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C O V E R  F E A T U R E

The resulting Cell design is a heterogeneous, multicore
chip capable of massive floating-point processing opti-
mized for computation-intensive workloads and rich
broadband media applications. As the “Cell BE Archi-
tecture Overview” sidebar describes, the design consists
of one 64-bit Power processor element (PPE), eight accel-
erator processors called Synergistic Processor Elements
(SPEs), a high-speed memory controller, a high-band-
width element interconnect bus, and high-speed memory
and I/O interfaces, all integrated on-chip.

SOFTWARE CHALLENGES
When we first outlined the Cell system’s basic notions,

we immediately realized that this revolutionary micro-
processor design could substantially enhance applica-
tion performance, but the task at hand was massive.
Developing a new architecture has a set of risks that
microprocessor design teams rarely face. Failure to ver-
ify that a new architecture responds to the needs that
led to its conception, or to provide a satisfactory soft-
ware stack to early adopters, usually will result in the
failure of an architecture launch and its eventual demise.

In addition to the traditional challenge of defining a new
microarchitecture, the design team faced the challenge of
ensuring that the architecture can efficiently operate across
a wide range of applications. Given the many innovations
in Cell, it was important to provide early proof-of-concept
to test and refine concepts that form the basis of the Cell
BE Architecture (CBEA) as it is known today and its first
implementation, the Cell Broadband Engine.

The Cell Broadband Engine provides the first implementation of a chip multiprocessor 

with a significant number of general-purpose programmable cores targeting a broad 

set of workloads. Open source software played a critical role in the development of the 

Cell software stack.
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C omputer architects rarely introduce new archi-
tectures because incumbent architectures offer
significant advantages due to tool maturity, pro-
grammer familiarity, and software availability.
New architectures are usually a response to tec-

tonic shifts in technology and market conditions. Thus,
the original System/360 architecture was the first archi-
tecture to respond to mass production of systems. RISC
systems corresponded to the introduction of VLSI man-
ufacturing and the advent of single-chip microprocessors. 

As the era of pure CMOS frequency scaling ends, archi-
tects must again respond to massive technological changes
by more efficiently exploiting density scaling. The Cell
Broadband Engine (Cell BE) answers these challenges by
providing the first implementation of a chip multi-
processor with a significant number of general-purpose
programmable cores targeting a broad set of workloads,
including intensive multimedia and scientific processing.

Jointly developed beginning in 2000 by IBM, Sony,
and Toshiba (STI) for the PlayStation 3 as well as other
data-processing-intensive environments, Cell’s design
goal was to improve performance an order of magni-
tude over that of desktop systems shipping in 2005.1-3

To meet that goal, designers had to optimize perfor-
mance against area, power, volume, and cost in a man-
ner not possible with legacy architectures. Thus, the
design strategy was to exploit application parallelism
through numerous cores that support established appli-
cation models, thereby ensuring good programmability
as well as programmer efficiency.4

An Open Source Environment
for Cell Broadband Engine
System Software 



38 Computer

Cell BE Architecture Overview 

We created the Cell Broadband Engine Architecture
(CBEA) to address the needs of applications as they
embrace chip multiprocessing. Rather than merely
replicating a core multiple times on a chip, the Cell’s
heterogeneous architecture offers a mix of execution
elements optimized for a spectrum of functions.
Applications execute on this system, rather than a col-
lection of individual cores, by partitioning the applica-
tion and executing each component on the most
appropriate execution element. While supporting differ-
ent execution elements, the architecture also ensures
efficient data sharing by providing a common system
view of addressing, data types, and system functions
across the heterogeneous execution elements. Based on
this common system view, a Cell BE application process
can consist of threads (lightweight processes) on both
types of processor elements.

As Figure A shows, the Cell Broadband Engine, the
first implementation of the CBEA,1 includes a Power
Architecture processor and eight attached processor
elements. An internal high-performance element inter-
connect bus integrates the processor elements.

With a clock speed of 3.2 GHz, the Cell processor has
a theoretical peak performance of 204.8 Gflop/s (single
precision) and 14.6 Gflop/s (double precision). The

element interconnect bus supports a peak bandwidth
of 204.8 Gbytes/s for intrachip data transfers, the
memory interface controller provides a peak band-
width of 25.6 Gbytes/s to main memory, and the I/O
controller provides peak bandwidth of 25 Gbytes/s
inbound and 35 Gbytes/s outbound. 

Power Processor Element

The Power processor element (PPE) consists of a 64-
bit, multithreaded Power Architecture processor with
two concurrent hardware threads. The PPE supports the
Power Architecture vector multimedia extensions to
accelerate multimedia applications using SIMD execu-
tion units. The processor has a memory subsystem with
separate first-level 32-Kbyte instruction and data caches,
and a 512-Kbyte unified second-level cache. By using a
Power Architecture processor as the base building block
of the CBEA, we leveraged our decade-long experience
with this mature and tuned architecture, as well as a
stable software environment.

Synergistic Processor Element 

The eight on-chip synergistic processor elements
(SPEs) provide a significant portion of compute power in
a Cell system.2 An SPE consists of a new processor—the

synergistic processor
unit (SPU)—designed
to accelerate a wide
range of workloads by
providing an efficient
data-parallel architec-
ture and the synergistic
memory flow controller
(MFC), providing
coherent data transfers
to and from system
memory. 

The SPU cannot
access main memory
directly; the SPU obtains
instructions and data
from its 256-Kbyte local
store and it must issue
DMA commands to the
MFC to bring data into
the local store or write
results back to main
memory. In parallel to
MFC data transfers, the
SPU processes data
stored in its private local
store. 
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Figure A. Cell Broadband Engine system diagram.The system includes a Power Architecture proces-

sor and eight attached processor elements; an internal high-performance element interconnect bus

integrates the processor elements.
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The local store provides each SPU with private data
access capability, guaranteed data availability, and
deterministic access latency. The local store architec-
ture offers logic simplicity, as cache-hit and coherence
logic do not affect the critical memory access opera-
tions during load and store operations, allowing faster
and more compact implementations. All data accesses
with load and store operations refer directly to physi-
cal locations within an SPE’s local store without further
address translation.

Memory Flow Controller

To access global data shared between threads exe-
cuting on the PPE and other SPEs, each SPE includes an
MFC, which performs data transfers between SPU-local
storage and system memory. The MFC provides the
SPEs with access to system memory by supporting
high-performance direct memory access (DMA) data
transfer between the system memory and the local
store. Data transfers can range in size from a single
byte to 16-Kbyte blocks. 

The MFC transfers copy between local store and
system memory. An MFC transfer request specifies
the local store location as the physical address in
the local store. It specifies the system memory
address as a Power Architecture virtual address,
which the MFC’s memory management logic trans-
lates to a physical address based on system-wide
page tables that the Power Architecture specifica-
tion provides.

Using the same virtual addresses to specify system
memory locations independent of processor element
type enables seamless data sharing between threads
executing on both the PPE and SPE. An application
executing on Cell can pass a PPE-generated pointer to
code executing on the SPE and use it to specify the
source or target in an MFC transfer request. Using full
memory translation also ensures data protection
between processes, as a thread can only access the
system memory mapped into the associated process’s
virtual memory space.

Finally, using virtual addressing makes traditional
operating system services such as demand paging
available to SPE threads. When an SPE thread refer-
ences paged-out memory via its associated MFC,
the MFC’s memory management unit generates a
page-fault exception and delivers it to the PPE. The
PPE then services the page fault on behalf of the
SPE. When the page fault service has completed,
the PPE restarts the MFC transfer that caused the
page fault.

Memory Management

Multiple SPEs can share an address space with PPE
threads in a Cell BE application, but at the same time
other SPEs can reference different virtual memory
spaces associated with respective applications execut-
ing concurrently in the system. To support this, each
MFC includes a memory management unit (MMU) to
provide address translation of system addresses in
transfer requests. The MFC participates in the memory
coherence protocols to ensure page table coherence.

Because each SPE contains an independent MMU, an
SPE can execute independently from the PPE. However,
the SPE is optimized for user-level data processing. Only
the PPE performs privileged operations such as handling
page faults, changing memory translation, and so forth,
providing a centralized system control function. The Cell
BE supports this by forwarding all exception-type events
to the PPE via the on-chip interrupt controller.

Each MFC can be programmed to perform memory
transfers either from the local SPU by placing com-
mands in a 16-deep command queue using so-called
SPU channel instructions or from remote nodes via
memory-mapped I/O (MMIO). In addition to DMA
transfers, the MFCs can also participate in the Power
Architecture load-and-reserve and store-conditional
lock synchronization and execute memory-synchroniz-
ing operations. Finally, the MFC supports list
commands corresponding to an “MFC program” 
specifying a sequence of transfer requests.

Element Interconnect Bus

The element interconnect bus (EIB) provides high-
bandwidth communication with a peak bandwidth of
204.8 Gbytes/s for intrachip data transfers among the
PPE, the SPEs, and the memory and I/O interface con-
trollers. The EIB has separate communication paths for
commands (requests to transfer data to or from
another element on the bus) and data. The EIB com-
mand path consists of a star-network to perform
coherence actions. The EIB data network consists of
four data rings—two rings running clockwise, two
rings running counterclockwise.3
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tors for the SPU and a Cell BE full-system simulator
based on Mambo.5

ANATOMY OF A CELL APPLICATION
A Cell application executes in a heterogeneous archi-

tecture consisting of PPE and SPE cores, respectively
implementing the Power Architecture and Synergistic
Processor Architecture. To match this mix of processor
elements, a Cell application consists of two classes 
of instruction streams corresponding to the different
architectures.

In the current software architecture model, each Cell
application consists of a process that can have associated

PPE and SPE threads that are dis-
patched to the corresponding proces-
sors. When an application starts, the
operating system initiates a single
PPE thread, and control resides in the
PPE. The PPE thread can then create
further application threads executing
on both the PPE and SPEs, supported
by a thread management library
based on the pthreads model.

SPE thread management includes
additional functions, such as moving

a Cell application’s SPE component into an SPE’s local
store, transferring application data to and from the local
store, and initiating execution of a transferred executable
at a specified start address as part of thread creation.

Once an application has initiated the SPE threads,
execution can proceed independently and in parallel on
PPE and SPE cores. While the PPE accesses memory
directly using load and store instructions, application
components executing on the SPE use the MFC to per-
form data transfers to the SPE local store before access-
ing application data with load and store instructions.
The MFC is accessible from the PPE via a memory-
mapped I/O interface and from the SPU via a channel
interface. 

The CBEA allows a variety of programming models,
including an accelerator model based on a remote pro-
cedure call, function pipelines, and autonomous SPE
execution. The simplest use of the SPE is the accelera-
tor model where the PPE transfers the working set as
part of the invocation and offloads a compute-intensive
function onto one or more SPEs. Developers can also
compose function pipelines where each SPE performs
a set of functions on a data stream and then copies its
output to the next pipeline stage implemented on
another SPE via the MFC. Autonomous SPE execution
occurs when the application starts an SPE thread, and
the thread uses its MFC to independently transfer its
input data set to the local storage and copy result data
to the system memory.

In these programming models, the PPE typically uses its
cache-based memory hierarchy to execute several control

DEVELOPING AN OPEN SOURCE STRATEGY 
To succeed, modern technology solutions require

rapid deployment in the marketplace. To address this
challenge, the design team turned to open source soft-
ware to accelerate the development of an ecosystem for
the Cell architecture. Open source software allowed us
to rapidly deploy an environment to be used both for
architecture exploration and as an early adopter plat-
form for the development of architecture verification
suites, libraries, middleware, and sample applications.

The Cell open source software strategy had four
phases:

• initial proof-of-concept focused
on validating the design goals,
compilation concepts, and pro-
gramming paradigms developed
in conjunction with the architec-
ture definition;

• formative software phase sup-
porting early adopter code for
libraries, middleware, and appli-
cations;

• programming model innovation
phase using a richer set of primi-
tives, tools, and environments to explore the most effi-
cient software development paradigms for the new
platform; and

• transition to a full-fledged Cell ecosystem available
to a steadily growing community of Cell developers
via software development kit distributions. The Cell
SDK is publicly available on IBM alphaWorks at
www.alphaworks.ibm.com/tech/cellsw.

Open source also was used to provide an environment
in which to deploy proprietary tools targeted at specific
high-leverage points in the Cell BE software stack, such
as autoparallelizing compilers based on the IBM pro-
prietary XL C.4 While XL C provides a significant value
proposition beyond open source tool suites, it integrates
with open source assemblers, linkers, debuggers, and
libraries in a seamless mixed environment.

Adopting open source allowed us to reduce the devel-
opment cycle by leveraging a wide developer base with
open source tool skills, leveraging tools designed for
portability across platforms and providing early proto-
typing ability. During the exploratory phase, development
occurred independent of the open source community at
large, and we were able to make decisions based solely
on the technology needs of the emerging architecture.
Later, public distributions reflected changes made as part
of the open source community adoption process and
involved compromises to accommodate the cross-plat-
form nature of the open source projects. 

Open source tools were deployed in a proprietary exe-
cution environment, based on execution-driven simula-
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the development of 
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functions, such as workload dispatch to multiple SPE data-
processing threads, load balancing and partitioning func-
tions, and a range of control-dominated application code.

Data-intensive processing
The SPE programming model is particularly optimized

for the processing of data-processing-intensive applica-
tions, where the application transfers a block of data to
the SPE local store and the SPU operates upon it. Compu-
tation results are stored back to the local store and even-
tually transferred back to system memory or directly to
an I/O device by the MFC. 

This processing model using SPEs to perform data-
intensive regular operations is particularly well suited
for media processing and numerically intensive data pro-
cessing.6 Both the SPE and PPE offer data-parallel SIMD
compute capabilities to further increase the processing
performance of data-processing-intensive applications.
While these facilities increase the data processing
throughput potential of each processor element, the key
is exploiting the 10 execution thread contexts on each
Cell BE chip (two PPE threads and eight SPEs).

Data multibuffering
To hide the memory access latency to the slow exter-

nal memory, data transfers are best performed using data

multibuffering (double buffering or even triple buffer-
ing). With double buffering, software pipelining is per-
formed at the memory transfer level: The SPU operates
on one data set in one data buffer, while the MFC trans-
fers the next data set into another data buffer. Data
multibuffering maps onto and exploits the compute-
transfer parallelism in each SPE with its independent
SPU execution and MFC data transfer threads.7

Application loading
Figure 1 illustrates application execution on the het-

erogeneous cores in the Cell BE. Initially, the image
resides in external storage. The executable is stored in an
object file format such as extensible linking format
(ELF), consisting of text (read-only) and data (read/
write) sections. In addition to instructions and read-only
data, the text section also contains copies of one or more
SPE execution images specifying the operation of one
or more SPE threads.

To start the application, the operating system loads
the Power Architecture object file, and (1) execution of
the Power Architecture program thread begins. The
application then initiates execution of application
threads on the SPEs. To accomplish this, the application
PPE must first transfer a thread execution image to an
SPE’s local store. (2) The PPE initiates a transfer of a
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.text:
ppu_main:
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…
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Figure 1. Execution start of an integrated Cell Broadband Engine application. (1) Power Architecture image loads and executes; (2)

PPE thread initiates MFC transfer; (3) MFC data transfer occurs; (4) PPE instructs MFC to initiate SPU execution at specified address;

and (5) MFC starts SPU execution.
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thread execution image by programming the MFC to
perform a system memory-to-local storage block trans-
fer, which is queued in the MFC command queues. (3)
The MFC schedules the MFC request and performs a
coherent data transfer. 

The PPE can repeat these steps to transfer multiple
additional memory-image segments containing either
SPE application code, SPE libraries shared between
threads, or SPE application data. When it has transferred
the image, (4) the PPE issues an MFC request to start
SPU execution. (5) The SPU starts
execution at a specified address. 

In addition to integrated executa-
bles consisting of PPE and SPE
threads, Cell also can execute tradi-
tional unmodified Power Architecture
executables for compatibility with
industry-standard Power Architecture
processors, as well as a new class of
Synergistic Processor executables
called spulets. A spulet is a Synergistic
Processor Element-only program exe-
cuting in a protected virtualized environment provided by
the Power Architecture protection and translation model.

COMPILING FOR A PERVASIVELY DATA-
PARALLEL ARCHITECTURE

The first tool to provide any proof-of-concept proto-
typing capability for Cell systems, in particular the novel
SPU architecture, was an execution-driven ISA simula-
tor based on a preliminary architecture specification pro-
posal. To simplify the development and prototyping
flow, this simulator read assembly source code, and early
library deployment occurred by loading multiple assem-
bly source files. 

The GNU C compiler (GCC) provided the first testing
ground for the open source strategy and offered an early
confirmation and proof-of-concept of many ideas intro-
duced in the Cell BE. Before the final proposal was com-
plete, we started development of a compiler based on
GCC to demonstrate and explore the concepts intro-
duced in the SPU—in particular, its SIMD-based archi-
tecture and the scalar layering used to implement a
pervasively data-parallel computing architecture. This
configuration also provided the first programming envi-
ronment for library development and the first media-
processing and encryption/decryption kernels that
validated the newly defined architecture’s performance
on these critical functions.

To implement a compiler showing the feasibility of
concepts the SPU architecture introduced, we lever-
aged the entire GCC front end, including the Power
Architecture SIMD extension interface, and rewrote a
back end from the ground up to support this new com-
puting concept. This allowed us to quickly support the
entire semantics of the C language, its GCC exten-

sions, and the SIMD vector-programming intrinsic
interface.

Scalar layering 
One major concept of the Synergistic Processor

Architecture that we needed to validate was scalar layer-
ing. Unlike prior architectures, the SPU architecture does
not provide separate resources to support execution of
scalar computations; instead, the compiler generates code
sequences to compute scalar results with the SIMD data

paths. We refer to an architecture
using SIMD execution resources for
scalar operations as a pervasively
data-parallel computer architecture.

In the SPU architecture, all instruc-
tions take their operands from a uni-
fied 128-bit-wide vector register file
with 128 architected registers.
Compilers and programmers can use
these instructions either to imple-
ment data-parallel SIMD operations
or to produce scalar results by per-

forming a wide result and using only the result returned
in a single slot. To support scalar layering, instructions
that use a single scalar input also read their operand
from a 128-bit register and use the value from the “pre-
ferred slot,” the vector register’s first 32-bit vector ele-
ment slot. This includes memory operations, which
expect the memory address in the preferred slot, and
branch instructions that can access a condition value or
target address in the preferred slot. 

In the SPU, all memory accesses operate on aligned
quadwords, which must reside at addresses that are mul-
tiples of 16 bytes. To facilitate reading and writing of
data values shorter than a quadword, the architecture
supports efficient extract and merge operations, and
memory accesses to retrieve an aligned quadword ignore
the low-order four bits. Using a quadword-based mem-
ory interface simplifies the data-alignment logic and
reduces operation latency. If the program is to perform
access to a data value smaller than a quadword, the low-
order bits indicate the data location within the quad-
word. The compiler expands such functionality and
generates code to extract and format data explicitly
using the simple SIMD RISC primitives that the archi-
tecture provides.

Although this alignment sequence requires several
instructions, it reduces the overall data-flow latency
because properly aligned scalar and vector data do not
require alignment in most cases. For misaligned vector
data, the compiler can optimize data-access patterns
across loop iterations to generate more efficient align-
ment sequences. This new architectural concept elimi-
nates the separate scalar execution units typically found
in processors to support execution of scalar operations.
Scalar layering reduces SPE area and design complexity
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and increases the number of SPEs that can be placed 
on a same-sized chip, which improves overall system 
performance.

Compiler prototype
By leveraging the GCC infrastructure, we could con-

centrate on developing compiler support for the novel
SIMD RISC architecture features rather than undertak-
ing the lengthy and costly process of developing an entire
compiler from scratch. Using this compiler, we demon-
strated the feasibility of generating
appropriate sequences to implement
data alignment in software instead of
in hardware and demonstrated that
hardware complexity reduction and
efficient instruction scheduling result
in an overall faster implementation. 

The GCC also served as a vehicle
to prototype an application binary
interface (ABI) by experimenting
with calling conventions and stack
frame layouts and prototyping a first
set of support libraries. The SPU ABI adopts the pre-
ferred-slot concept for passing scalar variables as func-
tion arguments and results and for allocating scalar
variables in globally allocated registers as the default
location for scalar data within a register file. Advanced
compilers with intraprocedural optimization capabili-
ties can optimize placement of scalar data in any slot.

To provide a consistent language interface for pro-
grammers between the PPE and SPE code, we adopted
the same language interface to vector data types for the
SPE as was already provided for the PPE. Similar to the
Power Architecture vector specification, the SPU pro-
gramming model also uses polymorphic intrinsics where
the data type specifies the intrinsic operation—much as
the operator “+” specifies either integer or floating-point
operation based on its operands’ data type.

Seeding Cell application development
The development of the GCC-based SPU compiler

proved the viability of the SPU architecture concept.
Library and application developers adopted the com-
piler soon after it could compile the first programs and
before full functionality became available. This had the
desired effects of seeding a high-level-language (HLL)-
based library and kernel development effort (which
evolved into the SDK distribution), as well as giving
valuable feedback from application developers to the
Cell software and architecture teams. 

By providing an early high-level development envi-
ronment, the open source strategy also addressed a
form of Clayton Christensen’s innovator’s dilemma8 by
preventing the emergence of a tuned assembly code
base. Invariably, such an assembly code base would
have outperformed any nascent, unoptimized HLL

codes, drawing attention and efforts from the develop-
ment of the HLL code, slowing or even completely
forestalling development of the HLL library code.
Using HLLs ultimately provides advantages in terms
of programmer productivity and ease of adoption of
new algorithms and data structures;  thus, it delivers
significant returns in performance or functionality.

Cell GCC became available in 2001, and we used it 
for all code development for the first two years until the
XLC compiler became available. GCC-based compilers

continue to be an important part of
the Cell BE software ecosystem.

HETEROGENEOUS
ARCHITECTURE TOOLS

Supporting software development
in a heterogeneous architecture rep-
resents a set of challenges surpassing
traditional application build envi-
ronments. Integrating tools across
different architectures is key to
allowing programmers to focus on

application development and ensuring their productiv-
ity. To address this need for a cohesive application devel-
opment and build environment, we used a multipronged
approach, reflecting the options available for different
tools. 

The initial tool environment started out hand in hand
with the architecture definition work. A small team con-
centrated on developing key functionality and explor-
ing the new architecture. The first programming
support specific to the Cell BE targeted the SPU to
explore the new architecture. Software and hardware
development occurred in parallel, and we developed the
SPU specification, compiler, and simulator infrastruc-
ture in parallel as we explored different design choices. 

As the architecture evolved and the developers wrote
longer programs, they needed a more robust develop-
ment environment. We accomplished this by porting the
GNU binutils to the SPU, providing a robust assembler,
linkage, and binary manipulation utilities. 

At the same time, integration between PPE and SPE
to support advanced application development became
more pressing. Ideally, this environment would provide
a single, common interface for PPE and SPE program
build with the ability to specify the target processor 
element on the command line. In a next step, a compiler
would then automatically build Cell applications, parti-
tion the program into functions to be executed on the
PPE and SPEs, respectively, and insert thread synchro-
nization and data transfer as necessary for the correct
execution of the program.

Integrated compilation
We defined the compiler to share a common vector

programming model and support migration of applica-
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tion source code between the different processor element
types. Based on the common type system to represent
vector data, we provided low-level intrinsics to access
the specific architecture features of the two processor
elements. 

To compile an application for a Cell BE processor,
portions of the program must be compiled specifically
for each processor type. To accomplish this, compilers
are provided for both processor ele-
ment targets with separate executa-
bles for PPE and SPE, which are
built from common source code.
This makes traditional compiler
optimizations and newly developed
SIMD vectorization support avail-
able for both processor elements. To
provide a common compilation
interface for PPE and SPE, the com-
piler driver can invoke the proper
executable for each target type based
on a specified target architecture.

Building integrated executables
The GNU binutils provide a highly portable binary

utilities tool chain with architecture versioning support.
Thus, we chose to provide assembler and linker support
for both PPE and SPE targets with a single binary. The
linker generates object files in ELF format for both PPE
and SPE. Finally, as Figure 1 shows, we developed an
embedder program to build an integrated executable by
including SPE executables in PPE executables, such that
a thread executing on a PPE can initiate a thread exe-
cuting the code the SPE binary specifies. 

The embedder reads one or more fully compiled and
linked SPE ELF binaries and embeds the SPE program
in the integrated Cell executable in ELF format. The
resulting PPE executable contains the PPE code, multi-
ple embedded SPE executables, and management func-
tions for transferring the SPE code to an SPE.

To embed an SPE executable in a PPE program, the
embedder reads the fully linked SPE executable, extracts
the memory image (both instruction and data), and gen-
erates C code containing data arrays corresponding to
the memory image (data and text segment). It then
invokes the PPE compiler to generate an object file with
the data array holding the executable, which can be
linked to PPE object files to give a single Power Archi-
tecture executable containing SPU object modules. 

USING LINUX IN HETEROGENEOUS
ARCHITECTURES

The Linux operating system played a central role in
the STI development process. We based the initial port
to the Cell BE on the Linux 2.4 kernel’s 64-bit Power
Architecture distribution and bootstrapped it on the
Mambo full system simulator long before the design was

finished. A key advantage of this approach was that it
allowed exploration of heterogeneous execution mod-
els and evaluation of software support for proposed
architecture functionality.

Porting Linux to the Cell BE involved addressing two
important challenges. From a programming model per-
spective, we had to explore programming paradigms to
enable applications to efficiently use the SPEs; from an

operating system design perspective,
the engineering challenge revolved
around the dramatic break with the
kernel’s expectations—namely, that
each processor would be handling its
own memory-mapping needs. While
centralizing system management
functions (such as virtual memory
management) is one of the enablers
of Cell’s efficiency, special considera-
tion must be given to this aspect in
porting legacy operating systems. 

We experimented with several generations of SPE
enablement in Linux to derive the most efficient and pro-
grammer-friendly model. From a programmability per-
spective, a key challenge was making SPEs easily
accessible without imposing numerous constraints that
would complicate application development. As we
addressed these issues, we provided several experimen-
tal prototypes to early adopters to gather feedback.
Based on real-world programming requirements and
feedback from those developers, we evolved a generic
and flexible SPE thread model. We based this model on
the familiar pthreads concepts using the Linux 2.6.3 ker-
nel source base and providing a heterogeneous light-
weight thread model where a system call could spawn an
SPU process, as Figure 2 shows.

Fault handling
From an operating system design perspective, a key

challenge was to handle exceptions delivered on behalf
of SPEs. This was a novel architectural mechanism,
which had not been planned for in the internal Linux
architecture. This model broke with traditional operat-
ing system kernels in one significant way: In normal sym-
metric multiprocessor system kernels, exceptions are
associated with the currently scheduled process and can
deliver only a single exception to the operating system
at a time. In contrast, a Cell system could simultane-
ously deliver eight SPE exceptions to a single PPE, which
also must handle its own PPE-related exceptions.

To address page-fault handling, we adopted an inno-
vative deferred SPE exception approach in which the
exception handler collects and preserves the relevant
SPE fault information. A new deferred SPE page-fault
handler then uses this information, executing in a ker-
nel thread and implementing a Power Architecture-
compliant page-fault handling routine—acquiring

We experimented with 

several generations 

of SPE enablement 

in Linux to derive 

the most efficient and 

programmer-friendly model.



spinlocks, sleeping, and so forth, as needed.
Because the kernel thread executes the page-
fault code at noninterrupt priority, it can spin
on locks or sleep while waiting on a page trans-
fer from external storage without causing dead-
locks that might be introduced if multiple
page-fault handlers were active simultaneously.

Thread management
To support a flexible SPE programming envi-

ronment and provide a familiar programming
abstraction, we created an SPE thread manage-
ment API similar to the Posix pthreads library.
This API supports both the creation and termi-
nation of SPE tasks and atomic update primi-
tives for ensuring mutual exclusion. The API
can access SPEs using a virtualized model
wherein the OS dynamically assigns SPE threads
to the first available SPE. This API completely
virtualizes SPEs and the number of SPEs pro-
vided in a specific CBEA implementation or
hypervisor-created partition. Optionally, appli-
cations can use a program-specified affinity
mask to assign SPE threads to specific SPEs.

Interelement thread communication and syn-
chronization architecture features (mailboxes,
signal delivery, and so on) can be accessed either
through a set of system calls or by allowing the
user application to map an SPE’s memory-
mapped control block into its application space.
In the CBEA, the SPE control block actually
consists of three separate control blocks corre-
sponding to functions to be accessed by a user
space application, an operating system, and a
hypervisor. Using the user-accessible function
control block, an application can perform direct
MMIO operations between processor elements to com-
municate between SPEs and remote elements (either
SPEs or the PPE) and avoid the overhead associated with
system calls. 

When the application requests creation of a thread, the
SPE thread library requests the OS to allocate an SPE and
creates SPE threads from SPE ELF object format files
wrapped into an integrated Cell executable. To offload
a portion of thread initialization onto the SPE, the PPE
can use a “miniloader” executing on the SPE to perform
SPE program loading. The miniloader, a 256-bit SPE pro-
gram, downloads the application ELF segments from the
host thread’s effective address space to the SPU local
store. Using an SPE-side miniloader is advantageous
because it offloads the PPE from having to pace program
loads and it can use the SPE miniloader to preinitialize
registers with application/OS parameter values.

This is attractive because multiple SPEs can load
threads simultaneously, and SPEs have deeper fetch
queues to hold multiple block transfer requests associ-

ated with loading a thread. In addition, communication
within a processor element’s scope—that is, between the
SPU and its associated MFC—is more efficient than
interprocessor element communication between the
MFC in an SPE and the PPE using MMIO. 

Debugging integrated executables 
The Cell BE requires an advanced debugging envi-

ronment to allow developers to track applications exe-
cuting on up to nine cores in a heterogeneous
environment. Application developers working on a Cell
BE application need to be able to follow the flow of con-
trol from one processor element to another processor
element, from the PPE to a task spawned on the SPE, or
from one SPE to the next. 

The Cell debugging environment is built on the GNU
debugger (GDB) and is the Cell debugging solution for
both the GCC open source compiler and the IBM pro-
prietary XL C compiler. The Cell debugging environ-
ment, however, goes far beyond a simple port of the
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SPESPE SPE SPE

Figure 2. Application development and execution for a heterogeneous

chip multiprocessor such as the Cell BE. An application program and

libraries are partitioned into a set of functions executing on the PPE and

SPE and compiled into object files for the PPE and SPE, respectively.The

object files are then linked into an integrated executable (shown in Fig-

ure 1).The PPE object files contain code for several PPE software threads,

and the SPE files contain code for several SPE software threads. When the

application executes on a Cell-aware operating system (such as Cell

Linux), it creates software threads using the thread library and the oper-

ating system services providing software threads (“lightweight

processes” or LWPs) for the PPE and SPE.The operating system then

maps the software threads to the available hardware threads in a Cell

system. In the first implementation, each Cell BE chip offers two PPE

hardware threads using hardware multithreading in the PPE core and

eight single-threaded SPEs.
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GDB debugging tool. To take advantage of the Cell BE’s
unique characteristics, the environment exploits addi-
tional system services to offer application debugging in
a heterogeneous multicore architecture. When a Cell
BE application spawns an SPE thread, GDB will follow
that newly created SPE thread with the ability to prop-
erly interpret executables for the SPU architecture.

As both PPE and SPE debuggers are based on the
common GDB source, PPE and SPE debuggers offer a
consistent user interface. Initially, starting a thread
instantiated a new processor-element-specific instance
of the debugger; more recent versions support PPE and
SPE debugging with a single heterogeneous debugger.
Unless the developer selects an assembly language view
of the program, the source-level debugger makes Cell’s
heterogeneous architecture completely transparent,
allowing the developer to concentrate on the applica-
tion behavior without regard to underlying instruction
set architecture.

The Cell multicore debugging environment is based
on several components:

• a GUI tracking multiple threads on the PPE and SPEs
(an alternative text-based debugging environment is
also available);

• GDB as the debugger engine, allowing developers to
follow the execution of code across the PPE and SPEs, 
set breakpoints, and display data values stored in 
registers and memory; and

• debugging support in the system software stack that
allows GDB sessions to gain control of a thread
when it is initiated as well as interfaces to implement
state inspection and modification.

The heterogeneous debugger architecture depends on
support in the ABI—specifically, the thread creation
interfaces provided in libspe.a, the SPU support library.
Thus, all applications built with the standard Cell BE
libraries automatically benefit from transparent het-
erogeneous debug support. To accomplish this, libspe.a
and the dynamic library loader (ld.so) include support
(during SPE thread creation) to allow ppu-gdb to obtain
control at predictable points and retrieve information
necessary to debug code in a newly created SPE thread.
We have also included support for the debug environ-
ment in the SPU linker (spu-ld) by generating context
information. This allows the debugger to find the sym-
bol tables and other debugging information for each
SPE thread when an application developer initiates an
spu-gdb session. 

The architecture, operating systems, and Cell system
ABIs tightly integrate heterogeneous debug support. As
an example, programmers can set arbitrary breakpoints
in an SPU program at the source level. The GDB then
translates this breakpoint into a location in the SPU local
store and inserts an SPU “stopd” instruction. When the

SPU attempts to execute this instruction, the SPE deliv-
ers an interrupt to the PPE. In response to this interrupt,
the kernel will perform a context save of the SPU thread
state and send a SIGSTOP signal to the tracing process,
allowing the debugger to take control when the appli-
cation reaches a breakpoint. 

The SPU GDB supports access to both the program
state of user programs in the SPU and access to SPE state
to provide a comprehensive view of application execu-
tion in a Cell system. In addition to SPU application state,
this includes other SPE state corresponding to program-
initiated operations such as mailbox communications,
DMA transfers maintained in the MFC, and so forth.

W e used open source software across the entire
system stack to explore novel architecture con-
cepts and their software enablement. We archi-

tected the software stack to present a high-level
language programming environment abstracting spe-
cific architecture choices. The software environment
allows application developers to focus on exploiting
application parallelism to deliver the superior Cell per-
formance as actual application performance. Using
open source software has allowed accelerating archi-
tecture validation and debugging in a full-fledged soft-
ware environment. In addition to being highly useful
during the later stages of architecture definition and
refinement, this approach also has provided an envi-
ronment for early Cell adopters. 

We have benefited—in real-world applications and in
real time—from the feedback of Cell adopters in explor-
ing programming abstractions for an integrated hetero-
geneous environment as pioneered by the Cell
Broadband Engine Architecture. Many of the tools that
formed the basis of the Cell BE infrastructure are still in
use today, while others have served as a testbed and will
coexist with commercial tools in a rich Cell software
ecosystem. Adopting an open software strategy has
allowed us to accelerate the market deployment of a new
architecture offering innovations to improve efficiency
and performance across the entire architecture stack by
prototyping innovative software solutions while build-
ing on a familiar environment.

Finally, the Cell BE software environment allows
application programmers to deliver high performance
by focusing on applications, not the architecture or
an unfamiliar tools environment. The true success of
the Cell software environment is to allow the devel-
opment of new, previously unseen applications for the
Cell BE. ■
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