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Introduction
Perceptron

@ proposed by Rosenblatt (1958) y = sign({w,x) + b)

@ a single neuron; (X)a
a linear threshold classifier; .
a hyperplane in RY

@ define (x)o 2 1and Wo 2 b

y = sign((w, X))

a simple but useful classifier, especially for building
more complex systems J
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Introduction

Perceptron Learning Rule (PLR)

@ an iterative optimization procedure to

learn w from S = {(Xn, Yn)}h_;
(Rosenblatt, 1962)

@ repeatedly, for (Xn,yn) € S,

© if current w correctly classifies x,,
do nothing;

@ if current w wrongly classifies xp,
W =W + ynXp

@ convergence proved for separable S °

but unstable for nonseparable cases J
[ 1]
[ )
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Introduction

Minimum Training Error Perceptrons

N
w* € argmin >~ [yn(w,xn) < 0]
w n=1

@ numerically: @ theoretically:
0/1 loss c(p) = [p < 0] not w* converges to optimal
convex, not continuous, with linear classifier when N — oo
mostly O gradient @ practically:

@ combinatorially: basic building blocks for
NP-complete networks/ensembles of
(Marcotte and Savard, 1992) neurons

goal: an efficient algorithm guaranteed to approach w* RN
even for nonseparable cases &
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Introduction

Two Existing Approaches for Nonseparable Sets

N
w* € argminC(w) = > _c(Yn - (W, Xn)), where c(p) = [p < 0]
w n=1
@ in addition to PLR, store the @ regularize C(w);
best w encountered change c(p) to
@ guaranteed to locate w* with hinge loss
high probability in the long o efficiently solved L———
run via quadratic programming
@ usually inefficient @ no guarantee on getting w*
— PLR unstable and wastes — hinge loss different from
iterations on bad candidates 0/1 loss
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Introduction

Our Contributions

@ new perceptron algorithm to minimize 0/1 loss
— efficient with guarantee on approachlng w*
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@ empirical study to understand 0/1 loss
— insights on dealing with nonseparable data sets

@ better neural ensemble approach: AdaBoost + our algorithm /)
— useful when modeling very complex data sets & [
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Random Coordinate Descent

Our Algorithm: Random Coordinate Descent

WY = w + [yn (W, Xn) < 0] (YnXn)

\U, generalized and improved

Random Coordinate Descent (RCD)
w"W =w + ad

@ instead of fixed directions y,x,, use random directions d

@ instead of a fixed step size 0 or 1, use the optimal step size « with
respecttod

next: how to compute the optimal step size
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Computing the Optimal Step Size «

N
g\eigzl [yn(w + ad, x,) < 0]
n=

when 6, # 0
on (dn‘l(w,xn> + a)

@ for those n with nonzero oy, let (x;,y;,) < (5n_1<w,xn),yn sign(én)>

@ optimal o can be computed from these new 1-D examples
efficiently by sorting + dynamic programming
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Random Coordinate Descent
Choosing Update Directions d

some natural candidates

@ coordinate directions €; = (...,0,1,0,...)"
@ PLR directions ynxn
@ sulfficiently random directions on the unit sphere ||d|| = 1

@ recall: hard optimization problem
— finite choices like coordinate or PLR stuck in local minima

@ sufficiently random directions guarantee convergence to global
minima w* in the long run

@ some even provably help with efficient local search
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Random Coordinate Descent
Putting Things Together

Random Coordinate Descent

iteratively,
@ pick a direction d from sufficiently random choices
@ transform (xn,yn) to (X}, y/,) with w and d
© compute optimal step size « from (x/,y})
Q W™ =w +ad
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Experiments

Comparison as Single Perceptron Algorithms

[ RCD

@ training error (0/1
loss): RCD usually
lowest; SVM
highest

@ test error: SVM
often better

@ pocket slow and
not the sharpest in
both cases

training error (%)

test error (%)

au. br. cl. ge. he. pi. io. ri. s0. th. vo. yi.
data set

for a single perceptron, RCD does too good of a job
for 0/1 loss and causes overfitting J
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Comparison When Coupled with AdaBoost
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@ AdaBoost-RCD
significantly better
than any single
perceptron on the
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@ AdaBoost-SVM
cannot improve;
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for modeling very complex data sets with perceptron
ensembles, AdaBoost-RCD is the best J
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Conclusion
Conclusion

@ Random Coordinate Descent: an efficient algorithm guaranteed to
minimize 0/1 loss of perceptron

@ theoretical analysis:
proved to converge to w* and to perform fast local search
@ empirical study:
o RCD the best training error minimizer
— but can cause overfitting
@ AdaBoost-RCD the best perceptron ensemble approach in test
performance

Thank you. Questions? )
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