
From Ordinal Ranking to Binary Classification

Hsuan-Tien Lin

Department of Computer Science and Information Engineering
National Taiwan University

Talk at Microsoft Research Asia
February 18, 2009

Joint work with Dr. Ling Li at Caltech (ALT’06, NIPS’06)

Hsuan-Tien Lin (CSIE, NTU) From Ordinal Ranking to Binary Classification 02/18/2009 0 / 24



The Ordinal Ranking Problem

Which Age-Group?

2

infant (1) child (2) teen (3) adult (4)

rank: a finite ordered set of labels Y = {1,2, · · · ,K}
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The Ordinal Ranking Problem

Properties of Ordinal Ranking (1/2)

ranks represent order information

infant (1)

<

child (2)

<

teen (3)

<

adult (4)

general classification cannot
properly use order information
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The Ordinal Ranking Problem

How Much Did You Like These Movies?

http://www.netflix.com

rank: natural representation of human preferences
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The Ordinal Ranking Problem

Properties of Ordinal Ranking (2/2)

ranks do not carry numerical information

not 2.5 times “better” than
actual metric may be hidden

infant
(ages 1–3)

child
(ages 4–12)

teen
(ages 13–19)

adult
(ages 20–)

general regression deteriorates
without correct numerical information
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The Ordinal Ranking Problem

Ordinal Ranking

Setup
input space X ; rank space Y (a finite ordered set)

age-group: X = encoding(human pictures), Y = {1, · · · ,4}
netflix: X = encoding(movies), Y = {1, · · · ,5}

Given
N examples (input xn, rank yn) ∈ X × Y

Goal
a ranker (decision function) r(x) that closely predicts the ranks y
associated with some unseen inputs x

How to say closely predict?
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The Ordinal Ranking Problem

Formalizing (Non-)Closeness: Cost

ranks carry no numerical information: how to say “close”?
artificially quantify the cost of being wrong

e.g. loss of customer loyalty when the system
says but you feel

cost vector c of example (x , y ,c):
c[k ] = cost when predicting (x , y) as rank k
e.g. for ( Sweet Home Alabama , ), a proper cost
is c = (1,0,2,10,15)

closely predict: small cost during testing

Hsuan-Tien Lin (CSIE, NTU) From Ordinal Ranking to Binary Classification 02/18/2009 6 / 24



The Ordinal Ranking Problem

Ordinal Cost Vectors

For an ordinal example (x , y ,c), the cost vector c should
be consistent with rank y : c[y ] = mink c[k ] (= 0)

respect order information: V-shaped (ordinal) or even convex
(strongly ordinal)

1: infant 2: child 3: teenager 4: adult

C y,
 k

V-shaped: pay more when
predicting further away

1: infant 2: child 3: teenager 4: adult

C y,
 k

convex: pay increasingly
more when further away

c[k ] = Jy 6= kK c[k ] =
∣∣y − k

∣∣ c[k ] = (y − k)2

classification: absolute: squared:

ordinal
strongly strongly
ordinal ordinal

(1,0,1,1,1) (1,0,1,2,3) (1,0,1,4,9)
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The Ordinal Ranking Problem

Our Contributions

a theoretical and algorithmic foundation of ordinal ranking,
which reduces ordinal ranking to binary classificaction, and ...

provides a methodology for designing new ordinal
ranking algorithms with any ordinal cost effortlessly
takes many existing ordinal ranking algorithms as
special cases
introduces new theoretical guarantee on the
generalization performance of ordinal rankers
leads to superior experimental results

If I have seen further it is by
standing on the shoulders of Giants—I. Newton
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Reduction from Ordinal Ranking to Binary Classification Key Ideas

Threshold Ranker

if getting an ideal score s(x) of a movie x , how to construct the
discrete r(x) from an analog s(x)?

-x x
θ1

d d d
θ2

t tt t
θ3

??

1 2 3 4 threshold ranker r(x)

score function s(x)

1 2 3 4 target rank y

quantize s(x) by ordered (non-uniform) thresholds θk

commonly used in previous work:
threshold perceptrons (PRank, Crammer and Singer, 2002)
threshold hyperplanes (SVOR, Chu and Keerthi, 2005)

threshold ensembles (ORBoost, Lin and Li, 2006)

threshold ranker: r(x) = min {k : s(x) < θk}
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Reduction from Ordinal Ranking to Binary Classification Key Ideas

Key Idea: Associated Binary Queries

getting the rank using a
threshold ranker

1 is s(x) > θ1? Yes
2 is s(x) > θ2? No
3 is s(x) > θ3? No
4 is s(x) > θ4? No

generally, how do we query the rank of
a movie x?

1 is movie x better than rank 1? Yes
2 is movie x better than rank 2? No
3 is movie x better than rank 3? No
4 is movie x better than rank 4? No

associated binary queries:
is movie x better than rank k?
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Reduction from Ordinal Ranking to Binary Classification Key Ideas

More on Associated Binary Queries

say, the machine uses g(x , k) to answer the query
“is movie x better than rank k?”

e.g. for threshold ranker: g(x , k) = sign(s(x)− θk )

-x x d d d t tt t ??

1 2 3 4 rg(x)

s(x)
1 2 3 4 y

N N Y Y Y Y YYY YYθ1

(z)1

θ1 g(x ,1)

N N N N N Y YYY YY

(z)2

θ2 g(x ,2)

N N N N N N NNN YY

(z)3

θ3 g(x ,3)

associated binary examples:
 (x , k)︸ ︷︷ ︸

k -th associated binary query

, (z)k︸︷︷︸
desired answer



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Reduction from Ordinal Ranking to Binary Classification Key Ideas

Computing Ranks from Associated Binary Queries

when g(x , k) answers “is movie x better than rank k?”

Consider
(
g(x ,1),g(x ,2), · · · ,g(x ,K−1)

)
,

consistent predictions: (Y, Y, N, N, N, N, N)
extracting the rank from consistent predictions:

minimum index searching: rg(x) = min {k : g(x , k) = N}
counting: rg(x) = 1 +

∑
k Jg(x , k) = YK

two approaches equivalent for consistent predictions
mistaken/inconsistent predictions? e.g. (Y, N, Y, Y, N, N, Y)
—counting: simpler to analyze and robust to mistake

are all associated examples of the same importance?
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Reduction from Ordinal Ranking to Binary Classification Key Ideas

Importance of Associated Binary Examples

given movie x with rank y = 2, and c = (y − k)2

g1 g2 g3 g4
is x better than rank 1? N Y Y Y
is x better than rank 2? N N Y Y
is x better than rank 3? N N N Y
is x better than rank 4? N N N N

rg(x) 1 2 3 4
c
[
rg(x)

]
1 0 1 4

3 more for answering query 3 wrong;
only 1 more for answering query 1 wrong
(w)k ≡

∣∣∣c[k + 1]− c[k ]
∣∣∣: the importance of

(
(x , k), (z)k

)

per-example cost bound (Li and Lin, 2007):
for consistent predictions or strongly ordinal costs

c
[
rg(x)

]
≤

K−1∑

k=1

(w)k
q

(z)k 6= g(x , k)
y
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Reduction from Ordinal Ranking to Binary Classification Important Properties

The Reduction Framework (1/2)

1 transform ordinal examples (xn, yn,cn) to
weighted binary examples

(
(xn, k), (zn)k , (wn)k

)

2 use your favorite algorithm on the weighted
binary examples and get K−1 binary classifiers
(i.e., one big joint binary classifier) g(x , k)

3 for each new input x , predict its rank using
rg(x) = 1 +

∑
k Jg(x , k) = YK

the reduction framework:
systematic & easy to implement
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Reduction from Ordinal Ranking to Binary Classification Important Properties

The Reduction Framework (2/2)

performance guarantee:
accurate binary predictions =⇒ correct ranks
wide applicability:
works with any ordinal c & any binary classification algorithm
simplicity:
mild computation overheads with O(NK ) binary examples
state-of-the-art:
allows new improvements in binary classification to be
immediately inherited by ordinal ranking
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Reduction from Ordinal Ranking to Binary Classification Important Properties

Theoretical Guarantees of Reduction (1/3)

error transformation theorem (Li and Lin, 2007)

For consistent predictions or strongly ordinal costs,
if g makes test error ∆ in the induced binary problem,
then rg pays test cost at most ∆ in ordinal ranking.

a one-step extension of the per-example cost bound
conditions: general and minor
performance guarantee in the absolute sense

what if no “absolutely good” binary classifier?
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1 absolutely good binary classifier
=⇒ absolutely good ranker? YES!



Reduction from Ordinal Ranking to Binary Classification Important Properties

Theoretical Guarantees of Reduction (2/3)

regret transformation theorem (Lin, 2008)

For consistent predictions or strongly ordinal costs,
if g is ε-close to the optimal binary classifier g∗,
then rg is ε-close to the optimal ranker r∗.

“reduction to binary” sufficient for algorithm design,
but necessary?
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1 absolutely good binary classifier
=⇒ absolutely good ranker? YES!

2 relatively good binary classifier
=⇒ relatively good ranker? YES!



Reduction from Ordinal Ranking to Binary Classification Important Properties

Theoretical Guarantees of Reduction (3/3)

equivalence theorem (Lin, 2008)

For a general family of ordinal costs,
a good ordinal ranking algorithm exists
if & only if a good binary classification algorithm exists

for the corresponding learning model.

ordinal ranking is equivalent to binary classification
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1 absolutely good binary classifier
=⇒ absolutely good ranker? YES!

2 relatively good binary classifier
=⇒ relatively good ranker? YES!

3 algorithm producing relatively good binary classifier
⇐⇒ algorithm producing relatively good ranker? YES!



Reduction from Ordinal Ranking to Binary Classification Algorithmic Usefulness

Unifying Existing Algorithms

ordinal ranking = reduction + cost + binary classification

ordinal ranking cost binary classification algorithm
PRank absolute modified perceptron rule

(Crammer and Singer, 2002)

kernel ranking classification modified hard-margin SVM
(Rajaram et al., 2003)

SVOR-EXP classification modified soft-margin SVM
SVOR-IMC absolute modified soft-margin SVM

(Chu and Keerthi, 2005)

ORBoost-LR classification modified AdaBoost
ORBoost-All absolute modified AdaBoost

(Lin and Li, 2006)

development and implementation time could have been saved
algorithmic structure revealed (SVOR, ORBoost)

variants of existing algorithms can be
designed quickly by tweaking reduction
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Reduction from Ordinal Ranking to Binary Classification Algorithmic Usefulness

Designing New Algorithms Effortlessly

ordinal ranking = reduction + cost + binary classification

ordinal ranking cost binary classification algorithm
RED-SVM absolute standard soft-margin SVM
RED-C4.5 absolute standard C4.5 decision tree

(Li and Lin, 2007)

SVOR (modified SVM) v.s. RED-SVM (standard SVM):

ban com cal cen
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SVOR
RED−SVM

advantages of core binary classification algorithm
inherited in the new ordinal ranking one
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Reduction from Ordinal Ranking to Binary Classification Theoretical Usefulness

Proving New Generalization Theorems

Ordinal Ranking (Li and Lin, 2007)

For RED-SVM/SVOR, with pr. > 1− δ,
expected test cost of r

≤ β
N

N∑

n=1

K−1∑

k=1

q
ρ̄
(
r(xn), yn, k

)
≤Φ

y

︸ ︷︷ ︸
ambiguous training

predictions w.r.t.
criteria Φ

+ O
(

poly
(

K , log N√
N
, 1

Φ ,
√

log 1
δ

))

︸ ︷︷ ︸
deviation that decreases
with stronger criteria or

more examples

Bi. Cl. (Bartlett and Shawe-Taylor, 1998)

For SVM, with pr. > 1− δ,
expected test err. of g

≤ 1
N

N∑

n=1

q
ρ̄
(
g(xn), yn

)
≤ Φ

y

︸ ︷︷ ︸
ambiguous training

predictions w.r.t.
criteria Φ

+ O
(

poly
(

log N√
N
, 1

Φ ,
√

log 1
δ

))

︸ ︷︷ ︸
deviation that decreases
with stronger criteria or

more examples

new ordinal ranking theorem
= reduction + any cost + bin. thm. + math derivation
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Experimental Results

Reduction-C4.5 v.s. SVOR

pyr mac bos aba ban com cal cen
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SVOR (Gauss)
RED−C4.5 C4.5: a (too) simple

binary classifier
—decision trees
SVOR:
state-of-the-art
ordinal ranking
algorithm

even simple Reduction-C4.5
sometimes beats SVOR
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Experimental Results

Reduction-SVM v.s. SVOR
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SVOR (Gauss)
RED−SVM (Perc.) SVM: one of the most

powerful binary
classification
algorithm
SVOR:
state-of-the-art
ordinal ranking
algorithm extended
from modified SVM

Reduction-SVM without modification
often better than SVOR and faster
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Conclusion

Conclusion

reduction framework: simple but useful
establish equivalence to binary classification
unify existing algorithms
simplify design of new algorithms
facilitate derivation of new theoretical guarantees

superior experimental results:
better performance and faster training time

reduction keeps ordinal ranking
up-to-date with binary classification
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