BPEL ser-

vice. BPEL does not state how to deliver services with user interfaces to enable end
users to consume services.

• BPEL can neither guide process participants on when and how to join the service flow,
nor allow a participant to provide data during the execution of composite services.

• SOA-based applications cannot render multiple user interfaces, including newly de-
veloped service user interfaces and existing legacy web user interfaces, in a uniform
work-space.

As a continuation of our previous work on a discovery-based service composition

framework to enhance availability of composite services [16, 17], and further inspired by
the concept of human involvement advocated in BPEL4People [6], in this work, we pro-
pose an extension to BPEL to infuse user interactions into composite services along the
following three dimensions:

• to develop two BPEL extension activities: interactPeople and renderUI, to describe the

inner workings of user interactions in BPEL service and the rendering of service user
interfaces that are described by an extension to XUL (called EXUL);

• to provide a wizard-style mechanism to guide the user to interact with the service flow
in accordance with the sequence of service execution; and

• to devise a UI service communication protocol to facilitate secure cross-domain com-
munication among service user interfaces from various domains.

By means of these extensions, a deployed composite service can be consumed di-

rectly by end users via an integrated service workspace.
This paper is organized as follows. Section 2 outlines several extant research work

related to the proposed approach. Section 3 analyzes the requirements of integrating ser-
vices and user interactions. Section 4 describes in detail the proposed extensions of XUL
and BPEL. Section 5 fully discusses a secure cross-domain UI service communication
protocol. Section 6 explains the implementation of our enhanced BPEL engine. The final
section draws conclusions and suggests future work.

2. RELATED WORK

In what follows we outline some related work with respect to service composition
and user interactions in service-oriented architecture.

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1429

2.1 XML-based User Interface Description Languages

Several currently available XML-based user interface description languages are stan-

dardized, including XAML [19], UIML [23, 30], XForms [32] and XUL [20].
XAML [19] stands for Extensible Application Markup Language, which is a user

interface description language that was created by Microsoft, and is mostly used in the
WPF (Windows Presentation Foundation) platform. XAML provides developers with a
set of UI elements, support of flow control, event handling, data bindings and other fa-
cilities to describe relationships among the XAML elements and their corresponding run-
time objects. Developers can use XAML elements to build a tree structure of .NET ob-
jects (Common Language Runtime objects) with specific properties and logic. The draw-
back of XAML is that it is not a platform-portable user interface description language
like HTML since it is required to be processed under the .NET framework.

UIML [23, 30] stands for OASIS User Interface Markup Language, which is a me-
ta-language and standardized by OASIS, and is to provide a standard representation of
any user interface which can be mapped to a variety of existing languages, such as
HTML, XHTML, Java, C++ and others. UIML can be implemented by anyone and it
works on multiple platforms and multiple devices. UIML is not suitable for this work
because UIML is provided as an abstract meta-language, and therefore not friendly to UI
developers.

XForms [32], which was standardized by W3C, is an XML application markup lan-
guage which can be integrated with numerous XML-based markup languages, such as
XHTML and SVG. XForms provides many form-based elements to support interactive
web applications, including the form model, submission control, instance data manipula-
tion, strong data typing, expressions evaluation, event handling and action control. How-
ever, XForms does not support other widely used widgets that developers could use to
enrich the representation of their service UIs.

XUL [4, 20] stands for XML User Interface Language, which is an XML-based user
interface markup language created by Mozilla, and is designed to be a widget-based user
interface description language to reduce effort of developing web applications. XUL re-
lies on multiple existing web standards and technologies, such as XHTML, DOM,
JavaScript, CSS, and AJAX. With XUL, the user interfaces of web applications can be
implemented and modified more easily by UI developers.

A summary of the comparisons of aforementioned XML-based user interface de-
scription languages [20, 25, 27, 34] is depicted in Table 1. XUL provides rich set of
widget elements and is friendly to HTML developers. XUL not only has platform port-
ability, like HTML, but also separates presentation from application logic. However, it is
limited in the sense that it works only with the Mozilla-compatible browser, such as Fire-
fox. To solve this problem, the ZK Framework [26] was adopted herein the design of the
service UI rendering engine due to the most of overlapping between XUL and ZUML
(ZK User Interface Markup Language) [26] that is mainly supported by ZK, to make it
possible to use XUL with our extensions in multiple browsers. Since XUL has aforemen-
tioned features and benefits, it was used herein as the service user interface markup lan-
guage.

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1430

Table 1. Comparison of XML-based user interface markup languages.

Languages Rich set of
widgets

Friendly to
HTML

developers

Platform
portability

Browser
compatibility

Visual
authoring
support

XUL
Mozilla, 1998 Yes Yes Yes Mozilla

Firefox
Text-based

editor

XAML
Microsoft, 2006 Yes Yes Windows

platform, .Net

WinFX/Sliveligh
t plugin is
required

Visual Studio

UIML
OASIS, 1997

UIML
provides
abstract

creation of UI

No Yes
Depends on the

runtime
implementations

Text-based
editor

XForms
W3C, 2003

Form-based
elements only Yes Yes

Depends on the
runtime

implementations

Visual
XForms

Designer,
Text-based

editor

2.2 BPEL4People and Oracle BPEL Process Manager

Several research groups have developed human workflow services that leverage the
BPEL support for user interaction by means of asynchronous services [11]. People and
tasks become another asynchronous service in the BPEL process. BPEL4People [6] was
published as an OASIS standard in June 2007. BPEL4People provides the BPEL exten-
sions to address the human involvement in BPEL standard. The major BPEL extensions
in BPEL4People are people activities and role-based human tasks. A people activity is
defined as a BPEL activity to specify user interactions and to associate with human tasks
that users perform.

The Oracle BPEL Process Manager (OPRM) [24], integrates standard BPEL func-
tionality with workflow services that are deployed on a supported application server. The
workflow service includes a set of programming APIs and WSDL interfaces for con-
structing UI workflow interfaces. These interfaces enable the use of current UI ap-
proaches, including JSF, AJAX, .NET, Adobe Flex and others.

Neither BEPL4Peole nor OPRM does specify explicitly how to render or integrate
user interfaces; and therefore, the feature of user interfaces can only be supported
through external client applications. In contrast to BEPL4Peole and OPRM, our proposed
approach explicitly defines how to integrate and render user interfaces by extending the
BPEL specification.

2.3 WSRP (Web Services for Remote Portals)

The WSRP [22] defines a web service interface that allows for interacting with
presentation-oriented web services. The two main usages of WSRP are (1) to provide
portlets as presentation-oriented web services that can be used by portal servers; and (2)
to consume presentation-oriented web services provided by portal or non-portal content

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1431

providers and to integrate them to produce a portlet-based application.
The current version of WSRP is WSRP v2.0, which has been approved by OASIS in

April, 2008. WSRP concentrates on the adaptation of user interfaces into services, but
does not address integration of user interfaces and service components, on which our
work will focus.

3. ANALYSIS OF REQUIREMENTS TO INTEGRATE SERVICES
AND USER INTERACTIONS

To address the aforementioned missing supports with respect to user interactions in
BPEL, we analyze and identify requirements as an attempt to infuse user interaction into
composite services. Furthermore, BPEL extensions to describe the inner workings of user
interactions in BPEL service as well as a service UI communication protocol are pro-
posed to fulfill these requirements, and an enhanced BPEL engine with a UI rendering
engine is then developed to support these BPEL extensions.

3.1 System-Level Requirements

Based on the characteristics of BPEL, the following six requirements are analyzed

and defined to support the missing components that are described in section 1, including:

(1) Standard-compatibility. The solution should be compatible with industrial standards

− BPEL, WSDL or other specifications that are adopted industrial-wide.
(2) Newly-defined BPEL activity. New BPEL activities should be defined to infuse user

interactions into BPEL composite services.
(3) Dynamic UI generation. The solution should support the dynamic generation of a

user interfaces based on variable data that are generated during the execution of ser-
vice flow.

(4) Separation of UI and business logic. Based on the specific needs of users, the tem-
plate of the user interfaces can be changed, for example, a simple form-based UI can
be replaced by a complex one.

(5) Wizard-style mechanism. The solution should guide the user to interact with the
service flow in accordance with the sequence of service execution.

(6) Cross-domain UI communication. The solution should provide a communication
protocol to facilitate secure cross-domain communication among service user inter-
faces from various domains, and prevent scripting attack problem which is deemed
as key security issue in the composition of service user interfaces.

3.2 User Interaction Model in SOA

To bridge the above requirements and the design of BPEL extensions and further
implementation, a user interaction model is devised as the basis for the proposed ap-
proach (see Fig. 1).

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1432

Fig. 1. User interaction model.

Firstly, a service client, which is a human user, communicates a designated service

flow by operating a service user interface rendered in a browser with the ability to send
an interaction request to begin an interactive service flow. Secondly, BPEL engine re-
ceives the interaction request from the user, and then, the message correlation sets [1] are
checked to enable message-to-process-instance routing. If the interaction request is an
uncorrelated message, which means there has no one process instance holds conversa-
tions with this service client, the BPEL engine will instantiate a new process instance to
take over this interaction request. Otherwise, the correlated interaction request will be
dispatched to the process instance located. After a process instance obtains the interac-
tion request, it initiates interaction states for the execution of further tasks. Finally, the
BPEL engine combines the user interface, e.g. the service user interface, with runtime
service data in reply and delivers the mixed outcome to the user. In the meanwhile, the
legacy web user interfaces could also be delivered to the user in accompany with the ser-
vice user interfaces. In addition, the user interaction flow could be repeated many times
to perform a complex task that requires multiple user interactions.

4. BPEL EXTENSION TO INTEGRATE USER INTERACTIONS

Our extensions to XUL and BPEL support user interactions in SOA-based applica-

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1433

tions with the following features: (1) combining XUL user interface markups with run-
time service data, called service user interfaces, by which the users can interact with
composite services in run time, called EXUL; and (2) facilitating the rendering of the
service user interfaces and the handling of user interactions. The following sub-sections
will describe in detail the proposed extensions of XUL and BPEL, respectively.

4.1 XUL Extensions

XUL [20] provides a rich set of widget components, container elements, layout

models, event handling and scripting support for describing user interfaces of applica-
tions. To combine user interface markups with runtime service data during the execution
of composite service, XUL is extended in this work to assign XPath query expressions
and BPEL-defined functions as values to XUL attributes. These expressions and func-
tions, assigned in the design time, will be automatically evaluated by runtime BPEL va-
riable data.

A wizard-style mechanism is provided to guide the users to interact with the service
flow in accordance with the sequence of service execution. This work aims to elucidate
an approach to enabling the users to navigate the service flow by clicking a “Next” but-
ton, similar to an application wizard, with which service developers do not need to con-
sider the flow control in the client-side applications.

To enable users to automatically navigate to the next step of a service flow, a ser-
vice invocation to the next operation of the service flow is needed. Therefore, the binding
information associated with the invocation to a service operation is a desired feature to
be included in XUL in each delivery of service user interface. Another extension to XUL
to specify the binding data in XUL is proposed in this work by defining specific exten-
sion markups.

To provide these specific extension markups, we adopt the custom-attributes decla-
ration, advocated by ZK [26], for users to get involved in a service flow. The custom-
attributes declaration is a convenient way to assign attributes to associated XUL elements
in a direct manner without programming. Two kinds of custom-attributes are thus de-
fined: (1) binding-related custom attributes that are mapped to the binding information in
WSDL, including the URL and the target namespace of WSDL, the service location, the
WSDL operation to be invoked, and the expression of message part targeted as XUL
output; and (2) a set of wsdlPart custom-attributes that are associated with the <part>
elements of the input message in WSDL. Clearly, the binding-related custom attributes
are used to invoke a (composite) service. A wsdlPart custom attribute is used to designate
which XUL element is associated with the value of the input parameter while a (compos-
ite) service is invoked.

Fig. 2 depicts an example of EXUL. The left side of this figure shows the code
snippets of the EXUL, while the right side shows the possible result rendered from this
EXUL: the “Earthquake Service” window component is delivered to the client with the
runtime service data of “PointId” that is evaluated by BPEL function bpws:getVariable
Data (‘input’, ‘pointId’) and treated as the default value. After the client obtains the ren-
dered service user interface, a “Next” button enables him/her to navigate to the next step
of the service flow by processing the specific custom-attributes.

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1434

Fig. 2. Example of EXUL.

4.2 BPEL Extensions

Our solution to providing service composition flow with user interactions is suppor-
ted by two key elements: (1) the rendering of the service user interfaces; and (2) an inter-
action mechanism between a long-running service flow and its participants. Both elements
are built based on the definition of extension activity in the BPEL specifications [1].

4.2.1 RenderUI activity

The renderUI activity is a BPEL extension activity that facilitates rendering and

composition of service user interfaces described by EXUL. The renderUI activity allows
the service flow to be associated with an EXUL document, and triggers BPEL engine to
update the content of EXUL with the runtime service data during the execution of com-
posite service. To establish service delivery with UI, a service UI rendering engine is
required to translate the content of EXUL to pure HTML with scripts and style sheets
and to deliver these user interfaces to the client.

The structure of renderUI activity is described in Fig. 3: a renderUI activity is com-
posed of a single sourceFrom and the corresponding assignTo elements. The sourceFrom
element specifies the source of EXUL: a standalone EXUL document (standalone mode
association) can be referred to or the content of EXUL can be written into the content of
sourceFrom element (inline mode association). The assignTo element allows BPEL en-
gine to assign the processed content of XUL to a part attribute within a variable or selec-
tion of variable part for the upcoming delivery of service user interfaces. A target desti-
nation of assignTo is defined by using XML Schema string type, i.e. xsd:string.

As shown in Fig. 4, the left side of the figure shows the code snippets of an example
of renderUI activity, and the right side shows the possible result: a building information
table, which is described by EXUL, is written in the renderUI activity. EXUL consists of
the original XUL elements and the BPEL extension functions.

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1435

Fig. 3. Structure of renderUI activity.

Fig. 4. Example of renderUI activity.

These extension functions, assigned in the design time, will be automatically evalu-

ated by runtime BPEL variable data, for example, the expression function “bpws:get
VariableData (‘input’, ‘buildingInfo’, ‘/BuildingInfo/name’)” is used to extract the name
of building that is stored in the part “buildingInfo” of the variable “input”.

4.2.2 InteractPeople activity

The interactPeople activity is a BPEL extension activity that handles the interaction

behavior between a service flow and its human participants. The interactPeople activity

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1436

is designed as a receive-reply tuple. To facilitate user interaction, not only the interact-
People activity is used to handle the interaction behavior, but also a predefined renderUI
construct is contained in the interactPeople activity to describe the rendering and compo-
sition of service user interface.

The structure of interactPeople activity is described in Fig. 5: an interactPeople ac-
tivity specifies the partner link from which a message is expected to receive, and the port
type and operation with which a human client partner is expected to interact. Moreover,
an input variable to cache the received message data can also be specified, along with an
output variable that contains the service data with UI to be sent in reply. Additionally,
interactPeople activity, similar to the receive activity plays a role in the lifecycle of a
service flow: the way to instantiate a service flow in BPEL is to annotate an interactPeo-
ple activity with the createInstance attribute set to “yes” (refer to receive and pick activi-
ties in the BPEL specification for the variant [1].) The default value of this attribute is set
to “no”.

Fig. 5. Structure of interactPeople activity.

As mentioned above, an interactPeople activity must contain a renderUI construct to

markup the service user interface delivered in an interaction. Before replying the output
message with UI, the interactPeople activity allows tasks specified by the BPEL activi-
ties to be performed. If a series of interactPeople activities are correlated during the exe-
cution of service flow, then a correlations element is required to establish the correlated
conversations.

Fig. 6 explains an example of the interactPeople activity. The left side of the figure
shows the code snippets of the interactPeople activity, and the right side shows a possible
scenario during the execution of the inteactPeople activity: a human client requires an
echo interaction. The human client invokes the operation “firstCall”, and then the service
flow obtains the input message and dispatches the message to the interactPeople activity.
Before a reply is initiated, the interactPeople activity triggers a service invocation to send
a text to the “EchoService”; the same text is sent in reply. Finally, the contained renderUI
activity combines the output service user interface with an embedded frame that is tar-
geted to a remote URL and the echo text label for reply.

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1437

Fig. 6. Example of interactPeople activity.

5. SECURE CROSS-DOMAIN UI SERVICE COMMUNICATION

Recently, due to the emergence of web 2.0, there is a tremendous demand for inte-
grated service-oriented applications, in which services and their user interface compo-
nents that may come from multiple web sites across various domains, are combined and
delivered to a single workspace displayed on the browser; and therefore, it is vital that
these service user interface components can communicate with each others to share re-
sources and exchange messages in client-side workspace.

However, a strict restriction on the security policy has been imposed by most of the
browsers to prevent the user interface components from cross-domain communication.

XUL, usually treated as the service user interface mash-ups, can be used to combine
contents of service user interfaces from multiple web sites across various domains by
adopting an inter-frame communication mechanism, namely its <iframe> elements. The
main problem in adopting XUL for cross-domain communication is that there lacks a
secure mechanism in XUL to enable the service user interface components to share re-
sources and exchange messages.

In this section, we first describe the inter-frame communication and the problem in-
herited in XUL <iframe> elements to combine the contents of service user interface com-
ponents. Secondly, we present the details of our service UI communication model. Finally,
the secure cross-domain UI service communication protocol is accordingly proposed.

5.1 Inter-frame Communication

In web 2.0, a well-known technique − mash-up, which is a web application that com-

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1438

bines content (data and codes) from multiple sites, is widely used to develop integrated
web applications. The content, combined in a mash-up web application, is called a
gadget. The component that is used to combine and coordinate the gadgets into one inte-
grated web application is called the gadget integrator [3].

For example, consider a mash-up application of a pre-trip planning portal where the
information from multiple web sites, including the user’s airline booking, hotel reserva-
tions and bank service, can be combined and displayed on the browser. In this mash-up
application, the user interface components that are employed to locate the content of air-
line booking service is a gadget. Usually, such a gadget is combined into a mash-up ap-
plication using the HTML <iframe> element. The top-level frame in the browser, ren-
dered from the entire HTML document, combines the gadget frames and acts as the gad-
get integrator.

In XUL service user interface mash-ups, the integrated service user interface, ren-
dered from the XUL <window> element, is treated as the integrator. A service user in-
terface component, combined using an XUL <iframe> element, is a gadget.

To develop service user interface mash-ups using XUL can be as simple as com-
bining isolated gadgets, or as complex as combining gadgets to communicate with each
other. In such a complex situation, an integrator communicates with its gadgets from
various web sites with a highly likelihood of encountering un-trusted contents from ma-
licious service providers; and vice verse.

Another problem that impedes the cross-domain communication is the restrictions
imposed by the browser’s same-origin policy [21] to protect client-side resources from
being attacked. The same-origin policy allows the browser to prohibit a document or
script loaded from one domain to access the client-side resources from another domain
[21]. Without such policy, the browser would not be able to prevent attacks from a mali-
cious web site.

5.2 Service User Interface Communication Model

A secure cross-domain user interface service communication model is an inter-
frame communication model devised to secure service user interface mash-ups. It is
meant to enable gadgets to communicate with the integrator and with other gadgets by
means of a well-defined communication protocol. It is also intended to support a cross-
domain communication through secure messaging.

Figs. 7 and 8 present the proposed secure cross-domain communication model. Fig.
7 depicts the gadget-to-integrator communication, and meanwhile Fig. 8 shows the inte-
grator-to-gadget communication, respectively.

In Fig. 7, if a gadget attempts to send a message to the integrator, it transmits at
once a formatted message and a key that are sent from the integrator upon a page is loaded.
The key is a random number, generated automatically by the integrator, to be used in a
single run of communication. With the key, the integrator can verify whether the format-
ted message has been transmitted from a trusted gadget sender or not. If the key is veri-
fied, then the integrator accepts the formatted message and processes the message. Oth-
erwise, the integrator ignores the message.

In Fig. 8, if the integrator intends to send a formatted message to a gadget, then it
sends the message with its URL or the “origin” defined in the aforementioned same-origin

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1439

Fig. 7. Gadget-to-integrator communication.

Fig. 8. Integrator-to-gadget communication.

policy. This URL is then used to check the validity of the integrator. Once the gadget
receives the URL, it will trigger its authorization frame to send requests to “domain-au-
thorization.htm” web page to validate the domain name of the integrator. If the URL of
the integrator is a valid one, then the authorization frame returns the gadget a “passed”
signal in reply. Finally, the gadget verifies the existence of the domain name of the inte-
grator against its authorized domain list. If the domain name is included in the authorized
list, then the message sent from the integrator will be processed. Otherwise, the integra-
tor is treated as being not permitted to send any data to the gadget.

The gadget-to-gadget communication can be achieved by integrating both commu-
nication models: gadget-to-integrator and integrator-to-gadget models, that is, to treat the
integrator as a coordinator to dispatch messages among gadgets.

5.3 Secure Cross-Domain User Interface Service Communication Protocol

To implement the two proposed secure cross-domain user interface service commu-

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1440

nication models, a technique called fragment identifier messaging (FIM) is adopted to
facilitate secure inter-frame communication [7, 9, 13, 29]. FIM motivates the need for
secure inter-frame communication by exploiting the principle of browser’s frame naviga-
tion to send messages among frames.

Based on the concept of FIM, the formats of request and response messages are ac-
cordingly defined to embody a secure cross-domain user interface service communica-
tion protocol to enable gadgets to communicate with the integrator and other gadgets
through secure messaging. JSON [10] is used to encode request and response messages
in executable Javascript format.

• The request message is defined as:

{t: 1, d: {m: METHOD, a: [ARGUMENTS]}}

t denotes the type of message. In the case that the value of t equals to 1, the message
type is a request message; meanwhile, in the case the value of t equals to 2, it is a re-
sponse message type. d denotes the message data that consists of a Javascript function
m and a set of arguments a separated by comma, by which the sender can execute the
function m with the set of arguments a in the receiver frame.

• The response message is defined as:

{t: 2, r: {c: NUMBER, m: METHOD, v: VALUE}}

t denotes the type of message. In the case that the value of t equals to 1, the message
type is a request message; meanwhile, in the case the value of t equals to 2, it is a re-
sponse message type. r denotes the returned message data, in which the receiver returns
the status code c that is referred to the definition of the HTML status code [33], the
executed Javascript function m, and the returned value v.

6. IMPLEMENTATION

In summary, there are three main features in our proposed approach to infusing user
interactions into service composition:

• extensions to BPEL activity to specify the inner workings of user interactions in BPEL

service as well as the rendering of service user interfaces that are described by EXUL;
• a wizard-style mechanism to guide the users to interact with the service flow in accor-

dance with the sequence of service execution; and
• a secure UI service communication protocol to facilitate secure cross-domain commu-

nication among service user interfaces from various domains.

To implement these features, we developed an enhanced BPEL engine in which the

handling of user interactions and the delivery of service with user interfaces could be
infused into BPEL composite services.

Fig. 9 illustrates the high-level architecture of the enhanced BPEL engine, in which
the BPEL engine is enhanced to equip with the capability of parsing and processing

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1441

Fig. 9. Enhanced BPEL engine.

BPEL documents with extension markups in order to facilitate the rendering of the ser-
vice user interfaces and the handling of user interactions during the execution of service
composition flow.

To render the service user interfaces and to cooperate with BPEL engine to handle
the user interaction control between a service flow and its clients, the service user inter-
face rendering engine is accordingly developed.

In the service user interface rendering engine, we adopt the ZK framework to facili-
tate the rendering of service user interfaces, and to develop XULStarter that is deployed
within ZK to handle user interaction control and service flow navigation. It translates the
XUL description into pure HTML with Javascripts and style sheets, as well as commu-
nicates with the script-based service interaction controller delivered in client side
browser to process events in an interaction.

As Fig. 2 shows, to implement the wizard-style mechanism in service flow, a navi-
gation control is activated, after the “Next” button is clicked, by XULStarter with a set of
custom-attributes declarations. Accordingly, XULStarter invokes the service operation
“getTrendData” with an input parameter “pointId” whose value is retrieved from the
<textbox> element, and obtains the returned XUL content of next step from the “getUI-
Return” part of the output message.

As for the interaction behavior on client side, the Ajax framework with SOAP is
favored to handle the event-based interaction behavior exhibited by human user in client
side browser. A script-based service interaction controller is developed to perform the
interaction tasks on client side, such as message exchange, event handling, and service
invocation. The proposed secure cross-domain service user interface communication
protocol is designed and implemented in the script-based service interaction controller. It
exploits the current browser security policy to enable secure inter-frame communication
by sending or receiving the formatted messages among the named frames from multiple
web sites across various domains; and therefore, no modification to the browser is re-
quired.

The application mediator communicates with the BPEL engine is to govern the dis-

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1442

patching of user interaction events from the service user interface rendering engine to the
BPEL engine, and vice versa. Moreover, it provides an interface for the service user in-
ter-face rendering engine to invoke operations that are provided by BPEL composite ser-
vices.

7. CONCLUSION

This work presents a framework to integrate service composition flow with user in-
teractions, with the following key features:

• EXUL to describe service user interfaces in BPEL;
• extensions to BPEL activity: interactPeople and renderUI, to specify the inner workings

of user interactions in BPEL composite service as well as the rendering of service user
interfaces;

• a wizard-style mechanism to guide the user to interact with the service flow in accor-
dance with the sequence of service execution; and

• a secure cross-domain UI service communication protocol to facilitate secure cross-
domain communication among the service user interface components from multiple
web sites across various domains.

By means of these extensions, an enhanced BPEL engine with a service UI render-

ing engine is accordingly developed.
The main benefit of the proposed approach is to infuse user interactions into service

composition, by which a deployed BPEL composite service can be consumed directly by
human users via an integrated service workspace.

Additionally, an SOA-based application with user interfaces can be developed and
maintained more flexibly by controlling the set of XML-based documents, including
WSDL, extended BPEL, and extended XUL (EXUL), without a need to manage lan-
guage-specific programs. In other words, a developer can save effort by using various
visual tools to orchestrate XML-based documents rather than to develop the SOA appli-
cations by coding. The operational SOA applications can be built simply by deploying
the aforementioned documents on the enhanced BPEL engine.

Our future research plan will further extend BPEL to deal with a variety of service
composition issues, such as integration of intelligent services, support of client-side ser-
vice computation, and monitoring and management of composite services.

REFERENCES

1. A. Alves, A. Arkin, and et al., “Web services business process execution language
(WS-BPEL) 2.0,” Organization for the Advancement of Structured Information
Standards (OASIS), April 2007.

2. A. Arkin, S. Askary, and et al., “Web service choreography interface (WSCI) 1.0,”
BEA Systems, Intalio, SAP, and Sun Microsystems, 2002.

3. A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communication in brows-
ers,” in Proceedings of the 17th USENIX Security Symposium, 2008, pp. 17-30.

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1443

4. P. Bojanic, “The joy of XUL,” http://www.mozilla.org/projects/xul/joy-ofxul.html.
5. Oracle BPEL Process Manager Provides SOA and Integration Platform Support, http:

//xml.coverpages.org/ni2004-06-30-a.html.
6. WS-BPEL Extension for People (BPEL4People), http://www-128.ibm.com/develop-

erworks/webservices/library/specification/ws-bpel4people/.
7. J. Burke, “Cross domain frame communication with fragment identifiers?” http://

tagneto.blogspot.com/2006/06/cross-domain-frame-communication-with.html.
8. F. Curbera, F. Leymann, D. Roller, and S. Weerawarana, “Web services flow lan-

guage (WSFL) 1.0,” IBM Corporation, May 2001.
9. C. Jackson and H. J. Wang, “Subspace: Secure cross-domain communication for

web mashups,” in Proceedings of the 16th International Conference on World Wide
Web, 2007, pp. 611-620.

10. JavaScript Object Notation (JSON), http://www.json.org.
11. M. Juric and D. H. Todd, “BPEL processes and human workflow,” http://webservices.

sys-con.com/read/204417.htm.
12. M. Kassoff, D. Kato, and W. Mohsin, “Creating GUIs for web services,” IEEE In-

ternet Computing, Vol. 7, 2003, pp. 63-73.
13. F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama, “SMash: Secure

cross-domain mashups on unmodified browsers,” in Proceedings of the 17th Inter-
national Conference on World Wide Web, 2008, pp. 535-544.

14. M. Kloppmann, D. Konig, F. Leymann, G. Pfau, and D. Roller, “Business process
choreography in websphere: Combining the power of BPEL and J2EE,” IBM Sys-
tems Journal, Vol. 43, 2004, pp. 270-296.

15. P. Krill, “BEA upgrading business process integration package,” http://www.infor-
world.com/article/05/08/22/HNbeaintegration_1.html.

16. J. Lee, S. P. Ma, S. J. Lee, Y. C. Wang, and Y. Y. Lin, “Dynamic service composi-
tion: A discovery-based approach,” International Journal of Software Engineering
and Knowledge Engineering, Vol. 18, 2008, pp. 199-222.

17. J. Lee, Y. C. Wang, C. L. Wu, S. J. Lee, S. P. Ma, and W. Y. Deng, “A possibilistic
petri-nets-based service matchmaker for multi-agent system,” International Journal
of Fuzzy Systems, Vol. 7, 2005, pp. 199-213.

18. Z. Maamar, S. Mostefaoui, and H. Yahyaoui, “Toward an agent-based and context-
oriented approach for web services composition,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 17, 2005, pp. 686-697.

19. XAML Overview, http://msdn.microsoft.com/en-us/library/ms752059.aspx.
20. XML User Interface Language (XUL) Project, http://www.mozilla.org/projects/xul/.
21. The same origin policy, http://www.mozilla.org/projects/security/components/same-

origin.html.
22. OASIS Web Services for Remote Portlets Specification (WSRP), http://docs.oasis-

open.org/wsrp/v2/wsrp-2.0-spec.html.
23. OASIS User Interface Markup Language (UIML), http://www.oasis-open.org/commit-

tees/uiml/.
24. Oracle BPEL Process Manager, http://www.oracle.com/technology/products/ias/bpel/

index.html.
25. Cover Pages XML Markup Languages for User Interface Definition, http://xml.cover-

pages.org/userInterfaceXML.html.

JONATHAN LEE, YING-YAN LIN, SHANG-PIN MA AND SHIN-JIE LEE

1444

26. ZK, http://www.zkoss.org/.
27. Scriptol.com, “Which interface for a web application?” http://www.scriptol.com/ajax-

xul-xaml.php.
28. J. Soriano, D. Lizcano, J. J. Hierro, M. Reyes, C. Schroth, and T. Janner, “Enhancing

user-service interaction through a global user-centric approach to SOA,” in Pro-
ceedings of the 4th International Conference on Networking and Services, 2008, pp.
194-203.

29. D. Thorpe, “Secure cross-domain communication in the browser,” http://msdn.micro-
soft.com/en-us/library/bb735305.aspx.

30. UIML.org, User Interface Markup Language (UIML), http://www.uiml.org/.
31. W. van der Aalst, M. Dumas, and A. ter Hofstede, “Web service composition lan-

guages: Old wine in new bottles?” in Proceedings of the 29th Euromicro Conference,
2003, pp. 298-305.

32. The Forms Working Group, http://www.w3.org/MarkUp/Forms/.
33. HTML 4.01 Specification, http://www.w3.org/TR/REC-html40/.
34. User Interface Markup Languages, http://www.xul.fr/comparison-userinterface-mark-

up-languages.html.

Jonathan Lee (李允中) is a professor in the Computer
Science and Information Engineering at National Central Univer-
sity (NCU) in Taiwan, and was the department chairman from
1999 to 2002. He is currently the director of Computer Center at
NCU. His research interests include agent-based software engi-
neering, service-oriented computing, and software engineering
with computational intelligence. He has authored more than 100
journal and refereed conference papers, and was the editor-in-
chief of International Journal of Fuzzy Systems and in the edito-
rial boards of Fuzzy Sets and Systems, International Journal of
Artificial Intelligence Tools, Fuzzy Optimization and Decision

Making, International Journal of Artificial Life Research, Open Software Engineering
Journal, International Journal of Applied Computational Intelligence and Soft Computing
and International Journal of Soft and Intelligent Computing and Mathematics. He re-
ceived his Ph.D. in Computer Science from Texas A&M University in 1993. He is the
president of Taiwan Software Engineering Association, a senior member of the IEEE
Computer Society and a member of the ACM.

Ying-Yan Lin (林英彥) received his B.S. degree in Com-
puter Science and Information Engineering from Tunghai Univer-
sity, Taiwan, in 2000, and he received his M.S. degree in Com-
puter Science and Information Engineering from National Central
University, Taiwan, in 2002. He is currently a Ph.D. student in
the Department of Computer Science and Information Engineer-
ing of National Central University. His current research interests
include service-oriented computing and software engineering.

BPEL EXTENSIONS TO USER-INTERACTIVE SERVICE DELIVERY

1445

Shang-Pin Ma (馬尚彬) received his Ph.D. and B.S. de-
grees in Computer Science and Information Engineering from
National Central University, Chungli, Taiwan, in 2007 and 1999,
respectively. He has been an assistant professor of Computer
Science and Engineering Department, National Taiwan Ocean
University, Keelung, Taiwan, since 2008. His research interests
include software engineering, service-oriented computing and
software process improvement.

Shin-Jie Lee (李信杰) received his Ph.D. degree in Com-
puter Science and Information Engineering from National Central
University, Taiwan, in 2007. He is currently a postdoctoral re-
searcher in Software Research Center at National Central Univer-
sity. His current research interests include agent-based software
engineering and service-oriented computing.

