Label Space Coding for Multi-label Classification Mathematical Machine Learning for Modern Artificial Intelligence

Hsuan-Tien Lin

National Taiwan University

7th 6th 3rd TWSIAM Annual Meeting, 05/25/2019

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers thinking and acting smartly

- humanly
- rationally

humanly ≈ smartly ≈ rationally —are humans rational? :-)

Traditional vs. Modern [My] Definition of AI

Traditional Definition

humanly \approx intelligently \approx rationally

My Definition

intelligently \approx easily is your smart phone 'smart'? :-)

modern artificial intelligence = application intelligence

H.-T. Lin (NTU)

ML for (Modern) AI

Examples of Application Intelligence

ML for (Modern) AI

Machine Learning and AI

machine learning: core behind modern (data-driven) AI

H.-T. Lin (NTU)

ML for (Modern) AI

ML Connects Big Data and AI

"cooking" needs many possible tools & procedures

H.-T. Lin (NTU)

Bigger Data Towards Better AI

ML for (Modern) AI

ML for Modern AI

- human sometimes faster learner on initial (smaller) data
- industry: black plum is as sweet as white

often important to leverage human learning, especially in the beginning

H.-T. Lin (NTU)

Application: Tropical Cyclone Intensity Estimation

meteorologists can 'feel' & estimate TC intensity from image

Cost-Sensitive Multiclass Classification

H.-T. Lin (NTU)

Patient Status Prediction

- H7N9 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?

H.-T. Lin (NTU)

Setup: Cost-Sensitive Classification

Given

N classification examples (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{1, 2, \dots, K\}$

and a 'proper' cost matrix $\boldsymbol{\mathcal{C}} \in \mathbb{R}^{K \times K}$

Goal a classifier $g(\mathbf{x})$ that pays a small cost $C(y, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, y)

cost-sensitive classification:

more **application-realistic** than traditional classification

Key Idea: Cost Estimator (Tu and Lin, ICML 2010)

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $C(y, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, y)

consider expected conditional costs $\mathbf{c}_{\mathbf{x}}[k] = \sum_{y=1}^{K} C(y, k) P(y|\mathbf{x})$

how to get cost estimator r_k ? regression

Cost Estimator by Per-class Regression

Given

N examples, each (input
$$\mathbf{x}_n$$
, label y_n) $\in \mathcal{X} \times \{1, 2, \dots, K\}$

• take \mathbf{c}_n as y_n -th row of C: $\mathbf{c}_n[k] = C(y_n, k)$

want: $r_k(\mathbf{x}) \approx \mathbf{c}_{\mathbf{x}}[k]$ for all future \mathbf{x} and k

H.-T. Lin (NTU)

- 1 transform classification examples (\mathbf{x}_n, y_n) to regression examples $(\mathbf{x}_{n,k}, Y_{n,k}) = (\mathbf{x}_n, C(y_n, k))$
- 2 use your favorite algorithm on the regression examples and get estimators $r_k(\mathbf{x})$
- Solution is a straight of the second str

the reduction-to-regression framework: systematic & easy to implement

H.-T. Lin (NTU)

A Simple Theoretical Guarantee

$$g_r(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$$

Theorem (Absolute Loss Bound)

For any set of estimators (cost estimators) $\{r_k\}_{k=1}^{K}$ and for any tuple $(\mathbf{x}, y, \mathbf{c})$ with $\mathbf{c}[y] = 0 = \min_{1 \le k \le K} \mathbf{c}[k]$,

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^{K} |r_k(\mathbf{x}) - \mathbf{c}[k]|.$$

low-cost classifier <= accurate estimator

Our Contributions

In 2010 (Tu and Lin, ICML 2010)

- tighten the simple guarantee (+math)
- propose loss function (+math) from tighter bound
- derive SVM-based model (+math) from loss function

-eventually reaching superior experimental results

Six Years Later (Chung et al., IJCAI 2016)

- propose smoother loss function (+math) from tighter bound
- derive world's first cost-sensitive deep learning model (+math) from loss function

-eventually reaching even superior experimental results

why are people not using those cool ML works for their AI? :-)

H.-T. Lin (NTU)

Issue 1: Where Do Costs Come From?

A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

issue 2: is cost-sensitive classification really useful?

H.-T. Lin (NTU)

Cost-Sensitive vs. Traditional on Bacteria Data

(Jan et al., BIBM 2011)

cost-sensitive better than traditional; but why are people still not using those cool ML works for their AI? :-)

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem

- cost-sensitive classifier: low cost but high error rate
- · traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost
 —math++ on multi-objective optimization (Jan et al., KDD 2012)

now, are people using those cool ML works for their Al? :-)

Lessons Learned from Research on Cost-Sensitive Multiclass Classification

H7N9-infected

cold-infected

- more realistic (generic) in academia \neq more realistic (feasible) in application e.g. the 'cost' of inputting a cost matrix? :-)
- 2 cross-domain collaboration important
 - e.g. getting the 'cost matrix' from domain experts
- not easy to win human trust 3
 - -humans are somewhat multi-objective
 - many battlefields for math towards application intelligence
 - e.g. abstraction of goals and needs

Label Space Coding for Multilabel Classification

H.-T. Lin (NTU)

 ?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

> a **multilabel** classification problem: tagging input to multiple categories

H.-T. Lin (NTU)

Binary Relevance: Multilabel Classification via Yes/No

multilabel w/ L classes: L Y/N questions

machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), *etc.*

- Binary Relevance approach: transformation to multiple isolated binary classification
- disadvantages:
 - isolation—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - unbalanced—few yes, many no

Binary Relevance: simple (& good) benchmark with known disadvantages

H.-T. Lin (NTU)

From Label-set to Coding View

	label set	apple	orange	strawberry	binary code
	{0}	0 (N)	1 (Y)	0 (N)	[0, 1, 0]
) 🕘	{a, o}	1 (Y)	1 (Y)	0 (N)	[1, 1, 0]
Ö	$\{a, s\}$	1 (Y)	0 (N)	1 (Y)	[1,0,1]
	{ 0 }	0 (N)	1 (Y)	0 (N)	[0, 1, 0]
	{}	0 (N)	0 (N)	0 (N)	[0, 0, 0]

subset of $2^{\{1,2,\cdots,L\}} \Leftrightarrow$ length-*L* binary code

24/40

A NeurIPS 2009 Approach: Compressive Sensing

General Compressive Sensing

sparse (many 0) binary vectors $\mathbf{y} \in \{0, 1\}^L$ can be **robustly** compressed by projecting to $M \ll L$ basis vectors $\{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M\}$

Comp. Sensing for Multilabel Classification (Hsu et al., NeurIPS 2009)

- Ocompress: encode original data by compressive sensing
- 2 learn: get regression function from compressed data
- e decode: decode regression predictions to sparse vector by compressive sensing

Compressive Sensing: seemly strong competitor from related theoretical analysis

Our Proposed Approach: Compressive Sensing \Rightarrow PCA

Principal Label Space Transformation (PLST), i.e. PCA for Multilabel Classification (Tai and Lin, NC Journal 2012)

- compress: encode original data by PCA
- 2 learn: get regression function from compressed data
- decode: decode regression predictions to label vector by reverse PCA + quantization

does PLST perform better than CS?

Hamming Loss Comparison: PLST vs. CS

- PLST better than CS: faster, better performance
- similar findings across data sets and regression algorithms

Why? CS creates harder-to-learn regression tasks

H.-T. Lin (NTU)

Our Works Continued from PLST

Compression Coding (Tai & Lin, NC Journal 2012 with 216 citations)
 —condense for efficiency: better (than CS) approach PLST
 —key tool: PCA from Statistics/Signal Processing

Learnable-Compression Coding (Chen & Lin, NeurIPS 2012 with 157 citations)
 —condense learnably for better efficiency: better (than PLST) approach CPLST

— key tool: Ridge Regression from Statistics (+ PCA)

- Cost-Sensitive Coding (Huang & Lin, ECML Journal Track 2017)
 —condense cost-sensitively towards application needs: better (than CPLST) approach CLEMS
 - key tool: Multidimensional Scaling from Statistics

cannot thank statisticans enough for those tools!

Lessons Learned from Label Space Coding for Multilabel Classification ?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

Is Statistics the same as ML? Is Statistics the same as AI?

- does it really matter?
- Modern AI should embrace every useful tool from every field & any necessary math
- (2) 'application intelligence' tools not necessarily most sophisticated ones

e.g. PCA possibly more useful than CS for label space coding

more-cited paper ≠ more-useful AI solution
 —citation count not the only impact measure

are people using those cool ML works for their AI? —we wish!

H.-T. Lin (NTU)

Active Learning by Learning

H.-T. Lin (NTU)

Active Learning: Learning by 'Asking'

active: improve hypothesis with fewer labels (hopefully) by asking questions **strategically**

Pool-Based Active Learning Problem

Given

• labeled pool $\mathcal{D}_l = \left\{ (\text{feature } \mathbf{x}_n) \\ \mathbf{x}_n \\ \mathbf{x}$

• unlabeled pool
$$\mathcal{D}_u = \left\{ \tilde{\mathbf{X}}_s \right\}_{s=1}^S$$

Goal

design an algorithm that iteratively

- **1** strategically query some $\tilde{\mathbf{x}}_s$ **S** to get associated $\tilde{\mathbf{y}}_s$
- **2** move $(\tilde{\mathbf{x}}_s, \tilde{\mathbf{y}}_s)$ from \mathcal{D}_u to \mathcal{D}_l
- **3** learn classifier $g^{(t)}$ from \mathcal{D}_l

and improve test accuracy of $g^{(t)}$ w.r.t #queries

how to query strategically?

H.-T. Lin (NTU)

How to Query Strategically?

Strategy 1	Strategy 2	Strategy 3
ask most confused	ask most frequent	ask most debateful
question	question	question

choosing one single strategy is non-trivial:

application intelligence: how to choose strategy smartly?

Idea: Trial-and-Reward Like Human

when do humans trial-and-reward? gambling

Active Learning by Learning (Hsu and Lin, AAAI 2015)

Given: *K* existing active learning strategies

for t = 1, 2, ..., T

- **1** let some bandit model **decide strategy** A_k to try
- **2** query the $\tilde{\mathbf{x}}_s$ suggested by \mathcal{A}_k , and compute $g^{(t)}$
- (3) evaluate goodness of $g^{(t)}$ as reward of trial to update model

only remaining problem: what reward?

H.-T. Lin (NTU)

Design of Reward

ideal reward after updating classifier $g^{(t)}$ by the query $(\mathbf{x}_{n_t}, y_{n_t})$:

accuracy of $g^{(t)}$ on test set $\{(\mathbf{x}'_m, \mathbf{y}'_m)\}_{m=1}^M$

-test accuracy infeasible in practice because labeling expensive

more feasible reward: training accuracy on the fly

accuracy of $g^{(t)}$ on labeled pool $\{(\mathbf{x}_{n_{\tau}}, y_{n_{\tau}})\}_{\tau=1}^{t}$

-but biased towards easier queries

weighted training accuracy as a better reward:

acc. of $g^{(t)}$ on inv.-prob. weighted labeled pool $\left\{ (\mathbf{x}_{n_{\tau}}, y_{n_{\tau}}, \frac{1}{p_{\tau}}) \right\}_{\tau=1}^{t}$

-- 'bias correction' from querying probability within bandit model

Active Learning by Learning (ALBL): bandit + weighted training acc. as reward

H.-T. Lin (NTU)

Comparison with Single Strategies

- no single best strategy for every data set —choosing needed
- proposed ALBL consistently matches the best —similar findings across other data sets

ALBL: effective in making intelligent choices

Discussion for Statisticians

weighted training accuracy $\frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{\rho_{\tau}} \left[y_{n_{\tau}} = g^{(t)}(\mathbf{x}_{n_{\tau}}) \right]$ as reward

- is reward unbiased estimator of test performance?
 no for learned g^(t) (yes for fixed g)
- is reward fixed before playing?
 no because g^(t) learned from (x_{nt}, y_{nt})
- is reward independent of each other?
 no because past history all in reward
- -ALBL: tools from statistics + wild/unintended usage

'application intelligence' outcome: open-source tool released

(https://github.com/ntucllab/libact)

Lessons Learned from Research on Active Learning by Learning

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

- scalability bottleneck of 'application intelligence': choice of methods/models/parameter/...
- think outside of the math box: 'unintended' usage may be good enough
- important to be brave yet patient
 - -idea: 2012

-paper (Hsu and Lin, AAAI 2015); software (Yang et al., 2017)

Summary

- ML for (Modern) AI: tools + human knowledge
 ⇒ easy-to-use application intelligence
- ML Research for Modern AI: need to be more open-minded —in methodology, in collaboration, in KPI
- Math in ML Research for Modern AI: —new setup/need/goal & wider usage of tools

Thank you! Questions?

