Ordinal Regression by Extended Binary Classification

Ordinal Regression

In an ordinal regression (ranking) problem, there is a total order on the labels (ranks).

L: infant 2: child J: teenager

Ordinal regression is between multiclass classification and metric regression:
e Ranks do carry ordering information: child is younger than adult.

e Ranks don’t carry numerical information: child is not necessarily half as young as adult.
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Ordinal regression problem: Given a training set {(x,,y,)} of N examples,

find a ranking rule r(x) that predicts the rank y of unseen input x “well.”
N /

Mislabeling Cost

Predicting well: low expected mislabeling cost on all inputs x when using r(x).

e We cannot compare rank 4 with rank 2 numerically,
but we can artificially assign a cost when rank 2 is mislabeled as rank 4.

e Every kind of mislabeling y — k is assigned with a positive cost C, ,
e.g., Ca4: a child photo labeled as adult.

e Ordering information shall be encoded to make the costs different from those in multiclass.

Reasonable ordinal regression costs C, ; for a given y:
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V-shaped: pay more Convex: pay increasingly more
when predicting farther away when predicting farther away
The costs can be organized in a matrix.
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Reduction
e Designing new algorithms for ordinal regression takes much effort.

e Researchers usually borrow ideas from binary classification algorithms.

A general framework to systematically reduce ordinal regression to binary classification is very useful.
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Ranking Through Associated Binary Problem

The total order allows us to compare an example to a rank class:

fo(x,k) =[f(x,k) > 0]: Is the rank of x greater than k7

k 1: infant 2: child J: teenager
consistent YEs (1) No (0) No (0)
answers
Inconsistent YEs (1) No (0) YEs (1)
answers

This construction rule can also be used for inconsistent answers.

Extended Examples

e Extended examples (x®),y®)) with weights w, 1, :

X(k) - (X, k), y(k) - QIUC < y]] — 1, wy,k a ‘Cy,k — Cy,k‘—l—l‘-

e The binary label y*) reflects the desired consistent answer for the associated binary problem.
o The weight w, j is the additional cost that the binary classifier f}, pays for wrong prediction on (x(F)).

o If f}, gives consistent answers, or C contains convex rows, for any (x,y) and its extended examples (x*), 3(*))

K-1
Cyr) < D wyr[y™ f(x™) <o,
k=1
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The reduction framework:

(k) (k)

1. Transform training examples (X, yn) to extended training examples (X", yn ) with weights w,, .

2. Use a binary classification algorithm to learn f(x(*)) using the weighted extended training examples.

3. Construct a ranking rule r(x) from f(x®)) for prediction.

Generalization Bounds
o (X,Y) = (x® y*)) can be thought as outcomes of (x,y) ~ P and k ~ Pr(k | y) oc wy .

e Performing well in binary classification implies performing well in ordinal regression.
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Algorithms

Ordinal regression algorithm <= reduction + cost matrix + encoding of x(k) 4 binary classification algorithm
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Our framework simplifies the analysis and the tuning of ordinal regression algorithms:

o Mistake bound for perceptron ranking is an easy extension of perceptron mistake bound.

e Improvements in binary classifier (e.g., faster optimization procedure for SVM) can be immediately inherited.

Experimental Results
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dard algorithms beats state-of-the-art | ceptron kernel is often significantly | faster than reduction to modified SVM
SVOR-IMC some time. better than SVOR-IMC.

Summary

(SVOR-IMCQ).

With our reduction framework from ordinal regression to binary classification:

e New generalization bounds for ordinal regression can be easily derived from known bounds for binary clas-
sification, which saves tremendous efforts in theoretical analysis.

e Well-tuned binary classification approaches can be readily transtormed into good ordinal regression algo-
rithms, which saves immense efforts in design and implementation.




