Ordinal Regression by Extended Binary Classification

Ling Li and Hsuan-Tien Lin

Learning Systems Group, California Institute of Technology

 $f_{\rm b}(\mathbf{x},k) = [f(\mathbf{x},k) > 0]$: Is the rank of \mathbf{x} greater than k?

 $r(\mathbf{x}) = \min\{k : f_{b}(\mathbf{x}, k) = 0\} = 1 + \sum_{b=1}^{n} f_{b}(\mathbf{x}, k).$

 $\mathbf{x}^{(k)} = (\mathbf{x}, k), \quad y^{(k)} = 2[k < y] - 1, \quad w_{y,k} = |\mathcal{C}_{y,k} - \mathcal{C}_{y,k+1}|.$

• The weight $w_{u,k}$ is the additional cost that the binary classifier f_b pays for wrong prediction on $(\mathbf{x}^{(k)})$.

1. Transform training examples (\mathbf{x}_n, y_n) to extended training examples $(\mathbf{x}_n^{(k)}, y_n^{(k)})$ with weights $w_{y_n,k}$.

2. Use a binary classification algorithm to learn $f(\mathbf{x}^{(k)})$ using the weighted extended training examples.

• $(\mathbf{X},Y)=(\mathbf{x}^{(k)},y^{(k)})$ can be thought as outcomes of $(\mathbf{x},y)\sim P$ and $k\sim \Pr(k\mid y)\propto w_{y,k}$.

• Performing well in binary classification implies performing well in ordinal regression.

binary classification

 $\mathbb{E}_{(\mathbf{X},Y)}[\![Yf(\mathbf{X}) \leq 0]\!]$ is small.

• If f_b gives consistent answers, or \mathcal{C} contains convex rows, for any (\mathbf{x}, y) and its extended examples $(\mathbf{x}^{(k)}, y^{(k)})$

 $\mathcal{C}_{y,r(\mathbf{x})} \leq \sum_{k=1}^{K-1} w_{y,k} \llbracket y^{(k)} f(\mathbf{x}^{(k)}) \leq 0 \rrbracket.$

• The binary label $y^{(k)}$ reflects the desired consistent answer for the associated binary problem.

1: infant

3: teenager

ordinal regression

 $\mathbb{E}_{(\mathbf{x},y)} \, \mathcal{C}_{y,r(\mathbf{x})}$ is small.

with bounded $\mathbf{x}^{(k)}$ and normalized $(\mathbf{u}, -\boldsymbol{\theta})$:

 $f(\mathbf{x}^{(k)}) = \langle (\mathbf{u}, -\boldsymbol{\theta}), (\phi(\mathbf{x}), \mathbf{e}_k) \rangle$

Ranking Through Associated Binary Problem

The total order allows us to compare an example to a rank class:

Consistent answers lead to a ranking rule that finds the first No,

This construction rule can also be used for inconsistent answers.

3. Construct a ranking rule $r(\mathbf{x})$ from $f(\mathbf{x}^{(k)})$ for prediction.

(Bartlett98) $f(\mathbf{X}) = \langle \mathbf{u}, \phi(\mathbf{X}) \rangle$

with bounded **X** and normalized **u**:

• Extended examples $(\mathbf{x}^{(k)}, y^{(k)})$ with weights $w_{v,k}$:

Extended Examples

The reduction framework:

Generalization Bounds

bound

error

bound

generalization

Ordinal Regression

In an ordinal regression (ranking) problem, there is a total order on the labels (ranks).

Ordinal regression is between multiclass classification and metric regression:

- Ranks do carry ordering information: child is younger than adult.
- Ranks don't carry numerical information: child is not necessarily half as young as adult.

Ordinal regression problem: Given a training set $\{(\mathbf{x}_n, y_n)\}\$ of N examples, find a ranking rule $r(\mathbf{x})$ that predicts the rank y of unseen input x "well."

Mislabeling Cost

Predicting well: low expected mislabeling cost on all inputs \mathbf{x} when using $r(\mathbf{x})$.

- We cannot compare rank 4 with rank 2 numerically, but we can artificially assign a cost when rank 2 is mislabeled as rank 4.
- Every kind of mislabeling $y \to k$ is assigned with a positive cost $\mathcal{C}_{y,k}$, e.g., $C_{2,4}$: a child photo labeled as adult.
- Ordering information shall be encoded to make the costs different from those in multiclass.

Reasonable ordinal regression costs $C_{y,k}$ for a given y:

2: child 3: teenager 4: adult Convex: pay increasingly more when predicting farther away

The costs can be organized in a matrix.

Reduction

- Designing new algorithms for ordinal regression takes much effort.
- Researchers usually borrow ideas from binary classification algorithms.

A general framework to systematically reduce ordinal regression to binary classification is very useful.

Algorithms

Ordinal regression algorithm \Leftarrow reduction + cost matrix + encoding of $\mathbf{x}^{(k)}$ + binary classification algorithm

$$\mathbf{e}_k = (0, \cdots, 0, 1, 0, \cdots, 0)$$

ordinal regression alg.	cost	$\mathbf{x}^{(k)}$	binary classification algorithm
thresholded ranking	any convex one	$(\mathbf{x},\mathbf{e}_k)$	any algorithm for $f(\mathbf{x}^{(k)}) = g(\mathbf{x}) - \langle \boldsymbol{\theta}, \mathbf{e}_k \rangle$
perceptron ranking (Crammer02)	absolute	$(\mathbf{x},\mathbf{e}_k)$	modified perceptron learning rule for $f(\mathbf{x}^{(k)}) = \langle (\mathbf{u}, -\boldsymbol{\theta}), \mathbf{x}^{(k)} \rangle$
kernel-based ranking (Rajaram03)	classification	$(\mathbf{x}, \sum_{i=1}^k \mathbf{e}_i)$	modified hard-margin SVM for $f(\mathbf{x}^{(k)}) = \langle (\mathbf{u}, -\boldsymbol{\theta}), (\phi(\mathbf{x}), \mathbf{e}_k) \rangle$
SVOR-EXP (Chu05)	classification	$(\mathbf{x},\mathbf{e}_k)$	modified soft-margin SVM with ordered $\boldsymbol{\theta}$ for $f(\mathbf{x}^{(k)}) = \langle (\mathbf{u}, -\boldsymbol{\theta}), (\phi(\mathbf{x}), \mathbf{e}_k) \rangle$
SVOR-IMC (Chu05)	absolute	$(\mathbf{x},\mathbf{e}_k)$	modified soft-margin SVM for $f(\mathbf{x}^{(k)}) = \langle (\mathbf{u}, -\boldsymbol{\theta}), (\phi(\mathbf{x}), \mathbf{e}_k) \rangle$
Reduction-SVM	absolute	$(\mathbf{x},\mathbf{e}_k)$	standard soft-margin SVM for $f(\mathbf{x}^{(k)}) = \langle (\mathbf{u}, -\boldsymbol{\theta}), (\phi(\mathbf{x}), \gamma \cdot \mathbf{e}_k) \rangle$
Reduction-C4.5	absolute	$(\mathbf{x},\mathbf{e}_k)$	standard C4.5 for decision trees
Reduction-AdaBoost	absolute	$(\mathbf{x},\mathbf{e}_k)$	standard AdaBoost for decision stump ensembles

Our framework simplifies the analysis and the tuning of ordinal regression algorithms:

- Mistake bound for perceptron ranking is an easy extension of perceptron mistake bound.
- Improvements in binary classifier (e.g., faster optimization procedure for SVM) can be immediately inherited.

Experimental Results

Reduction to standard SVM with perceptron kernel is often significantly better than SVOR-IMC.

Reduction to standard SVM is much aster than reduction to modified SVM (SVOR-IMC).

Summary

With our reduction framework from ordinal regression to binary classification:

- New generalization bounds for ordinal regression can be easily derived from known bounds for binary classification, which saves tremendous efforts in theoretical analysis.
- Well-tuned binary classification approaches can be readily transformed into good ordinal regression algorithms, which saves immense efforts in design and implementation.