## Pseudo-reward Algorithms for Contextual Bandits with Linear Payoff Functions

#### Ku-Chun Chou, Chao-Kai Chiang, Hsuan-Tien Lin, Chi-Jen Lu

from Chou's MS thesis (algorithm) and part of Chiang's Ph.D. thesis (theory) National Taiwan University & Academia Sinica



#### ACML 2014, 11/28/2014

## Contextual bandit problems

#### Setting: online game between algorithm ${\mathbb A}$ and environment

for  $t = 1, \dots, T$ :

- 1 A observes context  $\mathbf{x}_t \in \mathbb{R}^d$  from the environment
- 2 A selects an action  $a_t \in [K] = \{1, 2, \cdots, K\}$
- 3 A receives reward  $r_{t,a_t} \in \mathbb{R}$  corresponding to  $a_t$  from the environment
- ${}_{4}$   ${}_{3}$   ${}_{4}$  updates its selection strategy with  ${}_{{f x}_t},\,a_t$  and  $r_{t,a_t}$

#### Goal of $\mathbb{A}$

maximize average cumulative reward,  $\frac{1}{T} \sum_{t=1}^{T} r_{t,a_t}$  by implementing

(2)  $\mathbb{A}$ .select( $\mathbf{x}_t$ )

(4) A.update(
$$\mathbf{x}_t, a_t, r_{t,a_t}$$
)

## ICML 2012 challenge

- news recommendation on Yahoo!'s front page
- 30 million user visits, 652 news articles



- design  $\mathbb{A}$ .select( $\mathbf{x}_t$ ) and  $\mathbb{A}$ .update( $\mathbf{x}_t, a_t, r_{t,a_t}$ )
- aim for best click through rate (CTR)

## ICML 2012 challenge (cont.)

for each user visit  $t = 1, \cdots, T$  (30 million):

- 1) observes user features  $\mathbf{x}_t$  (gender, age, location, etc...)
- 2 selects an news article  $a_t = \mathbb{A}$ .select( $\mathbf{x}_t$ ) to display to the user
- 3 receives a click ( $r_{t,a_t} = 1$ ) or no-click ( $r_{t,a_t} = 0$ )
- 4 performs  $\mathbb{A}$ .update( $\mathbf{x}_t$ ,  $a_t$ ,  $r_{t,a_t}$ )

#### Achievement of Ku-Chun Chou

first place in 1st phase (otherwise cannot graduate :-))

| NAME    | AFFILIATION | LAST SCORE<br>(CTR * 10 000) | BEST SCORE<br>(CTR * 10 000) | RANK |
|---------|-------------|------------------------------|------------------------------|------|
| Ku-Chun | NTU         | 882.9                        | 905.9                        | 1    |
| tvirot  | MIT         | 903.9                        | 903.9                        | 2    |
| edjoesu | MIT         | 889.9                        | 903.4                        | 3    |

### Partial feedback

for  $t = 1, \cdots, T$ :

- 1  $\mathbb A$  observes context  $\mathbf x_t \in \mathbb R^d$  from the environment
- **2** A selects an action  $a_t \in [K] = \{1, 2, \cdots, K\}$

3 A receives reward  $r_{t,a_t} \in \mathbb{R}$  corresponding to  $a_t$  from the environment

4 A updates its selection strategy with  $\mathbf{x}_t$ ,  $a_t$  and  $r_{t,a_t}$ 

- reward  $r_{t,a_t}$  of the selected action  $a_t$ : revealed at t
- other rewards: unknown (such as  $r_{3,a}$  or  $r_{4,a}$  below)

$$\mathbf{X}_{t,a} = \begin{pmatrix} - & \mathbf{x}_1 & - \\ - & \mathbf{x}_2 & - \\ - & \mathbf{x}_5 & - \\ & \vdots & \end{pmatrix}, \mathbf{r}_{t,a} = \begin{pmatrix} r_{1,a} \\ r_{2,a} \\ r_{5,a} \\ \vdots \end{pmatrix}$$

Chou et al. (NTU CSIE)

Problem Definition

## Linear upper confidence bound (LinUCB)

- part of Ku-Chun's winning solution (Li et al., WWW 2010; Chu et al., JMLR 2011)
- ridge regression on  $\mathbf{X}_{t,a_t}$  and  $\mathbf{r}_{t,a_t}$  to **update** weights  $\mathbf{w}_{t+1,a_t}$  only

LINUCB.update( $\mathbf{x}_t, a_t, r_{t,a_t}$ )

$$\mathbf{w}_{t+1,a_t} = \left(\lambda \mathbf{I} + \mathbf{X}_{t,a_t}^{ op} \mathbf{X}_{t,a_t}
ight)^{-1} (\mathbf{X}_{t,a_t}^{ op} \mathbf{r}_{t,a_t})$$

 $-(\mathbf{w}_{t,a}^{\top}\mathbf{x})$  estimates reward of selecting action a subject to  $\mathbf{x}$ 

partial feedback ⇔ need explore the less-certain actions
 —select based on upper confidence bound of ridge regression

# LINUCB.select( $\mathbf{x}_t$ )

$$a_{t} = \underset{a \in [K]}{\operatorname{argmax}} \left( \underbrace{\mathbf{w}_{t,a}^{\top} \mathbf{x}_{t}}_{\text{estimated reward}} + \alpha \underbrace{\sqrt{\mathbf{x}_{t} \left(\lambda \mathbf{I} + \mathbf{X}_{t-1,a}^{\top} \mathbf{X}_{t-1,a}\right)^{-1} \mathbf{x}_{t}}}_{\text{inconfidence}} \right)$$

Chou et al. (NTU CSIE)

## Motivation: conquering partial feedback

- LINUCB way: enforce exploration through UCB —slower in some sense
- another idea: can we CHEAT?

-what if all rewards revealed?



yes, better than LinUCB, even with noisy rewards!
 —but honor code? :-)

#### legal (mimic) cheating $\iff$ pseudo-reward

Chou et al. (NTU CSIE)

## Using $\mathbf{x}_t$ with pseudo-reward

for unselected actions a

- **1** store  $\mathbf{x}_t$  into  $\tilde{\mathbf{X}}_{t,a}$
- 2 generate and store corresponding pseudo-reward  $p_{t,a}$
- **3** use  $(\mathbf{x}_t, p_{t,a})$  to update  $\mathbf{w}_{t+1,a}$  as well



Chou et al. (NTU CSIE)

## Designing a suitable pseudo-reward

LIN**PRUCB.update**( $\mathbf{x}_t, a_t, r_{t,a_t}$ )

$$\mathbf{w}_{t+1,a} = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} \left( \lambda \|\mathbf{w}\|^2 + \|\mathbf{X}_{t,a}\mathbf{w} - \mathbf{r}_{t,a}\|^2 + \|\tilde{\mathbf{X}}_{t,a}\mathbf{w} - \mathbf{p}_{t,a}\|^2 \right)$$

- feasible pseudo-reward: estimate of the actual reward
  - how about  $p_{t,a} = \mathbf{w}_{t,a}^T \mathbf{x}_t$ ?
  - just rechewing w<sub>t,a</sub>'s own predictions
- proposed pseudo-reward: slight over-estimate of actual reward
  - ≈ close estimate
  - encourage exploration of the unselected action
  - how about  $p_{t,a} = \mathbf{w}_{t,a}^T \mathbf{x}_t + \beta \cdot (\text{inconfidence of } \mathbf{w}_{t,a})$ ? —easily obtained by LinUCB-like calculations

## Forgetting needed

• ratio of information from pseudo-rewards and true rewards:

 $\simeq K - 1:1$ 

- $\mathbf{w}_{t,a}$  biased towards early, inaccurate pseudo-rewards
- proposed scheme: forgetting pseudo-rewards exponentially (see paper)



Chou et al. (NTU CSIE)

#### Problem Definition

# Linear pseudo-reward upper confidence bound (LinPRUCB)

LINPRUCB.select( $\mathbf{x}_t$ )

like LINUCB, but now with

inconfidence term calculated with both  $\mathbf{X}_{t,a}$  and (unforgotten)  $\tilde{\mathbf{X}}_{t,a}$ 

pseudo-reward  $p_{t,a}$  for **all** unselected actions a

 $p_{t,a} := \mathbf{w}_{t,a}^{\top} \mathbf{x}_t + \beta \cdot \text{inconfidence term}$ 

#### LINPRUCB.update( $\mathbf{x}_t, a_t, r_{t,a_t}$ )

$$\mathbf{w}_{t+1,a} = \underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \left( \lambda \|\mathbf{w}\|^2 + \|\mathbf{X}_{t,a}\mathbf{w} - \mathbf{r}_{t,a}\|^2 + \operatorname{unforgotten} \|\tilde{\mathbf{X}}_{t,a}\mathbf{w} - \mathbf{p}_{t,a}\|^2 \right)$$

#### similar theoretical guarantee to LinUCB in the long term

Chou et al. (NTU CSIE)

## Long term performance on artificial simulations

Table: Comparisons of average cumulative reward.

|   | LINPRUCB                                                                                                | LINUCB                              |
|---|---------------------------------------------------------------------------------------------------------|-------------------------------------|
| Ν | $\textbf{0.460} \pm \textbf{0.010}$                                                                     | $\textbf{0.461} \pm \textbf{0.017}$ |
| 0 | $0.558\pm0.005$                                                                                         | $0.563 \pm 0.007$                   |
| Ρ | $\textbf{0.270} \pm \textbf{0.008}$                                                                     | $\textbf{0.268} \pm \textbf{0.008}$ |
| Q | $\begin{array}{c} 0.460 \pm 0.010 \\ 0.558 \pm 0.005 \\ 0.270 \pm 0.008 \\ 0.297 \pm 0.003 \end{array}$ | $\textbf{0.297} \pm \textbf{0.005}$ |

- N: small d, small K
- O: small d, large K
- P: large d, small K
- Q: large d, large K

• LinPRUCB and LinUCB: roughly same long term performance (matching theory)

Simulations

## Short term performance on artificial simulations



• LinPRUCB better than LinUCB in the short term (promising in practice)

Chou et al. (NTU CSIE)



## Conclusion

- using slightly over-estimated pseudo-reward improves short term performance
- forgetting reduces disadvantages of pseudo-rewards
- LinPRUCB similar to LinUCB in long term; practically better in short term
- other variants for fast action selection: see paper

Thank you! Questions?