Our Solution on Track 1: A Linear Ensemble of Individual and Blended Models for Music Rating Prediction

Po-Lung Chen, Chen-Tse Tsai, Yao-Nan Chen, Ku-Chun Chou, Chun-Liang Li, Cheng-Hao Tsai, Kuan-Wei Wu, Yu-Cheng Chou, Chung-Yi Li, Wei-Shih Lin, Shu-Hao Yu, Rong-Bing Chiu, Chieh-Yen Lin, Chien-Chih Wang, Po-Wei Wang, Wei-Lun Su, Chen-Hung Wu, Tsung-Ting Kuo, Todd G. McKenzie, Ya-Hsuan Chang, Chun-Sung Ferng, Chia-Mau Ni, Hsuan-Tien Lin, Chih-Jen Lin and Shou-De Lin

National Taiwan University

Three Properties of Track 1 Data

	track ₁	track ₂	album3	author ₄		genre _l
user ₁	(100, <i>t</i> ₁₁)	(80, <i>t</i> ₁₂)	(70, <i>t</i> ₁₃)	(?, t ₁₄)		-
user ₂	-	(0, t ₂₂)	(?, t ₂₃)	(80, <i>t</i> ₂₄)		-
user	(?, t _{U1})	-	$(20, t_{U3})$	-		(0, <i>t_{UI}</i>)

similar to Netflix data, but with the following differences.....

scale: larger training and test sets

training: study mature models that are computationally feasible; test: linearly combine many models w/o much overfitting

• taxonomy: relation graph of tracks, albums, authors and genres

include as features for combining models nonlinearly

• time: detailed; training earlier than validation earlier than test

include as features for combining models nonlinearly; respect time-closeness during training & with val.-set blending

Selected Ideas that Did Not Work: Deal with Zero-Variance Users

Background

- zero-variance users (7% of all users)
 —if a user gives 60, 60, 60, ... in all training ratings, how'd she rate the next item?
- Occam's razor prediction: 60 —only true for 80% of users, 20% changed their mind!

Idea

- conditionally (the 80%) post-process the predictions
- difficult to distinguish and thus failed

Framework of Our Solution

single models—computationally feasible models that are diverse:

- individual models: matrix factorization (& pPCA), pLSA
- residual models: R-Boltz. machine, k-NN
- derivative model: regression with statistical & model-based features
- validation-set blending: combine models nonlinearly while respecting time-closeness
- test-set blending: combine models linearly while fitting the leaderboard feedback
- post processing: polish predictions using findings during data analysis

RMSE Performance at Each Stage of Framework

- single models: 22.7915
 - individual models: best RMSE 22.9022 (MF)
 - residual models: best RMSE 22.7915 (k-NN + MF)
 - derivative model: best RMSE 24.1251 (but helps in later stages)
- validation-set blending: 21.3598 [improvement 1.4317]
- test-set blending: (estimated) 21.0253 [improvement 0.3345]
- post processing: 21.0147 [improvement 0.0106]

both blending stages: key to the system

Glance of Single Model RMSE

model	# used	best	average	worst	contribution
MF	81	22.90	23.92	26.94	0.3645
pPCA	2	24.46	24.61	24.75	0.0014
pLSA	7	24.83	25.53	26.09	0.0042
R-Boltz. machine	8	22.80	24.75	26.08	0.0314
<i>k</i> -NN	18	22.79	25.06	42.94	0.0298
regression	10	24.13	28.01	35.14	0.0261

- contribution (before val.-set blending): estimated RMSE diff. via leave-the-model-out in test-set blending
- MF: most important (absorbing pPCA)
- residual models: both quite important
- derivative model: individually weak but adds diversity

```
val.-set blending:
```

95 models, best 21.36, average 23.53, worst 31.70

Selected Ideas that Worked (1/5): Time Emphasis in Stochastic Gradient Descent

Background

SGD for minimizing sum of per-example $E_n(\theta)$ (say, for MF):

• randomly pick one example *n*

• $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \cdot \nabla \boldsymbol{E}_{n}(\boldsymbol{\theta})$

Idea

- last *M* steps of SGD: effectively considering only the last *M* examples picked—final θ as if biased towards those
- need: θ respects time-closeness to the test examples
- heuristic: deterministically pick the "newer" examples as last

consistent $\approx 0.05~\text{RMSE}$ improvement for MF

Selected Ideas that Worked (2/5): Gaussian RBM as Residual Model

Background

• RBM: a recursive NNet; can be used as an individual model by

as individual: RMSE 24.7433, worse than MF (22.9974)

ldea

- MF (a first-order model) efficiently gets better performance, but can RBM digest something different?
- need: RBM that learns from the residuals of MF (continuous values)

Selected Ideas that Worked (2/5): Gaussian RBM as Residual Model

Background

Idea

need: RBM that learns from the residuals of MF

choice: Gaussian RBM (gRBM)

MF+gRBM: 22.8008;

better than individual MF (22.9974) or RBM (24.7433)

Selected Ideas that Worked (3/5): Multi-Feature and Multi-Stage Binned Lin. Reg.

Background

- Binned Linear Regression: a conditional aggregation model
- different model strength on different "types" of examples
- different blending weights for different types (bins) to utilize strength

bins	# rating $\leq \theta_1$	$\theta_1 < \# \operatorname{rating} \le \theta_2$	others
weight of MF-1	0.4	0.7	1.0
weight of RBM-1	0.5	0.1	0.0
weight of RBM-2	0.1	0.2	0.0

• a simplified regression tree with one level (on one feature)

Selected Ideas that Worked (3/5): Multi-Feature and Multi-Stage Binned Lin. Reg.

Background

Binned Linear Regression
 —different blending weights for different (types) bins of examples

Idea: multi-feature BLR

- rationale: "type" more sophisticated than 1-feature bin
- a special multi-level decision tree
- prevent overfitting by limiting height and bin size
- heuristic algorithm instead of traditional decision tree: due to simplicity by extending from one-feature BLR

multi-feature	1-feature	4-feature	6-feature
RMSE	22.0829	21.8605	21.8128

Selected Ideas that Worked (3/5): Multi-Feature and Multi-Stage Binned Lin. Reg.

Background

Binned Linear Regression
 —different blending weights for different (types) bins of examples

Idea: multi-stage BLR

rationale: more diverse but good models before test-set blending

bins	1	2	3
weight of MF-1			
weight of RBM-1			
weight of RBM-2			
weight of BLR-1			
weight of BLR-2			

	multi-stag	e 1-stage	2-stage	3-stage		ľ
	RMSE	21.7140	21.4591	21.4287	-	
Chan at al (NIT	LIN	Our Solution	on Track 1			10/

Selected Ideas that Worked (4/5): Offline Test Performance Predictor

Background

- given: columns \mathbf{z}_m = test-set prediction of model m
- test-set linear regression:

$$\mathbf{w}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_M, \lambda) = (\mathbf{Z}^T \mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{r}$$

• true ratings **r** unknown but $\mathbf{z}^T \mathbf{r}$ can be estimated by

$$2\mathbf{z}^{T}\mathbf{r} = \mathbf{z}^{T}\mathbf{z} + \mathbf{r}^{T}\mathbf{r} - (\mathbf{z} - \mathbf{r})^{T}(\mathbf{z} - \mathbf{r})$$

$$\approx \mathbf{z}^{T}\mathbf{z} + \mathbf{N} \cdot \text{RMSE}(\mathbf{0})^{2} - \mathbf{N} \cdot \text{RMSE}(\mathbf{z})^{2}$$

common technique for RMSE ever since Netflix competition

Selected Ideas that Worked (4/5): Offline Test Performance Predictor

Background

$$2\mathbf{z}^{\mathsf{T}}\mathbf{r} = \mathbf{z}^{\mathsf{T}}\mathbf{z} + \mathbf{r}^{\mathsf{T}}\mathbf{r} - (\mathbf{z} - \mathbf{r})^{\mathsf{T}}(\mathbf{z} - \mathbf{r})$$

$$\approx \mathbf{z}^{\mathsf{T}}\mathbf{z} + \mathbf{N} \cdot \mathsf{RMSE}(\mathbf{0})^{2} - \mathbf{N} \cdot \mathsf{RMSE}(\mathbf{z})^{2}$$

ldea

- want: decide which z_m's and λ to use
- restriction: one submission every eight hours
- solution: estimate RMSE of w without submitting more than z_m

$$N \cdot \text{RMSE}(\mathbf{w})^2 = (\mathbf{Z}\mathbf{w} - \mathbf{r})^T (\mathbf{Z}\mathbf{w} - \mathbf{r}) = \mathbf{w}^T \mathbf{Z}^T \mathbf{Z}\mathbf{w} - 2\mathbf{w}^T \mathbf{Z}^T \mathbf{r} + \mathbf{r}^T \mathbf{r}$$

compute the contribution of models;

choose 221 from \approx 300 models & decide $\lambda = 10^{-6}$ offline

Selected Ideas that Worked (5/5): Clipping for Old Four-Star Days

Background

- some very different rating systems observed during data analysis:
 - four-star rating? {0, 30, 50, 70, 90}
 - five-star rating? {0, 20, 40, 60, 80, 100}
 - 100-point scale
- suspect changes in the user interface of Yahoo! Music

Idea

existing: in five-star or 100-point scale, clip prediction to [0, 100]

- new: for four-star, clip prediction to [0,90]
- what dates? [3365, 5982] (7 years) or [4281, 6170] (5 years)

 \approx 0.02 RMSE improvement on most models

- NTU team: 1 class, 19 students, 3 TAs, 3 professors
- shared techniques between two tracks:
 - models: MF, k-NN, pLSA
 - concept of diversity and blending
 - taxonomy information (more for track 2)
- special techniques in track 2:
 - construct suitable learning problems and (new) models from raw data
 - sample proper validation sets
- special techniques in track 1:
 - respect time-closeness
 - blend deeply with validation set and broadly with test set

We truly thank

- organizers for designing a successful competition
- NTU EECS college and CSIE department for support

Thank you. Questions?

