Advances in Cost-sensitive Multiclass and Multilabel Classification

Hsuan-Tien Lin htlin@csie.ntu.edu.tw

Professor Dept. of CSIE, National Taiwan Univ.

Chief Data Science Consultant Appier Inc.

Tutorial for KDD @ Anchorage, Alaska, USA August 4, 2019

More About Me

- co-author of textbook '*Learning from* Data: A Short Course'
- instructor of two Coursera Mandarin-teaching ML MOOCs on Coursera

goal: make ML more realistic

- online/active learning: in ICML '12, ICML '14, AAAI '15, ...
- cost-sensitive classification: in ICML '10, KDD '12, IJCAI '16, ...
- multi-label classification: in NeurIPS '12, ICML '14, AAAI '18, ...
- large-scale data mining: co-led KDDCup world-champion NTU teams 2010–2013
- Al for digitial marketing: Chief Data Scientist of growing startup Appier 2016–2019

Hsuan-Tien Lin (NTU/Appier)

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- 2 Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

CSMC Motivation and Setup

Which Digit Did You Write?

a multiclass classification problem: grouping 'pictures' into different 'categories'

C'mon, we know about multiclass classification all too well! :-)

Performance Evaluation

2

- ZIP code recognition:
 1: wrong; 2: right; 3: wrong; 4: wrong
- check value recognition:
 - 1: one-dollar mistake; 2: no mistake;
 - 3: one-dollar mistake; 4: two-dollar mistake

different applications: evaluate mis-predictions differently

ZIP Code Recognition

1: wrong; 2: right; 3: wrong; 4: wrong

- regular multiclass classification: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of *h* on some (**x**, *y*):

classification cost = $[\![y \neq h(\mathbf{x})]\!]$

regular multiclass classification:

well-studied, many good algorithms

Hsuan-Tien Lin (NTU/Appier)

Check Value Recognition

- · cost-sensitive multiclass classification: different costs for different mis-predictions
- e.g. prediction error of *h* on some (**x**, *y*):

absolute cost = $|y - h(\mathbf{x})|$

next: more about **cost-sensitive multiclass** classification (CSMC)

CSMC Motivation and Setup

What is the Status of the Patient?

another classification problem: grouping 'patients' into different 'status'

are all mis-prediction costs equal?

Hsuan-Tien Lin (NTU/Appier)

Patient Status Prediction

error measure = society cost			
actual	bird flu	cold	healthy
bird flu	0	1000	100000
cold	100	0	3000
healthy	100	30	0

- bird flu mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; can computer-aided diagnosis do the same?

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathcal{C}(y, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, y)

includes regular classification C_c like $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ as special case

(images by Tawny van Breda, Pro File, Mieczysław Samol, lisa runnels, vontoba from Pixabay)

- small mistake-classify child as teen; big mistake-classify infant as adult •
- cost matrix C(y, g(x)) for embedding 'order': $C = \begin{pmatrix} 0 & 1 & 4 & 5 \\ 1 & 0 & 1 & 3 \\ 3 & 1 & 0 & 2 \\ 3 & 1 & 0 & 2 \end{pmatrix}$ •

CSMC can help solve many other problems like ordinal ranking

Cost Vector

cost vector c: a row of cost components

- society cost for a bird flu patient: $\mathbf{c} = (0, 1000, 100000)$
- absolute cost for digit 2: $\mathbf{c} = (1, 0, 1, 2)$
- age-ranking cost for a teenager: $\mathbf{c} = (\mathbf{3}, \mathbf{1}, \mathbf{0}, \mathbf{2})$
- 'regular' classification cost for label 2: $\mathbf{c}_c^{(2)} = (1, 0, 1, 1)$
- movie recommendation
 - someone who loves romance movie but hates terror:

c = (romance = 0, fiction = 5, terror = 100)

• someone who loves romance movie but fine with terror:

$$\mathbf{c} = (romance = 0, fiction = 5, terror = 3)$$

cost vector:

representation of personal preference in many applications

Hsuan-Tien Lin (NTU/Appier)

Setup: Example-Dependent Cost-Sensitive Classification

Given

N examples, each (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{1, 2, \dots, K\}$

and cost vector $\mathbf{c}_n \in \mathbb{R}^K$

—will assume $\mathbf{c}_n[\mathbf{y}_n] = 0 = \min_{1 \le k \le K} \mathbf{c}_n[k]$

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathbf{c}[g(\mathbf{x})]$ on future **unseen** example $(\mathbf{x}, \mathbf{y}, \mathbf{c})$

- will assume $\mathbf{c}[y] = 0 = c_{\min} = \min_{1 \le k \le K} \mathbf{c}[k]$
- note: y not really needed in evaluation

example-dependent \supset class-dependent \supset regular

Hsuan-Tien Lin (NTU/Appier)

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- 2 Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

CSMC by Bayesian Perspective

Key Idea: Conditional Probability Estimator

Goal (Class-Dependent Setup)

a classifier $g(\mathbf{x})$ that pays a small cost $\mathcal{C}(y, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, y)

if $q(\mathbf{x}, y) \approx P(y|\mathbf{x})$ well approximately good $g_q(\mathbf{x}) =$ $\underset{1 \leq k \leq K}{\operatorname{argmin}} \sum_{y=1}^{K} q(\mathbf{x}, y) \mathcal{C}(y, k)$

how to get conditional probability estimator *q*? logistic regression, Naïve Bayes, ...

Hsuan-Tien Lin (NTU/Appier)

Approximate Bayes-Optimal Decision

if $q(\mathbf{x}, y) \approx P(y|\mathbf{x})$ well

(Domingos, 1999)

approximately good
$$g_q(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} \sum_{y=1}^{K} q(\mathbf{x}, y) \mathcal{C}(y, k)$$

Approximate Bayes-Optimal Decision (ABOD) Approach

- **(1)** use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}$ to get $q(\mathbf{x}, y) \approx P(y|\mathbf{x})$
- 2 for each new input **x**, predict its class using $g_q(\mathbf{x})$ above

ABOD: probability estimate + Bayes-optimal decision

CSMC by Bayesian Perspective ABOD on Artificial Data

- **(**) use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}$ to get $q(\mathbf{x}, y) \approx P(y|\mathbf{x})$
- 2 for each new input **x**, predict its class using $g_q(\mathbf{x})$ above

CSMC by Bayesian Perspective

ABOD for Binary Classification

Given *N* examples, each (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{-1, +1\}$ and weights w_+ , w_- representing two entries of cost matrix

if $q(\mathbf{x}) \approx P(+1|\mathbf{x})$ well

approximately good
$$g_q(\mathbf{x}) = \operatorname{sign}\left(w_+q(\mathbf{x}) - w_-(1-q(\mathbf{x}))\right)$$
, i.e. (Elkan, 2001),
 $g_q(\mathbf{x}) = +1 \quad \iff w_+q(\mathbf{x}) - w_-(1-q(\mathbf{x})) > 0 \quad \iff q(\mathbf{x}) > \frac{w_-}{w_++w_-}$

ABOD for binary classification: probability estimate + threshold changing

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

17/126

Cost-Sensitive Multiclass Classification CSMC by Bayesian Perspective ABOD for Binary Classification on Artificial Data

- **(1)** use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}$ to get $q(\mathbf{x}) \approx P(+1|\mathbf{x})$
- ② for each new input **x**, predict its class using $g_q(\mathbf{x}) = \text{sign}(q(\mathbf{x}) \frac{w_-}{w_++w_-})$

CSMC by Bayesian Perspective

Pros and Cons of ABOD

Pros

- optimal if good probability estimate q
- prediction easily adapts to different C without modifying training (probability estimate)

Cons

• 'difficult': good probability estimate often more difficult

than good multiclass classification

• 'restricted': only applicable to class-dependent setup

-need 'full picture' of cost matrix

• 'slower prediction' (for multiclass): more calculation at prediction stage

can we use any multiclass classification algorithm for ABOD?

MetaCost Approach

Approximate Bayes-Optimal Decision (ABOD) Approach

- **(**) use your favorite algorithm on $\{(\mathbf{x}_n, y_n)\}$ to get $q(y, \mathbf{x}) \approx P(y|\mathbf{x})$
- 2 for each new input **x**, predict its class using $g_p(\mathbf{x})$

MetaCost Approach (Domingos, 1999)

- 1 use your favorite multiclass classification algorithm on **bootstrapped** $\{(\mathbf{x}_n, y_n)\}$ and aggregate the classifiers to get $q(y, \mathbf{x}) \approx P(y|\mathbf{x})$
- **2** for each given input \mathbf{x}_n , relabel it to y'_n using $g_q(\mathbf{x})$
- S run your favorite multiclass classification algorithm

on **relabeled** $\{(\mathbf{x}_n, \mathbf{y}'_n)\}$ to get final classifier g

4 for each new input **x**, predict its class using $g(\mathbf{x})$

pros: any multiclass classification algorithm can be used

Hsuan-Tien Lin (NTU/Appier)

CSMC by Bayesian Perspective

MetaCost on Semi-Real Data

(Domingos, 1999)

- some 'artificial' cost with UCI data
- MetaCost+C4.5:
 cost-sensitive
- C4.5: regular

not surprisingly,

considering the cost properly does help

Outline

- Cost-Sensitive Multiclass Classification
 - CSMC Motivation and Setup
 - CSMC by Bayesian Perspective
 - CSMC by (Weighted) Binary Classification
 - CSMC by Regression
- 2 Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

CSMC by (Weighted) Binary Classification Key Idea: Cost Transformation

(heuristic) relabeling useful in MetaCost: a more principled way?

i.e. **x** with c = (1, 0, 1, 2) equivalent to a weighted mixture $\{(x, y, u)\} = \{(x, 1, 1), (x, 2, 2), (x, 3, 1)\}$

cost equivalence (Lin, 2014): for any classifier h, $\mathbf{c}[h(\mathbf{x})] + \text{constant} = \sum_{\ell=1}^{K} u_{\ell} \, \llbracket \ell \neq h(\mathbf{x}) \rrbracket$

CSMC by (Weighted) Binary Classification

Meaning of Cost Equivalence

$$\mathbf{c}[h(\mathbf{x})] + \text{constant} = \sum_{\ell=1}^{K} u_{\ell} \left[\!\left[\ell \neq h(\mathbf{x})\right]\!\right]$$

on one $(\mathbf{x}, \mathbf{y}, \mathbf{c})$: wrong prediction charged by $\mathbf{c}[h(\mathbf{x})]$ on all $\{(x, \ell, u_{\ell})\}$:

wrong prediction charged by total weighted classification error of relabeled data

$\begin{array}{ll} \min_{h} \text{ expected LHS} & (\text{original CSMC problem}) \\ = & \min_{h} \text{ expected RHS} & (\text{weighted classification when } u_{\ell} \geq 0) \end{array}$

CSMC by (Weighted) Binary Classification Calculation of u_ℓ

Smallest Non-Negative u_{ℓ} 's (Lin, 2014)

when constant =
$$(K - 1) \max_{1 \le k \le K} \mathbf{c}[k] - \sum_{k=1}^{K} \mathbf{c}[k],$$

$$u_{\ell} = \max_{1 \le k \le K} \mathbf{c}[k] - \mathbf{c}[\ell]$$

e.g. $\underbrace{\begin{pmatrix} 1 & 0 & 1 & 2 \\ \mathbf{c} \text{ of interest}} \rightarrow \underbrace{\begin{pmatrix} 1 & 2 & 1 & 0 \end{pmatrix}}_{\text{mixture weights } u_{\ell}}$

- **largest c**[ℓ]: $u_{\ell} = 0$ (least preferred relabel)
- smallest c[l]: u_l = largest (original label & most preferred relabel)

ℓ 's and u_{ℓ} 's **embed the cost**

Hsuan-Tien Lin (NTU/Appier)

Data Space Expansion (DSE) Approach (Abe, 2004)

1 for each $(\mathbf{x}_n, y_n, \mathbf{c}_n)$ and ℓ , let $u_{n,\ell} = \max_{1 \le k \le K} \mathbf{c}_n[k] - \mathbf{c}_n[\ell]$

2 apply your favorite multiclass classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(\mathbf{x}_n, \ell, u_{n,\ell})\}_{\ell=1}^{K}$ to get $g(\mathbf{x})$

 ${f eta}$ for each new input **x**, predict its class using $g({f x})$

• by cost equivalence,

good g for new (weighted) regular classification problem

- good g for original cost-sensitive classification problem
- weighted regular classification: special case of CSMC but more easily solvable by, e.g., sampling + regular classification (Zadrozny, 2003)

pros: any multiclass classification algorithm can be used

DSE versus MetaCost on Semi-Real Data

DSE competitive to MetaCost

sat

ann

CSMC by (Weighted) Binary Classification Cons of DSE: Unavoidable Noise

- cost embedded as weight + noisy labels
- new problem usually harder than original one

need robust multiclass classification algorithm to deal with noise

Hsuan-Tien Lin (NTU/Appier)

Key Idea: Design Robust Multiclass Algorithm

One-Versus-One: A Popular Classification Meta-Method

- for all different class pairs (*i*, *j*),
 - **)** take all examples $(\mathbf{x}_n, \mathbf{y}_n)$
 - that $y_n = i$ or j (original one-versus-one)
 - that $u_{n,i} \neq u_{n,j}$ with the larger-*u* label and weight $|u_{n,i} u_{n,j}|$ (robust one-versus-one)

2 train a binary classifier $\hat{g}^{(i,j)}$ using those examples

- return $g(\mathbf{x})$ that predicts using the votes from $\hat{g}^{(i,j)}$
- un-shifting inside the meta-method to remove noise
- robust step makes it suitable for DSE

cost-sensitive one-versus-one: DSE + robust one-versus-one

Cost-Sensitive One-Versus-One (CSOVO)

Cost-Sensitive One-Versus-One (Lin, 2014)

• for all different class pairs (*i*, *j*),

1 robust one-versus-one + calculate from c_n : take all examples (x_n, y_n)

that $\mathbf{c}_n[i] \neq \mathbf{c}_n[j]$ with smaller-**c** label and weight $u_n^{(i,j)} = |\mathbf{c}_n[i] - \mathbf{c}_n[j]|$

2 train a binary classifier $\hat{g}^{(i,j)}$ using those examples

• return $g(\mathbf{x})$ that predicts using the votes from $\hat{g}^{(i,j)}$

• comes with good theoretical guarantee:

test cost of
$$g \leq$$
 2 $\sum_{i < j}$ test cost of $\hat{g}^{(i,j)}$

 sibling to Weighted All-Pairs (WAP) approach: even tighter guarantee (Beygelzimer, 2005) with more sophisticated construction of u_n^(i,j)

physical meaning: each $\hat{g}^{(i,j)}$ answers yes/no question 'prefer *i* or *j*?'

CSMC by (Weighted) Binary Classification

CSOVO on Semi-Real Data

not surprisingly again,

considering the cost properly does help

Hsuan-Tien Lin (NTU/Appier)

CSMC by (Weighted) Binary Classification

CSOVO for Ordinal Ranking

CSOVO significantly better for ordinal ranking

Cons of CSOVO: Many Binary Classifiers

time-consuming in both

- training, especially with many different c_n[i] and c_n[j]
- prediction

---parallization helps a bit, but generally not feasible for large K

CSOVO: a simple meta-method for median K only

Hsuan-Tien Lin (NTU/Appier)

Key Idea: $OVO \equiv Round-Robin Tournament$ Round-Robin Tournament Single-Elimination Tournament

- prediction \equiv deciding tournament winner for each **x**
- (CS)OVO: $\frac{K(K-1)}{2}$ games for prediction (and hence training)
- single-elimination tournament (for $K = 2^{\ell}$):
 - K 1 games for prediction via bottom-up: real-world
 - log₂ K games for prediction via top-down: computer-world :-)

next: single-elimination tournament for CSMC

Hsuan-Tien Lin (NTU/Appier)

Cost-Sensitive Multiclass Classification CSMC by (Weighted) Binary Classification Filter Tree (FT) Approach Filter Tree (Beygelzimer, 2009) Training: from bottom to top $\hat{g}^{(...)}$ (R, 4) $\hat{g}^{(1,2)}$ $\hat{g}^{(3,4)}$ (L, 9)(L, 3)(2)c[2] = 9 (3)c[3] = 5 c[4] = 8 • $\hat{g}^{(1,2)}$ and $\hat{g}^{(3,4)}$ trained like CSOVO: smaller-c label and weight $u_n^{(i,j)} = |\mathbf{c}_n[i] - \mathbf{c}_n[i]|$

• $\hat{g}^{(...)}$ trained with (k_L, k_R) filtered by sub-trees

--smaller-**c** sub-tree direction and weight $u_n^{(...)} = |\mathbf{c}_n[k_L] - \mathbf{c}_n[k_R]|$

FT: top classifiers aware of bottom-classifier mistakes

Hsuan-Tien Lin (NTU/Appier)
CSMC by (Weighted) Binary Classification

Pros and Cons of FT

Pros

- efficient: O(K) training, $O(\log K)$ prediction
- strong theoretical guarantee:
 - small-regret binary classifiers
 - ⇒ small-**regret** CSMC classifier

Cons

- 'asymmetric' to labels: non-trivial structural decision
- 'hard' sub-tree dependent top-classification tasks

next: other reductions to (weighted) binary classification

Hsuan-Tien Lin (NTU/Appier)

Other Approaches via Weighted Binary Classification

Sensitive Err. Correcting Output Code (SECOC): with regret bound (Langford, 2005)

 $\mathbf{c}[1] + \mathbf{c}[3] + \mathbf{c}[4]$ greater than some θ ?

training time:

SECOC $(O(T \cdot K)) > FT (O(K)) \approx TREE (O(K))$

Hsuan-Tien Lin (NTU/Appier)

Comparison of Reductions to Weighted Binary Classification

(Lin, 2014) couple all meta-methods with SVM

- round-robin tournament (CSOVO)
- single-elimination tournament (FT, TREE)
- error-correcting-code (SECOC)

CSOVO often among the best; FT somewhat competitive

Hsuan-Tien Lin (NTU/Appier)

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

Key Idea: Cost Estimator

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathbf{c}[g(\mathbf{x})]$ on future **unseen** example $(\mathbf{x}, \mathbf{y}, \mathbf{c})$

if every c [<i>k</i>] known					
optimal					
$g^*(\mathbf{x}) = \operatorname{argmin}_{1 \leq k \leq K} \mathbf{c}[k]$					

if $r_k(\mathbf{x}) pprox \mathbf{c}[k]$ well	
approximately good	
$g_r(\mathbf{x}) = \operatorname{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$	

how to get cost estimator r_k ? regression

Cost Estimator by Per-class Regression

Given

N examples, each (input
$$\mathbf{x}_n$$
, label y_n , cost \mathbf{c}_n) $\in \mathcal{X} \times \{1, 2, \dots, K\} \times R^K$

want: $r_k(\mathbf{x}) \approx \mathbf{c}[k]$ for all future $(\mathbf{x}, \mathbf{y}, \mathbf{c})$ and k

Hsuan-Tien Lin (NTU/Appier)

 encode: transform cost-sensitive examples (**x**_n, y_n, **c**_n) to regression examples (**x**_{n,k}, Y_{n,k}) = (**x**_n, **c**_n[k])
 learn: use your favorite algorithm on regression examples to get estimators r_k(**x**)
 decode: for each new input **x**, predict its class using g_r(**x**) = argmin_{1 < k < K} r_k(**x**)

the reduction-to-regression framework:

systematic & easy to implement

Hsuan-Tien Lin (NTU/Appier)

Theoretical Guarantees (1/2)

 $g_r(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$

Theorem (Absolute Loss Bound)

For any set of cost estimators $\{r_k\}_{k=1}^{K}$ and for any example $(\mathbf{x}, y, \mathbf{c})$ with $\mathbf{c}[y] = 0$,

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^{K} |r_k(\mathbf{x}) - \mathbf{c}[k]|.$$

low-cost classifier \Leftarrow accurate estimators

Hsuan-Tien Lin (NTU/Appier)

Theoretical Guarantees (2/2)

 $g_r(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$

Theorem (Squared Loss Bound)

For any set of cost estimators $\{r_k\}_{k=1}^{K}$ and for any example $(\mathbf{x}, y, \mathbf{c})$ with $\mathbf{c}[y] = 0$,

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sqrt{2\sum_{k=1}^{K} (r_k(\mathbf{x}) - \mathbf{c}[k])^2}.$$

applies to common least-square regression

Hsuan-Tien Lin (NTU/Appier)

A Pictorial Proof

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^{K} \Bigl| r_k(\mathbf{x}) - \mathbf{c}[k] \Bigr|$$

- assume **c** ordered and not degenerate: y = 1; $0 = c[1] < c[2] \leq \cdots \leq c[K]$
- assume mis-prediction $g_r(\mathbf{x}) = 2$: $r_2(\mathbf{x}) = \min_{1 \le k \le K} r_k(\mathbf{x}) \le r_1(\mathbf{x})$

$$\mathbf{c}[\mathbf{2}] - \underbrace{\mathbf{c}[\mathbf{1}]}_{0} \leq \left|\Delta_{1}\right| + \left|\Delta_{\mathbf{2}}\right| \leq \sum_{k=1}^{K} \left|r_{k}(\mathbf{x}) - \mathbf{c}[k]\right|$$

Hsuan-Tien Lin (NTU/Appier)

An Even Closer Look

let
$$\Delta_1 \equiv r_1(\mathbf{x}) - \mathbf{c}[1]$$
 and $\Delta_2 \equiv \mathbf{c}[2] - r_2(\mathbf{x})$

1 $\Delta_1 \ge 0$ and $\Delta_2 \ge 0$: $\mathbf{c}[2] \le \Delta_1 + \Delta_2$ 2 $\Delta_1 \le 0$ and $\Delta_2 \ge 0$: $\mathbf{c}[2] \le \Delta_2$ 3 $\Delta_1 \ge 0$ and $\Delta_2 \le 0$: $\mathbf{c}[2] \le \Delta_1$

Hsuan-Tien Lin (NTU/Appier)

Tighter Bound with One-sided Loss

Define **one-sided loss** $\xi_k \equiv \max(\Delta_k, 0)$

with
$$\Delta_k \equiv (r_k(\mathbf{x}) - \mathbf{c}[k])$$
 if $\mathbf{c}[k] = c_{\min} = 0$
 $\Delta_k \equiv (\mathbf{c}[k] - r_k(\mathbf{x}))$ if $\mathbf{c}[k] \neq c_{\min}$

Intuition

- $\mathbf{c}[k] = c_{\min}$: wish to have $r_k(\mathbf{x}) \leq \mathbf{c}[k]$
- $\mathbf{C}[k] \neq c_{\min}$: wish to have $r_k(\mathbf{x}) \geq \mathbf{C}[k]$

—both wishes same as $\Delta_k \leq 0 \iff \xi_k = 0$

One-sided Loss Bound:

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^{K} \xi_k \leq \sum_{k=1}^{K} \left| \Delta_k \right|$$

Hsuan-Tien Lin (NTU/Appier)

(Tu, 2010)

- encode: transform cost-sensitive examples $(\mathbf{x}_n, y_n, \mathbf{c}_n)$ to one-sided regression examples $(\mathbf{x}_n^{(k)}, \mathbf{Y}_n^{(k)}, \mathbf{Z}_n^{(k)}) = (\mathbf{x}_n, \mathbf{c}_n[k], 2 [[\mathbf{c}_n[k] = 0]] - 1)$
- 2 learn: use a one-sided regression algorithm to get estimators $r_k(\mathbf{x})$
- **(3)** decode: for each new input **x**, predict its class using $g_r(\mathbf{x}) = \operatorname{argmin}_{1 \le k \le K} r_k(\mathbf{x})$

the reduction-to-OSR framework:

need a good OSR algorithm

Hsuan-Tien Lin (NTU/Appier)

Cost-Sensitive Multiclass Classification CSMC by Regression Regularized One-Sided Hyper-Linear Regression

Given

$$(\mathbf{x}_{n,k}, Y_{n,k}, Z_{n,k}) = (\mathbf{x}_n, \mathbf{c}_n[k], 2[\mathbf{c}_n[k] = 0] - 1)$$

Training Goal

all training
$$\xi_{n,k} = \max\left(\underbrace{Z_{n,k}\left(r_k(\mathbf{x}_{n,k}) - Y_{n,k}\right)}_{\Delta_{n,k}}, \mathbf{0}\right)$$
 small
—will drop k

$$egin{aligned} & \min_{\mathbf{w},b} & rac{\lambda}{2} \langle \mathbf{w}, \mathbf{w}
angle + \sum_{n=1}^N \xi_n \ & ext{to get} & r_k(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x})
angle + b \end{aligned}$$

Hsuan-Tien Lin (NTU/Appier)

One-Sided Support Vector Regression

Regularized One-Sided Hyper-Linear Regression

$$\min_{\mathbf{w},b} \qquad \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_n \\ \xi_n = \max \left(Z_n \cdot \left(r_k(\mathbf{x}_n) - Y_n \right), 0 \right)$$

Standard Support Vector Regression

$$\min_{\mathbf{w},b} \quad \frac{1}{2C} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} (\xi_n + \xi_n^*) \\ \xi_n = \max\left(+1 \cdot (r_k(\mathbf{x}_n) - Y_n - \epsilon), 0\right) \\ \xi_n^* = \max\left(-1 \cdot (r_k(\mathbf{x}_n) - Y_n + \epsilon), 0\right)$$

OSR-SVM = SVR + ($\epsilon \leftarrow 0$) + (keep ξ_n or ξ_n^* by Z_n)

Hsuan-Tien Lin (NTU/Appier)

CSMC by Regression

OSR-SVM on Semi-Real Data

OSR often significantly better than OVA

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

51/126

OSR versus WAP on Semi-Real Data

(Tu, 2010) some 'artificial' cost with UCI data

OSR (per-class):
 O(K) training, O(K)
 prediction

OSR faster and competitive performance

From OSR-SVM to AOSR-DNN

$$\begin{array}{ll} \mathsf{DSR-SVM} & \min_{\mathbf{w},b} & \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_n \\ & \text{with} & r_k(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b \\ & \xi_n = \max \left(Z_n \cdot \left(r_k(\mathbf{x}_n) - Y_n \right), 0 \right) \end{array}$$

Appro. OSR-DNN min
NNet
with regularizer +
$$\sum_{n=1}^{N} \delta_n$$

 $r_k(\mathbf{x}) = \text{NNet}(\mathbf{x})$
 $\delta_n = \ln(1 + \exp(Z_n \cdot (r_k(\mathbf{x}_n) - Y_n)))$

AOSR-DNN (Chung, 2016a) = Deep Learning + OSR +

smoother upper bound $\delta_n \geq \xi_n$ because $\ln(1 + \exp(\bullet)) \geq \max(\bullet, 0)$

Hsuan-Tien Lin (NTU/Appier)

From AOSR-DNN to CSDNN

CSMC by Rearession

Cons of AOSR-DNN

c affects both classification and feature-extraction in DNN but hard to do effective cost-sensitive feature extraction

idea 1: pre-training with c

- layer-wise pre-training with cost-sensitive autoencoders
 loss = reconstruction + AOSB
- CSDNN (Chung, 2016a)
 = AOSR-DNN + cost-sens. pre-training

idea 2: auxiliary cost-sensitive nodes

auxiliary nodes to

predict costs per layer

loss = AOSR for classification + AOSR for auxiliary

• applies to any deep learning model (Chung, 2016b)

CSDNN: world's first successful CSMC deep learning model

Hsuan-Tien Lin (NTU/Appier)

CSMC by Regression

AOSR-DNN versus CSDNN

CSDNN wins, justifying cost-sensitive feature extraction

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

55/126

CSMC by Regression

ABOD-DNN versus CSDNN

CSDNN still wins, hinting difficulty of probability estimate without cost-sensitive feature extraction

Hsuan-Tien Lin (NTU/Appier)

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression
- Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

CSML Motivation and Setup

Which Fruit?

?

(image by Robert-Owen-Wahl from Pixabay)

classify input (picture) to one category (label), remember? :-)

Hsuan-Tien Lin (NTU/Appier)

CSML Motivation and Setup

Which Fruits?

?: {apple, orange, kiwi}

(image by Michal Jarmoluk from Pixabay)

multilabel classification:

classify input to multiple (or no) categories

Hsuan-Tien Lin (NTU/Appier)

CSML Motivation and Setup

Label Powerset: Multilabel Classification via Multiclass (Tsoumakas, 2007)

- Label Powerset (LP): reduction to multiclass classification
- difficulties for large *L*:
 - computation: 2^L extended classes
 - sparsity: no or few example for some combinations

LP: feasible only for small L

Hsuan-Tien Lin (NTU/Appier)

CSML Motivation and Setup

?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

another **multilabel** classification problem: tagging input to multiple categories

Hsuan-Tien Lin (NTU/Appier)

Binary Relevance: Multilabel Classification via Yes/No

multilabel w/ *L* classes: *L* yes/no questions

machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), *etc*.

- Binary Relevance (BR): reduction to multiple isolated binary classification
- disadvantages:
 - isolation—hidden relations not exploited
 - (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - unbalanced—few yes, many no

BR: simple (& strong) benchmark with known disadvantages

Hsuan-Tien Lin (NTU/Appier)

CSML Motivation and Setup

Multilabel Classification Setup

Given

N examples (input \mathbf{x}_n , labelset \mathcal{Y}_n) $\in \mathcal{X} \times 2^{\{1,2,\cdots L\}}$

- fruits: $\mathcal{X} = encoding(pictures), \mathcal{Y}_n \subseteq \{1, 2, \cdots, 4\}$
- tags: $\mathcal{X} = encoding(merchandise), \mathcal{Y}_n \subseteq \{1, 2, \cdots, L\}$

Goal

a multilabel classifier $g(\mathbf{x})$ that closely predicts the labelset \mathcal{Y} associated with some **unseen** inputs \mathbf{x} (by exploiting hidden relations/combinations between labels)

multilabel classification:

hot and important with many real-world applications

CSML Motivation and Setup

From Labelset to Coding View

	labelset	apple	orange	strawberry	binary code
<i>.</i>	$\mathcal{Y}_1 = \{o\}$	0 (N)	1 (Y)	0 (N)	y ₁ = [0, 1, 0]
60	$\mathcal{Y}_2=\{a,o\}$	1 (Y)	1 (Y)	0 (N)	$y_2 = [1, 1, 0]$
<u>a</u>	$\mathcal{Y}_3=\{\text{o},\text{s}\}$	0 (N)	1 (Y)	1 (Y)	$y_3 = [0, 1, 1]$
	$\mathcal{Y}_4=\{\}$	0 (N)	0 (N)	0 (N)	y ₄ = [0, 0, 0]

(images by PublicDomainPictures, Narin Seandag, GiltonF, nihatyetkin from Pixabay)

subset \mathcal{Y} of $2^{\{1,2,\cdots,L\}} \iff$ length-L binary code y

Hsuan-Tien Lin (NTU/Appier)

Cost-Sensitive Multilabel Classification CSML Motivation and Setup LP Approach: What Performance Measure?

Goal: a classifier $g(\mathbf{x})$ that closely predicts the labelset \mathcal{Y} (code y) associated w/ x

LP Approach

• encode: transform multilabel examples $(\mathbf{x}_n, \mathbf{y}_n)$ to multiclass examples (\mathbf{x}_n, Y_n) , where Y_n = binary number of \mathbf{y}_n

 $\textbf{y} \rightarrow \textbf{Y} \hspace{0.2cm} \big| \hspace{0.2cm} [0,0,0] \rightarrow 0 \hspace{0.2cm} [0,0,1] \rightarrow 1 \hspace{0.2cm} [0,1,0] \rightarrow 2 \hspace{0.2cm} [0,1,1] \rightarrow 3$

2 learn: use any (regular) algorithm on multiclass examples to get classifier \$\hat{g}(x)\$
3 decode: for each new input x, predict its code using

 $g(\mathbf{x}) =$ binary representation of $\hat{g}(\mathbf{x})$

Measuring 'Closely Predict'

- **regular** multiclass algorithm: optimizes $\llbracket Y
 eq \hat{g}(\mathbf{x})
 rbracket$
- LP: correspondingly optimizes $[[\mathbf{y} \neq g(\mathbf{x})]]$, called **subset** 0/1 error

subset 0/1 error: a strict measure for multilabel classification

Hsuan-Tien Lin (NTU/Appier)

BR Approach: What Performance Measure?

Goal: a classifier $g(\mathbf{x})$ that closely predicts the labelset \mathcal{Y} (code y) associated w/ x

BR Approach

- **1** encode: transform multilabel examples $(\mathbf{x}_n, \mathbf{y}_n)$ to binary examples $(\mathbf{x}_n, \mathbf{y}_n[\ell])$
- 2 learn: use any algorithm on binary classification examples to get classifier $\hat{g}_{\ell}(\mathbf{x})$
- 3 decode: for each new input x, predict its code using

$$g(\mathbf{x}) = [\hat{g}_1(\mathbf{x}), \hat{g}_2(\mathbf{x}), \dots, \hat{g}_L(\mathbf{x})]$$

Measuring 'Closely Predict'

- **regular** binary classification algorithm: optimizes $[\![\mathbf{y}[\ell] \neq \hat{g}_\ell(\mathbf{x})]\!]$
- BR: correspondingly optimizes $rac{1}{L}|g(\mathbf{x}) riangle \mathcal{Y}|$, called Hamming error

Hamming error: a simple measure for multilabel classification

Hsuan-Tien Lin (NTU/Appier)

CSML Motivation and Setup Evaluating Multilabel Classifiers

Different Approaches Optimizes Different Measure

- LP: subset 0/1 error
- BR: Hamming error

Different (Assumed) Dependence Associated with Different Measure

(Dembczyński, 2012)

- strong conditional dependence: subset 0/1 error (need 'joint' optimization)
- no conditional dependence: Hamming error (can use 'marginal' optimization)

Different Applications Needs Different Measure

- information retrieval: F1 score (harmonic mean of precision & recall)
- tag recommendation: ranking error

Cost-Sensitive Multilabel Classification (CSML): design one approach for 'any' measure, just like CSMC

Hsuan-Tien Lin (NTU/Appier)

Setup: Cost-Sensitive Multilabel Classification (CSML)

Given

Goal

N examples, each (input \mathbf{x}_n , code \mathbf{y}_n) $\in \mathcal{X} \times \{1, 2, ..., L\}$ and cost function $\mathcal{C} \in \mathbb{R}^{2^L \times 2^L}$ with $\mathcal{C}(\mathbf{y}, \mathbf{y}) = 0 = \min_{\mathbf{k} \in \{0,1\}^L} \mathcal{C}(\mathbf{y}, \mathbf{k})$

a classifier $g(\mathbf{x})$ that pays a small cost $\mathcal{C}(\mathbf{y}, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, \mathbf{y})

- called instance-based CSML: each instance evaluated separately

 more complicated to solve other kinds of CSML (Hsieh, 2018)
- possible extension to example-dependent costs C_x like CSMC

will focus on 'class'-dependent instance-based CSML

Hsuan-Tien Lin (NTU/Appier)

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression

Cost-Sensitive Multilabel Classification

- CSML Motivation and Setup
- CSML by Bayesian Perspective
- CSML by (CS) Multiclass Classification
- CSML by (Weighted) Binary Classification
- CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

Approximate Bayes-Optimal Decision Revisited for CSML

if $q(\mathbf{x}, \mathbf{y}) \approx P(\mathbf{y}|\mathbf{x})$ well

AOBD for CSML

approximately good $g_q(\mathbf{x}) = \underset{\mathbf{k} \in \{0,1\}^L}{\operatorname{argmin}} \sum_{\mathbf{y} \in \{0,1\}^L} q(\mathbf{x}, \mathbf{y}) \mathcal{C}(\mathbf{y}, \mathbf{k})$

difficulty of directly using AOBD

- difficulty in probability estimation:
- difficulty in cost calculation:
- difficulty in inference:

 2^{L} outputs per **x** for $q(\mathbf{x}, \mathbf{y})$

 2^L possible **y** in \sum to compute per **k**

argmin over 2^L possible candidates k

ABOD: even harder for CSML than CSMC

- $q_{\ell}(\mathbf{x}, \mathbf{y}[1], \dots, \mathbf{y}[\ell-1])$: estimates $P(\mathbf{y}[\ell] = 1 | \mathbf{x}, \mathbf{y}[1, \dots, (\ell-1)])$
 - -learned with your favorite estimation algorithm, such as logistic regression
- if each q_{ℓ} accurate, multiplied q also accurate

$$q(\mathbf{x},\mathbf{y}) = \prod_{\ell=1}^{L} q_{\ell}^{\mathbf{y}[\ell]} (1-q_{\ell})^{(1-\mathbf{y}[\ell])}$$

Probabilistic Classifier Chain (PCC) (Dembczyński, 2010): estimate q_{ℓ} 's to conquer difficulty in probability estimation

Hsuan-Tien Lin (NTU/Appier)
Cost-Sensitive Multilabel Classification

CSML by Bayesian Perspective

Key Idea: Sparsify $q(\mathbf{x}, \mathbf{y})$ with Representative \mathbf{y} 's

conjecture: $P(\mathbf{y}|\mathbf{x})$ usually small for most \mathbf{y} 's, hence many $q(\mathbf{x}, \mathbf{y})$ also small

draw typical **y** from $q(\mathbf{x}, \mathbf{y})$

(Dembczyński, 2011)

• Monte Carlo sampling from q_1 , q_2 , ..., q_ℓ sequentially

keep most probable $\mathbf{y}[1,\ldots,\ell]$

(Kumar, 2013)

• beam search: keep *B* most probable predictions

calculate **necessary costs/statistics with representative y** to conquer difficulty in cost calculation

Cost-Sensitive Multilabel Classification \mathcal{C} SML by Bayesian Perspective Key Idea: Derive Efficient Inference Rule for Specific \mathcal{C} AOBD for CSML: approximately good $g_q(\mathbf{x}) = \underset{\mathbf{k} \in \{0,1\}^L \text{ representative } \mathbf{y}}{\sum} q(\mathbf{x}, \mathbf{y}) \mathcal{C}(\mathbf{y}, \mathbf{k})$

-even with representative y, still exponentially many k

some C allows efficient inference

• subset 0/1 error: $C(\mathbf{y}, \mathbf{k}) = 0$ iff $\mathbf{y} = \mathbf{k} \& 1$ otherwise

optimal $\mathbf{k} = \operatorname{argmax}_{\mathbf{y}} q(\mathbf{x}, \mathbf{y})$ over representative \mathbf{y}

• Hamming error:
$$C(\mathbf{y}, \mathbf{k}) = \frac{1}{L} \sum_{\ell=1}^{L} \llbracket \mathbf{y}[\ell] \neq \mathbf{k}[\ell] \rrbracket$$

optimal $\mathbf{k}[\ell] =$ majority bit of $\mathbf{y}[\ell]$ over representative \mathbf{y}

AOBD for CSML: generally restricted to specific C where difficulty in inference can be resolved

Hsuan-Tien Lin (NTU/Appier)

CSML by Bayesian Perspective Mini-Summary of Key Ideas

AOBD for CSML: if $q(\mathbf{x}, \mathbf{y}) \approx P(\mathbf{y} | \mathbf{x})$ well

approximately good
$$g_q(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{k} \in \{0,1\}^L} \sum_{\mathbf{y} \in \{0,1\}^L} q(\mathbf{x}, \mathbf{y}) \mathcal{C}(\mathbf{y}, \mathbf{k})$$

difficulty of directly using AOBD revisited

- difficulty in probability estimation:
- difficulty in cost calculation:
- difficulty in inference:

 2^{L} outputs per **x** for $q(\mathbf{x}, \mathbf{y})$

 2^L possible **y** in \sum to compute per **k**

argmin over 2^L possible candidates k

corresponding key ideas

- estimate probability with decomposition
- sparsify probability estimation with representative y's
- derive efficient inference rule for specific $\ensuremath{\mathcal{C}}$

next: concrete approaches that combine key ideas

Hsuan-Tien Lin (NTU/Appier)

Putting It All Together: PCC for Subset 0/1 Error

• training: calculate q_1, q_2, \ldots, q_L ,

where q_{ℓ} learned with extended inputs $(\mathbf{x}_n, \mathbf{y}_n[1, \dots, \ell-1])$ and outputs $\mathbf{y}_n[\ell]$

- inference: for each x,
 - get B most representative y by beam search (Kumar, 2013)
 - return $g(\mathbf{x}) = argmax q(\mathbf{x}, \mathbf{y})$

representative y

Cons of PCC

- 'assymetric' to labels: **non-trivial structural decision** of label order
- -often coupled with uniform aggregation (Ensemble PCC) to improve performance
- somewhat time consuming during inference

special case of B = 1:

a classic approach called Classifier Chain (CC) (Read, 2009)

Hsuan-Tien Lin (NTU/Appier)

Putting It All Together: PCC for F1 Score

• training: calculate q_1, q_2, \ldots, q_L ,

where q_{ℓ} learned with extended inputs $(\mathbf{x}_n, \mathbf{y}_n[1, \dots, \ell-1])$ and outputs $\mathbf{y}_n[\ell]$

- inference: for each x,
 - get B most representative y by sampling (Dembczyński, 2011)
 - estimate necessary statistics

$$\delta_{\ell,k} = \mathbb{E}\Big\{ \mathbf{y}[\ell] ext{ given } |\mathbf{y}| = k \Big\}$$

• return $g(\mathbf{x})$ with exact inference from $\delta_{\ell,k}$ using $O(L^3)$ computation

strength depends on whether $\delta_{\ell,k}$ estimated well enough with probability estimation + representative sampling CSML by Bayesian Perspective

Mini-Summary of the PCC Family

with Efficient Inference Rules

measure	inference rule
subset 0/1	mode of <i>q</i>
Hamming	threshold of 'marginal' q
ranking	sorted 'marginal' q
$\mathcal{C}(\mathbf{y},\mathbf{k})=-rac{2 \mathbf{y}\cap\mathbf{k} }{ \mathbf{y} + \mathbf{k} }$: F1	statistics $\delta_{\ell,k}$ from q

without Efficient Inference Rules

measure	equation
accuracy	$\mathcal{C}(\mathbf{y},\mathbf{k})=-rac{ \mathbf{y}\cap\mathbf{k} }{ \mathbf{y}\cup\mathbf{k} }$
multi. objective combination	$\mathcal{C}(\mathbf{y},\mathbf{k}) = \mathcal{C}_1(\mathbf{y},\mathbf{k}) + \mathcal{C}_2(\mathbf{y},\mathbf{k})$

PCC: CSML approach 'in principle'

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

77/126

CSML by Bayesian Perspective

Cost-Sensitivity of PCC

(Dembczyński, 2011) cost-sensitive behavior: PCC-Hamming better (↓) for Hamming; PCC-F1 better (↑) for F1

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

78/126

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression

Cost-Sensitive Multilabel Classification

- CSML Motivation and Setup
- CSML by Bayesian Perspective
- CSML by (CS) Multiclass Classification
- CSML by (Weighted) Binary Classification
- CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

A Naïve CSML Approach: Cost-Sensitive Label Powerset

Label Powerset (LP)	Approach	Cost-Sensitive LP (CSLP)				
multilabel	\rightarrow multiclass	$CSML \xrightarrow{cost function \mathcal{C}} CSMC$				
Cons of CSLP						
 complexity, just 	like LP,					
e.g.	CSLP + CSOVO CSLP + FT	: $O(2^L \cdot 2^L)$ classifiers : $O(2^L)$ internal nodes				

next: resolve complexity issue of CSLP

Existing Multilabel Classification Approach for 'Speeding Up' LP: Random *k*-Labelset (RAKEL) (Tsoumakas, 2007)

- in iteration *t* of training
 - divide: randomly choose k labels from $\{1, 2, ..., L\}$ as labelset S_t

 labelset
 original label vector
 restricted label vector

 $S_1 = \{1, 2\}$ $y_n = (0, 1, 0)$ $y'_n = y_n[S_1] = (0, 1)$
 $S_2 = \{2, 3\}$ $y_n = (0, 1, 0)$ $y'_n = y_n[S_2] = (1, 0)$

- train: learn $\hat{g}_t(\mathbf{x})$ with LP on $\{(\mathbf{x}_n, \mathbf{y}'_n = \mathbf{y}_n[\mathbf{S}_t])\}$, where $\mathbf{y}[S]$ 'restricts' \mathbf{y} to S
- during prediction
 - conquer: predict with $g(\mathbf{x}) =$ voting per label from $\hat{g}_t(\mathbf{x})$

labelset	predictions	votes
$S_1 = \{1, 2\}$	$\hat{g}_1(\mathbf{x}) = (0, 0)$	(0,0 ,−)
$S_2 = \{2, 3\}$	$\hat{g}_2(\mathbf{x}) = (0, 1)$	(-, <mark>0</mark> ,1)
$S_3 = \{1, 3\}$	$\hat{g}_{3}(\mathbf{x}) = (0, 1)$	(0 , −, 1)
		voted $g(x) = (0, 0, 1)$

RAKEL: training with LP sufficiently efficient if k small

Hsuan-Tien Lin (NTU/Appier)

Cons of RAKEL

- regular internal classification, cannot differentiate mistakes
 - small mistake: (0,0) predicted as (0,1)
 - big mistake: (0,0) predicted as (1,1)
 - -can do CSLP for internal classification on weighted Hamming error:

Cost-Sensitive RAKEL (CS-RAKEL) (Lo, 2011)

- voting \approx Hamming error optimization, but **not a CSML approach**
 - weaker performance for, e.g., F1 score
 - -can do non-uniform voting for weighted Hamming error:

Generalized k-Labelset Ensemble (GLE) (Lo, 2014)

next: a RAKEL-based approach that handles 'any' cost function for CSML

Cost-Sensitive Multilabel Classification

ation CSML by (CS) Multiclass Classification Progressive k-Labelset (PRAKEL) (Wu, 2017)

cannot differentiate mistakes

- use CSLP for internal classification like (Lo, 2011)
- but with general cost

PRAKEL Approach

- in iteration t of training
 - divide: randomly choose k labels from $\{1, 2, ..., L\}$ as labelset S_t like RAKEL
 - train: learn $\hat{g}_t(\mathbf{x})$ with CSLP on $\{(\mathbf{x}_n, \mathbf{y}'_n = \mathbf{y}_n[S_t], \mathbf{c}'_n)\},\$

where $\mathbf{y}[S]$ 'restricts' \mathbf{y} to $S \& \mathbf{c}'_n$ relates to \mathcal{C}

- during prediction
 - conquer: predict with $g(\mathbf{x}) =$ voting per label from $\hat{g}_t(\mathbf{x})$

remaining issue: defining c'n

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

not a CSML approach

from CSML-cost C

keep voting for simplicity

but calculate internal CSLP-costs

CSML by (CS) Multiclass Classification Key Idea: Reference Vector

Goal

F٦

define \mathbf{c}'_n from $(\mathbf{x}_n, \mathbf{y}_n)$ for S_t such that \mathbf{c}'_n relates to \mathcal{C}

cost of top-level prediction calculated from bottom-level prediction

PRAKEL

costs of in- S_t prediction calculated from out-of- S_t prediction

labelsetpredictionsvotes $S_1 = \{2,3\}$ $\hat{g}_1(\mathbf{x}) = (?,?)$ (-,?,?,-,-)

- define reference vector **r** containing the '-' parts —proposed **r** (Wu, 2017): predicted labels from $\{\hat{g}_1, \hat{g}_2, \dots, \hat{g}_{t-1}\}$
- goal of \hat{g}_1 : trade-off of '?' parts within C
- c'_n: entries C(y_n, k) where k matches r in '-'

PRAKEL: RAKEL + CSPS + **progressive** \mathbf{c}'_n from $(\mathbf{y}_n, \mathcal{C}, \text{reference } \mathbf{r}_n)$

PRAKEL versus Others on Hamming Error

PRAKEL: competitive for 'easier' measure

PRAKEL versus Others on Ranking Error

PRAKEL: strong for ranking error as well

CSML by (CS) Multiclass Classification

PRAKEL versus Others on F1 Score

PRAKEL can be better than **EPCC**

PRAKEL versus Others on Composite Error

PRAKEL more useful for 'general' CSML than EPCC

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression

Cost-Sensitive Multilabel Classification

- CSML Motivation and Setup
- CSML by Bayesian Perspective
- CSML by (CS) Multiclass Classification
- CSML by (Weighted) Binary Classification
- CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

CSML by (Weighted) Binary Classification

CSLP Revisited

Label Powerset (LP) Approach

Cons of CSLP

- complexity, just like LP,
 - $\begin{array}{lll} \mbox{CSLP + ABOD} & : \mbox{$O(2^L)$ estimates} \\ \mbox{CSLP + CSOVO} & : \mbox{$O(2^L \cdot 2^L)$ classifiers} \\ \mbox{CSLP + FT} & : \mbox{$O(2^L)$ internal nodes} \\ \end{array}$

conquered by decomposition + special inference sampling + efficient decoding (Yang, 2018) sampling + node sharing (Li, 2014)

Cost-Sensitive LP (CSLP)

 $\mathsf{CSML} \xrightarrow{\mathsf{cost function } \mathcal{C}} \mathsf{CSMC}$

next: CSLP + FT

CSML by (Weighted) Binary Classification

CSLP + FT for Prediction

• with 'binary number encoding' (proper ordering):

 ℓ -th layer nodes (classifier) $\Leftrightarrow \ell$ -th label

- FT: $O(\log K)$ prediction, O(K) training
 - log₂(2^L) = L predictions only :-)
 - still $O(2^L)$ training complexity
 - actually, $2^L 1$ internal nodes

next: representing $2^{L} - 1$ internal nodes efficiently

$2^{L} - 1$ nodes $\Longrightarrow L$ classifiers

- root node $\hat{g}_1(\mathbf{x})$: just like BR on 1-st label
- 2-nd layer nodes 'shared' in $\hat{g}_2(\mathbf{x}, \tilde{\mathbf{y}}[1])$, where $\tilde{\mathbf{y}}[1] = \hat{g}_1(\mathbf{x})$

 $\begin{array}{c} \text{CSLP} + \text{FT similar to PCC in prediction} \\ \text{PCC} \quad q_1(\textbf{x}) \quad q_2(\textbf{x}, \tilde{\textbf{y}}[1]) \quad q_3(\textbf{x}, \tilde{\textbf{y}}[1], \tilde{\textbf{y}}[2]) \quad \cdots \\ \text{CSLP} + \text{FT} \quad \hat{g}_1(\textbf{x}) \quad \hat{g}_2(\textbf{x}, \tilde{\textbf{y}}[1]) \quad \hat{g}_3(\textbf{x}, \tilde{\textbf{y}}[1], \tilde{\textbf{y}}[2]) \quad \cdots \end{array}$

Hsuan-Tien Lin (NTU/Appier)

CSML by (Weighted) Binary Classification CSLP + FP Training

even with classifier sharing, $2^{L} - 1$ weighted binary examples per $(\mathbf{x}_{n}, \mathbf{y}_{n})$ in FT

not all binary examples relevant to training \hat{g}_{ℓ}

-prediction goes through one path anyway

• Condensed FT (CFT) (Li, 2014) :

keeping only those examples **near prediction path** for training \hat{g}_ℓ

CFT = CSLP + FT

+ Proper Ordering + Classifier Sharing + Example Sampling

Hsuan-Tien Lin (NTU/Appier)

Cost-Sensitive Multilabel Classification

Cost-Sensitive Multilabel Classification

CSML by (Weighted) Binary Classification

CFT versus PCC on F1 Score

CFT competitive within 'chaining approaches' for CSML

Hsuan-Tien Lin (NTU/Appier)

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression

Cost-Sensitive Multilabel Classification

- CSML Motivation and Setup
- CSML by Bayesian Perspective
- CSML by (CS) Multiclass Classification
- CSML by (Weighted) Binary Classification
- CSML by Regression
- CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

Predicting Stage

- for testing instance **x**, predicted embedded vector $\tilde{\mathbf{z}} = \mathbf{r}(\mathbf{x})$
- decoding function $\Psi \colon \tilde{\boldsymbol{z}} \to \text{predicted label vector } \tilde{\boldsymbol{y}}$

label embedding: popular for extracting joint information of labels

Existing Works

- label embedding: PLST (Tai, 2012), CPLST (Chen, 2012), FaIE (Lin, 2014), RAKEL (Tsoumakas 2007), etc.
- cost-sensitivity: CFT (Li, 2014), PCC (Dembczyński, 2010), etc.
- cost-sensitivity + label embedding: ongoing

Cost-Sensitive Label Embedding: considering ${\mathcal C}$ in Φ and Ψ

Hsuan-Tien Lin (NTU/Appier)

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

98/126

cost-sensitive decoding: $g(\mathbf{x}) =$ corresponding \mathbf{y}_q

Hsuan-Tien Lin (NTU/Appier)

CSML by Regression

Theoretical Explanation

Cost Bound Theorem (Huang, 2017)

$$\mathcal{C}(\mathbf{y}, \tilde{\mathbf{y}}) \leq 5\left(\underbrace{\left(d(\mathbf{z}, \mathbf{z}_q) - \sqrt{\mathcal{C}(\mathbf{y}, \mathbf{y}_q)}\right)^2}_{\text{embedding error}} + \underbrace{\|\mathbf{z} - \mathbf{r}(\mathbf{x})\|^2}_{\text{regression error}}\right)$$

Optimization

- embedding error \rightarrow multidimensional scaling
- regression error \rightarrow any regression ${f r}$

challenge: asymmetric cost function vs. symmetric distance? i.e. $C(\mathbf{y}_i, \mathbf{y}_j) \neq C(\mathbf{y}_j, \mathbf{y}_i)$ vs. $d(\mathbf{z}_i, \mathbf{z}_j)$

- two roles of \mathbf{y}_i : ground truth role $\mathbf{y}_i^{(t)}$ and prediction role $\mathbf{y}_i^{(p)}$
 - $\sqrt{\mathcal{C}(\mathbf{y}_i, \mathbf{y}_j)} \Rightarrow$ predict \mathbf{y}_i as $\mathbf{y}_j \Rightarrow$ for $\mathbf{z}_i^{(t)}$ and $\mathbf{z}_j^{(p)}$
 - $\sqrt{\mathcal{C}(\mathbf{y}_j, \mathbf{y}_i)} \Rightarrow \text{predict } \mathbf{y}_j \text{ as } \mathbf{y}_i \Rightarrow \text{ for } \mathbf{z}_i^{(p)} \text{ and } \mathbf{z}_j^{(t)}$
- learn regression function r from z_i^(p), z₂^(p), ..., z_L^(p)
- find nearest embedded vector of ž from z^(t)₁, z^(t)₂, ..., z^(t)_L

mirroring trick: handle asymmetric cost with embedding flexibility

Hsuan-Tien Lin (NTU/Appier)

Cost-Sensitive Multilabel Classification

CSML by Regression

Cost-Sensitive Label Embedding with Multidimensional Scaling (CLEMS)

training stage of CLEMS (Huang, 2017)

- given training instances $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$ and cost function \mathcal{C}
- apply mirroring trick to set up $\mathbf{z}_n^{(t)}$ and $\mathbf{z}_n^{(p)}$ for label vector \mathbf{y}_n
- compute embedding function $\Phi: \mathbf{y}_n \to \mathbf{z}_n^{(p)}$ by multidimensional scaling such that $d(\mathbf{z}_m^{(t)}, \mathbf{z}_n^{(p)}) \approx \sqrt{C(y_n, y_m)}$
- learn a regression function **r** from $\{(\mathbf{x}_n, \mathbf{z}_n^{(p)} = \Phi(\mathbf{y}_n))\}_{n=1}^N$

predicting stage of CLEMS

- given the testing instance **x**
- obtain the predicted embedded vector by $\tilde{\textbf{z}} = \textbf{r}(\textbf{x})$
- prediction $\tilde{\mathbf{y}} = \Psi(\tilde{\mathbf{z}}) = \Phi^{-1}(\text{nearest neighbor}) = \Phi^{-1}(\operatorname{argmin} d(\mathbf{z}_n^{(t)}, \tilde{\mathbf{z}}))$

minor details: embed **subset of**, rather than 'all', $\{0, 1\}^L$ for efficiency

CSML by Regression

Comparison with Label Embedding Approaches

Accuracy score (↑)

Rank loss (\downarrow)

CLEMS: best label embedding approach across different criteria

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

103/126

Cost-Sensitive Multilabel Classification

CSML by Regression

Comparison with Cost-Sensitive Algorithms

data	F1	score (↑)	Accura	acy score	(↑)	Rank loss (\downarrow)		
uala	CLEMS	CFT	PCC	CLEMS	CFT	PCC	CLEMS	CFT	PCC
emot.	0.676	0.640	0.643	0.589	0.557	-	1.484	1.563	1.467
scene	0.770	0.703	0.745	0.760	0.656	-	0.672	0.723	0.645
yeast	0.671	0.649	0.614	0.568	0.543	-	8.302	8.566	8.469
birds	0.677	0.601	0.636	0.642	0.586	-	4.886	4.908	3.660
med.	0.814	0.635	0.573	0.786	0.613	-	5.170	5.811	4.234
enron	0.606	0.557	0.542	0.491	0.448	-	29.40	26.64	25.11
lang.	0.375	0.168	0.247	0.327	0.164	-	31.03	34.16	19.11
flag	0.731	0.692	0.706	0.615	0.588	-	2.930	3.075	2.857
slash	0.568	0.429	0.503	0.538	0.402	-	4.986	5.677	4.472
CAL.	0.419	0.371	0.391	0.273	0.237	-	1247	1120	993
arts	0.492	0.334	0.349	0.451	0.281	-	9.865	10.07	8.467
EUR.	0.670	0.456	0.483	0.650	0.450	-	89.52	129.5	43.28

- generality for CSML: CLEMS = CFT > PCC
- performance: CLEMS \approx PCC > CFT
- speed: CLEMS \approx PCC > CFT

CLEMS: very competitive for CSML

Hsuan-Tien Lin (NTU/Appier)

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression
- 2 Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
 - CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

3

A Real Medical Application: Bacteria Classification

automatic classification from spectrum to bacterium (Jan, 2011)

are all mis-prediction costs equal?

Hsuan-Tien Lin (NTU/Appier)

A Real Medical Application of CSMC: Classifying Bacteria

The Problem

- Gram-positive as Gram-positive: small cost Gram-positive as Gram-negative: big cost
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

issue 1: is cost-sensitive classification really useful?

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

107/126
Cost-Sensitive vs. Traditional on Bacteria Data

(Jan, 2011)

cost-sensitive better than traditional; but why are people still not using those cool ML works for their AI? :-)

Hsuan-Tien Lin (NTU/Appier)

Issue 2: Error Rate of Cost-Sensitive Classifiers

The Problem

- cost-sensitive classifier: low cost but high error rate
- traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive:

more suitable for real-world medical needs

Hsuan-Tien Lin (NTU/Appier)

Improved Classifier for Both Cost and Error

(Jan, 2012)

now, are people using those cool ML works for their AI? :-)

Hsuan-Tien Lin (NTU/Appier)

Lessons Learned from CSMC Research in Applications

healthy

- more realistic (generic) in academia ≠ more realistic (feasible) in application e.g. the 'cost' of inputting a cost matrix? :-)
- cross-domain collaboration important
 - e.g. getting the 'cost matrix' from domain experts
- Inot easy to win human trust
 - -humans are somewhat multi-objective

important yet **challenging** to use CSMC/CSML in practical applications

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression
- 2 Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression
 - CSMC & CSML: Selected Applications
 - Bacteria Classification with Doctor-Annotated Costs
 - Network Connection Classification with 'Danger' Costs on Imbalanced Data
 - Social Tagging with Costs from Tag Counts

Summary

A Real Security Application: Intrusion Detection

KDDCup 2009 Problem

	normal	probe	DOS	U2R	R2L
normal	0	1	2	2	2
probe	1	0	2	2	2
DOS	2	1	0	2	2
U2R	3	2	2	0	2
R2L	4	2	2	2	0

- 'usual' mis-prediction: 2
- dangerous intrusion mis-predicted as normal: 4
- suspicious intrusion mis-predicted as normal: 1

KDDCup 1999: 'earliest' public data for CSMC

Network Connection Classification with 'Danger' Costs on Imbalanced Data

Experiment Result for KDDCup 1999 (Jan, 2012)

difference between regular & CSMC small, why? :-)

Network Connection Classification with 'Danger' Costs on Imbalanced Data

Distribution of KDDCup 1999 Data

KDDCup 1999: highly imbalanced!!

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

115/126

Network Connection Classification with 'Danger' Costs on Imbalanced Data

Experiment Result for Balanced KDDCup 1999 (Jan, 2012)

balancing by inverse class ratio (special case of CSMC) helpful!

CSMC & CSML: Selected Applications

Network Connection Classification with 'Danger' Costs on Imbalanced Data Lessons Learned on CSMC for Imbalanced Classification

- balancing (re-weighting) by inverse class ratio: helpful and strong baseline
- 'cost = relative class ratio': the first benchmark of CSMC (Domingos, 1999), also helpful
- CSMC helps tune other measure of imbalanced classification, such as G-mean (Khan, 2018)

Usage of Cost (in General)

- representing real application needs
 - human-annotated: for bacteria classification
 - heuristic: KDDCup 1999 cost matrix
- adjusting learning condition
 - imbalanced classification
 - 'easy'/'hard' classes
- tuning for other metric of interest

CSMC: a 'swiss knife' for imbalanced classification

Outline

Cost-Sensitive Multiclass Classification

- CSMC Motivation and Setup
- CSMC by Bayesian Perspective
- CSMC by (Weighted) Binary Classification
- CSMC by Regression
- 2 Cost-Sensitive Multilabel Classification
 - CSML Motivation and Setup
 - CSML by Bayesian Perspective
 - CSML by (CS) Multiclass Classification
 - CSML by (Weighted) Binary Classification
 - CSML by Regression

CSMC & CSML: Selected Applications

- Bacteria Classification with Doctor-Annotated Costs
- Network Connection Classification with 'Danger' Costs on Imbalanced Data
- Social Tagging with Costs from Tag Counts

Summary

A Real Internet Application: Social Tagging

🖑 📎 🔻 🕝 🌒 🍙 💄 http://www.amazon.com/gp/product/1600490069

a. Amazon.com: Learning From D... 💠

?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

social tagging: tags given by internet users

- high-count tags: popularly recognized, more salient
- low-count tags: weakly related or even noisy

social tagging: instance-tag count reflect importance of tag

Hsuan-Tien Lin (NTU/Appier)

Advances in Cost-sensitive Multiclass and Multilabel Classification

119/126

Cost of Social Tagging Data

Social Tagging for URL Categories (Lo, 2014)

url instance x	high count	low count
www.tvguide.com	entertain	art
www.ebookee.com	ebook	education
www.python.com/doc	python	С

$$\mathcal{C}_{\mathbf{x}}(\mathbf{y}, \mathbf{k}) = \sum_{\ell=1}^{L} c_{\ell}[\mathbf{x}] \, [\![\mathbf{y}[\ell] \neq \mathbf{k}[\ell]]\!],$$

where per-(label, instance) cost $c_{\ell}[\mathbf{x}] = \begin{cases} \text{ for tag: count for } \mathbf{x} \\ \text{ for no-tag: constant to balance tag & no-tag costs} \end{cases}$

$\mathcal{C}_{\boldsymbol{x}}$: weighted Hamming error per \boldsymbol{x}

Per-Instance Weighted Hamming Error

$$\mathcal{C}_{\mathbf{x}}(\mathbf{y},\mathbf{k}) = \sum_{\ell=1}^{L} c_{\ell}[\mathbf{x}] \llbracket \mathbf{y}[\ell] \neq \mathbf{k}[\ell]
rbracket,$$

where per-(label, instance) cost $c_{\ell}[\mathbf{x}] = \Big\{$

• C per instance: more general than our CSML setting

-could use non-Bayesian CSML approaches

for tag: count for **x** for no-tag: constant to balance tag & no-tag costs

each C_x just weighted Hamming error: less general than our CSML setting
 —GLE (Lo, 2014) suffices, might not need PRAKEL (Wu, 2017)

is CSML really useful?

CSMC & CSML: Selected Applications

Social Tagging with Costs from Tag Counts

GLE versus RAKEL for Social Tagging

CSML helps, even when training/evaluation not fully matching

Summary

cost-sensitive multiclass classification: class/example-dependent

- Bayesian: MetaCost (Domingos, 1999)
- non-Bayesian: Data Space Expansion (Abe, 2004) (to multiclass), Cost-Sensitive One-Versus-One (Lin, 2014), Filter Tree (Beygelzimer, 2009), ... (to binary), One-Sided Regression (Tu, 2010) (to regression) —some SVM implementations here:

http://www.csie.ntu.edu.tw/~htlin/program/cssvm/

cost-sensitive multilabel classification:

- Bayesian: PCC (Dembczyński, 2010)
- non-Bayesian: Progressive *k*-Labelsets (Wu, 2017) (to multiclass), Condensed Filter Tree (Li, 2014) (to binary), CLEMS (Huang, 2017) (to regression)

applications & beyond:

- cost-and-error-sensitive learning for bacteria classification (Jan, 2012)
- cost-sensitive learning for imbalanced learning (Jan, 2012)
- cost-sensitive learning for social tagging prediction (Lo, 2014)

discussion welcomed on algorithm and application opportunities

Giants' Shoulder (1/2)

- Domingos, MetaCost: A General Method for Making Classifiers Cost-Sensitive, 1999
- Elkan, The Foundations of Cost-Sensitive Learning, 2001
- Zadrozny, Cost-Sensitive Learning by Cost-Proportionate Example Weighting, 2003
- Abe, An Iterative Method for Multi-Class Cost-Sensitive Learning, 2004
- Beygelzimer, Error Limiting Reductions Between Classification Tasks, 2005
- Langford, Sensitive Error Correcting Output Codes, 2005
- Tsoumakas, Random k-Labelsets: An Ensemble Method for Multilabel Classification, 2007
- Beygelzimer, Error-Correcting Tournaments, 2009
- Read, Classifier Chains for Multi-label Classification, 2009
- . Lin, A Simple Cost-Sensitive Multiclass Classification Algorithm Using One-Versus-One Comparisons, 2014
- Tu, One-Sided Support Vector Regression for Multiclass Cost-Sensitive Classification, 2010
- Dembczyński, Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains, 2010
- Dembczyński, An Exact Algorithm for F-Measure Maximization, 2011
- Jan, Cost-Sensitive Classification on Pathogen Species of Bacterial Meningitis by Surface Enhanced Raman Scattering, 2011
- . Lo, Cost-sensitive Multi-label Learning for Audio Tag Annotation and Retrieval, 2011

Giants' Shoulder (2/2)

- Dembczyński, On Label Dependence and Loss Minimization in Multi-Label Classification, 2012
- Chen, Feature-Aware Label Space Dimension Reduction for Multi-Label Classification, 2012
- Jan, A Simple Methodology for Soft Cost-Sensitive Classification, 2012
- Tai, Multilabel Classification with Principal Label Space Transformation, 2012
- Kumar, Beam Search Algorithms for Multilabel Learning, 2013
- Li, Condensed Filter Tree for Cost-Sensitive Multi-Label Classification, 2014
- Lin, Multi-label Classification via Feature-Aware Implicit Label Space Encoding, 2014
- Lo, Generalized k-Labelsets Ensemble for Multi-Label and Cost-Sensitive Classification, 2014
- Chung, Cost-Aware Pre-Training for Multiclass Cost-Sensitive Deep Learning, 2016a
- Chung, Cost-Sensitive Deep Learning with Layer-Wise Cost Estimation, 2016b
- Huang, Cost-Sensitive Label Embedding for Multi-Label Classification, 2017
- Khan, Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data, 2018
- Wu, Progressive k-Labelsets for Cost-Sensitive Multi-Label Classification, 2017
- Chiu, Multi-Label Classification with Feature-Aware Cost-Sensitive Label Embedding, 2018
- Hsieh, A Deep Model with Local Surrogate Loss for General Cost-Sensitive Multi-Label Learning, 2018
- Yang, Cost-Sensitive Reference Pair Encoding for Multi-Label Learning, 2018

Acknowledgments

- KDD Organizers!
- Computational Learning Lab @ NTU and Learning Systems Group @ Caltech for discussions

Thank you. Questions?

Hsuan-Tien Lin (NTU/Appier)