# Teaching Machine Learning to a Diverse Audience: the **Foundation**-based Approach

<u>Hsuan-Tien Lin</u>, National Taiwan University Malik Magdon-Ismail, Rensselaer Polytechnic Institute Yaser S. Abu-Mostafa, California Institute of Technology

# Teaching Machine Learning Workshop @ ICML 2012 June 30, 2012

Lin, Magdon-Ismail, Abu-Mostafa

# **Diversity in ML classes**

### NTU ML 2011 Fall (77 students)

#### background diversity



- "maturity" diversity
  - junior: 8
  - senior: 20
  - master: 44
  - phd: 5
- similarly diverse in RPI and in Caltech (online course)<sup>1</sup>
- challenge:

serving CS students while accommodating the needs of diverse non-CS audience

#### mindset of the audience?

<sup>1</sup>http://work.caltech.edu/telecourse

Lin, Magdon-Ismail, Abu-Mostafa

### Observed Mindsets of the Diverse Audience

### highly motivated to learn

-not satisfied with only shallow comic-book stories

 often with minimum but non-empty math/programming background —capable of downloading and trying the latest packages

### words of a student from industry (Caltech online course 2012)<sup>2</sup>



While it's easy to pick up a couple of algorithms from the many text-books and online materials out there, it is the solid foundation, both mathematical and practical, as well as this better intuition that I would have missed studying alone without this class. Also, the cadence of the lectures and the

### demand: solid foundation (and better intuition)!

<sup>2</sup>http://book.caltech.edu/bookforum/showthread.php?p=3107

Lin, Magdon-Ismail, Abu-Mostafa

## Our Proposed Teaching Approach

- foundation-based, and foundation-first
- then, compensate foundation with a couple of useful algorithms/techniques

#### comparison to techniques-based

- techniques-based: hops through the forest of many latest and greatest techniques
- foundation-based: illustrate the map (core) first to prevent getting lost in the forest

foundation-based:

prepare students for easy learning of untaught/future techniques

## Our Proposed Teaching Approach [Cont.]

- foundation-based, and foundation-first
- then, compensate foundation with a couple of useful algorithms/techniques

#### comparison to foundation-later

- foundation-later:
  - first, techniques to raise interests
  - then, foundations to consolidate understanding
- **foundation-first**: build the basis (core) first to perceive the techniques from the right angle

### foundation-first:

let students know when and how to use the powerful tools before getting addicted on the power

Lin, Magdon-Ismail, Abu-Mostafa

## Our Proposed Foundation: Three Concepts

### understand learnability, approximation and generalization

- when can we learn and what are the tradeoffs?
- conducting machine learning properly

### use simple models first

- the linear model coupled with some nonlinear transforms is typically enough for most applications
- conducting machine learning safely

### deal with noise and overfitting carefully

- how to tackle the "dark side" of learning?
- conducting machine learning professionally

### our experience: worth starting with those foundations, even for a diverse audience

Lin, Magdon-Ismail, Abu-Mostafa

# learnability, approximation & generalization —conducting machine learning properly

### good learning (test performance)

- good approximation (training performance)
- + good generalization (complexity penalty)

### a must-teach key message

- can be illustrated in different forms (e.g. VC bound, bias-variance, even human-learning philosophy)
- make learning non-trivial and fascinating to students

# learnability, approximation & generalization —conducting machine learning properly [Cont.]

wrong use of learning (beginner's mistakes)

ensure good approximation, pray for good generalization —praying for something out-of-control

right use of learning

ensure good generalization, try best for good approximation —trying something possibly in-control

We cannot guarantee learning. We can "guarantee" no disasters. That is, after we learn we will either declare success or failure, and in both cases we will be right.

# linear models —conducting machine learning safely

### linear models

= good generalization

with established optimization tools for good approximation

- after knowing approximation/generalization: a good stage for learning safe techniques
- sufficiently useful for many practical problems (Yuan et al., 2012)
- building block in sophisticated techniques through feature transforms
- make learning concrete to students

# linear models —conducting machine learning safely [Cont.]

wrong use of learning (beginner's mistakes)

start with the "greatest" techniques first - a point of no return

right use of learning

start with the simplest techniques first - and yes, it can work well

### a rich and representative family of linear techniques

- classification: approx. combinatorial optimization (perceptron-like)
- regression: analytic optimization (pseudo-inverse)
- logistic regression: iterative optimization (SGD)

Students coming from diverse backgrounds not only get the big picture, but also the finer details in a concrete setting.

Lin, Magdon-Ismail, Abu-Mostafa

# deal with noise and overfitting —conducting machine learning professionally

- overfit = difficult to ensure good generalization/learning with stochastic or deterministic noise on finite data
- regularization = tools for further guaranteeing good generalization
- validation = tools for certifying good learning



overfit(data size, noise level)

- turn amateur students to professionals
- make learning artistic to students

# deal with noise and overfitting —conducting machine learning professionally [Cont.]

### wrong use of learning (beginner's mistakes)

apply all possible techniques and choose by best approximation result --high risk of overfitting

#### right use of learning

apply a reasonable number of well-regularized techniques and choose by best validation result —relatively immune to noise and overfitting

Complex situations call for simpler models.

## Teaching/Learning Life After the Foundations

| Support Vector Machine |                       | Neural Network                 |
|------------------------|-----------------------|--------------------------------|
| generalization         | large-margin bound    | #-neuron bound                 |
| approximation          | quadratic programming | gradient decent et al.         |
| linear model           | basic formulation     | neurons                        |
| feature transform      | through kernel        | through cascading              |
| regularization         | large-margin          | weight-decay or early-stopping |
| validation             | #-SV bound            | for choices in regularization  |

[libsvm-2.9]\$ ./svm-train -t 2 -g 0.05 -c 100 heart\_scale optimization finished, #iter = 1966 Total nSV = 113

- good approximation (by choosing kernel and optimization)
- good generalization (by regularization)
- good learning (by using #SV as validation indicator)

# Teaching/Learning Life After the Foundations [Cont.]

- Caltech 2012: (mixed) 7 weeks of foundations, 0.5 week of NNet, 0.5 week of RBF Net, 1 week of SVM
- NTU 2011: (sequential) 10 weeks of foundations, 2.5 weeks of SVM, 2.5 weeks of bagging/boosting

   with an in-class data mining competition<sup>3</sup> where students exploited taught/not-taught techniques with ease

# often incremental efforts to teach/learn a new technique after solid foundations

<sup>3</sup>http://main.learner.csie.ntu.edu.tw/php/ml11fall/

Lin, Magdon-Ismail, Abu-Mostafa

foundation-based, foundation-first —works well in our experience

- learnability: philosophical understanding, make learning non-trivial, conduct learning properly
- linear models: algorithmic modeling, make learning concrete, conduct learning safely
- overfitting: practical tuning, make learning artistic, conduct learning professionally

Thank you. Questions?