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Learning from Data

Disclaimer
• just super-condensed and shuffled version of

• my co-authored textbook “Learning from Data: A Short Course”
• my two NTU-Coursera Mandarin-teaching ML Massive Open

Online Courses
• “Machine Learning Foundations”:
www.coursera.org/course/ntumlone

• “Machine Learning Techniques”:
www.coursera.org/course/ntumltwo

—impossible to be complete, with most math details removed
• live interaction is important

goal: help you begin your journey with ML
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Learning from Data

Roadmap

Learning from Data
What is Machine Learning
Components of Machine Learning
Types of Machine Learning
Step-by-step Machine Learning
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Learning from Data What is Machine Learning

Learning from Data ::
What is Machine Learning
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Learning from Data What is Machine Learning

From Learning to Machine Learning

learning: acquiring skill

learning:

with experience accumulated from observations

observations learning skill

machine learning: acquiring skill

machine learning:

with experience accumulated/computed from data

data ML skill

What is skill?
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Learning from Data What is Machine Learning

A More Concrete Definition

⇔

skill
⇔ improve some performance measure (e.g. prediction accuracy)

machine learning: improving some performance measure

machine learning:

with experience computed from data

data ML
improved
performance
measure

An Application in Computational Finance

stock data ML more investment gain

Why use machine learning?
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Learning from Data What is Machine Learning

Yet Another Application: Tree Recognition

• ‘define’ trees and hand-program: difficult
• learn from data (observations) and

recognize: a 3-year-old can do so
• ‘ML-based tree recognition system’ can be

easier to build than hand-programmed
system

ML: an alternative route to
build complicated systems
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Learning from Data What is Machine Learning

The Machine Learning Route
ML: an alternative route to build complicated systems

Some Use Scenarios
• when human cannot program the system manually

—navigating on Mars
• when human cannot ‘define the solution’ easily

—speech/visual recognition
• when needing rapid decisions that humans cannot do

—high-frequency trading
• when needing to be user-oriented in a massive scale

—consumer-targeted marketing

Give a computer a fish, you feed it for a day;
teach it how to fish, you feed it for a lifetime. :-)

Hsuan-Tien Lin (NTU CSIE) Quick Tour of Machine Learning 7/128



Learning from Data What is Machine Learning

Machine Learning and Artificial Intelligence

Machine Learning
use data to compute something

that improves performance

Artificial Intelligence
compute something
that shows intelligent behavior

• improving performance is something that shows intelligent
behavior
—ML can realize AI, among other routes

• e.g. chess playing
• traditional AI: game tree
• ML for AI: ‘learning from board data’

ML is one possible
and popular route to realize AI
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Learning from Data Components of Machine Learning

Learning from Data ::
Components of Machine Learning
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Learning from Data Components of Machine Learning

Components of Learning:
Metaphor Using Credit Approval

Applicant Information

age 23 years
gender female

annual salary NTD 1,000,000
year in residence 1 year

year in job 0.5 year
current debt 200,000

what to learn? (for improving performance):
‘approve credit card good for bank?’
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Learning from Data Components of Machine Learning

Formalize the Learning Problem
Basic Notations
• input: x ∈ X (customer application)
• output: y ∈ Y (good/bad after approving credit card)
• unknown underlying pattern to be learned⇔ target function:

f : X → Y (ideal credit approval formula)
• data⇔ training examples: D = {(x1, y1), (x2, y2), · · · , (xN , yN)}

(historical records in bank)
• hypothesis⇔ skill with hopefully good performance:

g : X → Y (‘learned’ formula to be used), i.e. approve if
• h1: annual salary > NTD 800,000
• h2: debt > NTD 100,000 (really?)
• h3: year in job ≤ 2 (really?)

—all candidate formula being considered: hypothesis set H
—procedure to learn best formula: algorithm A

{(xn, yn)} from f ML (A, H) g
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Learning from Data Components of Machine Learning

Practical Definition of Machine Learning

unknown target function
f : X → Y

(ideal credit approval formula)

training examples
D : (x1, y1), · · · , (xN , yN )

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

machine learning (A and H):
use data to compute hypothesis g

that approximates target f
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Learning from Data Components of Machine Learning

Key Essence of Machine Learning
machine learning:
use data to compute hypothesis g that approximates target f

data ML
improved
performance
measure

1 exists some ‘underlying pattern’ to be learned
—so ‘performance measure’ can be improved

2 but no programmable (easy) definition
—so ‘ML’ is needed

3 somehow there is data about the pattern
—so ML has some ‘inputs’ to learn from

key essence: help decide whether to use ML
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Learning from Data Types of Machine Learning

Learning from Data ::
Types of Machine Learning
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Learning from Data Types of Machine Learning

Visualizing Credit Card Problem

• customer features x: points on the plane (or points in Rd )
• labels y : ◦ (+1), × (-1)

called binary classification
• hypothesis h: lines here, but possibly other curves
• different curve classifies customers differently

binary classification algorithm:
find good decision boundary curve g
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Learning from Data Types of Machine Learning

More Binary Classification Problems

• credit approve/disapprove
• email spam/non-spam
• patient sick/not sick
• ad profitable/not profitable

core and important problem with
many tools as building block of other tools
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Learning from Data Types of Machine Learning

Binary Classification for Education

data ML skill

• data: students’ records on quizzes on a Math tutoring system
• skill: predict whether a student can give a correct answer to

another quiz question

A Possible ML Solution
answer correctly ≈ Jrecent strength of student > difficulty of questionK
• give ML 9 million records from 3000 students
• ML determines (reverse-engineers) strength and difficulty

automatically

key part of the world-champion system from
National Taiwan Univ. in KDDCup 2010
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Learning from Data Types of Machine Learning

Multiclass Classification: Coin Recognition Problem

25

5

1

M
as

s

Size

10

• classify US coins (1c, 5c, 10c, 25c)
by (size, mass)

• Y = {1c,5c,10c,25c}, or
Y = {1,2, · · · ,K} (abstractly)

• binary classification: special case
with K = 2

Other Multiclass Classification Problems
• written digits⇒ 0,1, · · · ,9
• pictures⇒ apple, orange, strawberry
• emails⇒ spam, primary, social, promotion, update (Google)

many applications in practice,
especially for ‘recognition’
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Learning from Data Types of Machine Learning

Regression: Patient Recovery Prediction Problem

• binary classification: patient features⇒ sick or not
• multiclass classification: patient features⇒ which type of cancer
• regression: patient features⇒ how many days before recovery
• Y = R or Y = [lower,upper] ⊂ R (bounded regression)

—deeply studied in statistics

Other Regression Problems
• company data⇒ stock price
• climate data⇒ temperature

also core and important with many ‘statistical’
tools as building block of other tools
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Learning from Data Types of Machine Learning

Regression for Recommender System (1/2)

data ML skill

• data: how many users have rated some movies
• skill: predict how a user would rate an unrated movie

A Hot Problem
• competition held by Netflix in 2006

• 100,480,507 ratings that 480,189 users gave to 17,770 movies
• 10% improvement = 1 million dollar prize

• similar competition (movies→ songs) held by Yahoo! in KDDCup
2011

• 252,800,275 ratings that 1,000,990 users gave to 624,961 songs

How can machines learn our preferences?
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Learning from Data Types of Machine Learning

Regression for Recommender System (2/2)

Match movie and
viewer factors

predicted
rating

comedy content

action content

blockbuster?

Tom
Cruise in it?

like
s To

m
Crui

se?

pre
fer
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ckb
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?

like
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ion
?

like
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edy
?

movie

viewer

add contributions
from each factor

A Possible ML Solution
• pattern:

rating← viewer/movie factors
• learning:

→

known rating
→ learned factors
→ unknown rating prediction

key part of the world-champion (again!)
system from National Taiwan Univ.

in KDDCup 2011
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Learning from Data Types of Machine Learning

Supervised versus Unsupervised

coin recognition with yn
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supervised multiclass classification

coin recognition without yn

M
a
s
s

Size

unsupervised multiclass classification
⇐⇒ ‘clustering’

Other Clustering Problems
• articles⇒ topics
• consumer profiles⇒ consumer groups

clustering: a challenging but useful problem
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Learning from Data Types of Machine Learning

Supervised versus Unsupervised

coin recognition with yn
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Other Clustering Problems
• articles⇒ topics
• consumer profiles⇒ consumer groups

clustering: a challenging but useful problem
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Learning from Data Types of Machine Learning

Semi-supervised: Coin Recognition with Some yn
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supervised
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semi-supervised

M
a
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Size

unsupervised (clustering)

Other Semi-supervised Learning Problems
• face images with a few labeled⇒ face identifier (Facebook)
• medicine data with a few labeled⇒ medicine effect predictor

semi-supervised learning: leverage
unlabeled data to avoid ‘expensive’ labeling
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Learning from Data Types of Machine Learning

Reinforcement Learning
a ‘very different’ but natural way of learning

Teach Your Dog: Say ‘Sit Down’
The dog pees on the ground.
BAD DOG. THAT’S A VERY WRONG ACTION.

• cannot easily show the dog that yn = sit
when xn = ‘sit down’

• but can ‘punish’ to say ỹn = pee is wrong

Other Reinforcement Learning Problems Using (x, ỹ ,goodness)
• (customer, ad choice, ad click earning)⇒ ad system
• (cards, strategy, winning amount)⇒ black jack agent

reinforcement: learn with ‘partial/implicit
information’ (often sequentially)
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Learning from Data Types of Machine Learning

Reinforcement Learning
a ‘very different’ but natural way of learning

Teach Your Dog: Say ‘Sit Down’
The dog sits down.
Good Dog. Let me give you some cookies.

• still cannot show yn = sit
when xn = ‘sit down’

• but can ‘reward’ to say ỹn = sit is good

Other Reinforcement Learning Problems Using (x, ỹ ,goodness)
• (customer, ad choice, ad click earning)⇒ ad system
• (cards, strategy, winning amount)⇒ black jack agent

reinforcement: learn with ‘partial/implicit
information’ (often sequentially)
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Learning from Data Step-by-step Machine Learning

Learning from Data ::
Step-by-step Machine Learning
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Learning from Data Step-by-step Machine Learning

Step-by-step Machine Learning
unknown target function

f : X → Y
(ideal credit approval formula)

training examples
D : (x1, y1), · · · , (xN , yN )

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

1 choose error measure: how g(x) ≈ f (x)

2 decide hypothesis set H
3 optimize error and more on D as A
4 pray for generalization:

whether g(x) ≈ f (x) for unseen x
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Learning from Data Step-by-step Machine Learning

Choose Error Measure

g ≈ f can often evaluate by
averaged err (g(x), f (x)), called pointwise error measure

in-sample (within data)

Ein(g) =
1
N

N∑

n=1

err(g(xn), f (xn)︸ ︷︷ ︸
yn

)

out-of-sample (future data)

Eout(g) = E
future x

err(g(x), f (x))

will start from 0/1 error err(ỹ , y) = Jỹ 6= yK
for classification
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Learning from Data Step-by-step Machine Learning

Choose Hypothesis Set (for Credit Approval)
age 23 years

annual salary NTD 1,000,000
year in job 0.5 year

current debt 200,000

• For x = (x1, x2, · · · , xd ) ‘features of customer’, compute a
weighted ‘score’ and

approve credit if
∑d

i=1
wixi > threshold

deny credit if
∑d

i=1
wixi < threshold

• Y:
{

+1(good),−1(bad)
}

, 0 ignored—linear formula h ∈ H are

h(x) = sign

((
d∑

i=1

wixi

)
− threshold

)

linear (binary) classifier,
called ‘perceptron’ historically
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Learning from Data Step-by-step Machine Learning

Optimize Error (and More) on Data
H = all possible perceptrons, g =?

• want: g ≈ f (hard when f unknown)
• almost necessary: g ≈ f on D, ideally

g(xn) = f (xn) = yn

• difficult: H is of infinite size
• idea: start from some g0, and ‘correct’ its

mistakes on D

let’s visualize without math
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Learning from Data Step-by-step Machine Learning

Seeing is Believing
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Learning from Data Step-by-step Machine Learning

Pray for Generalization

(pictures from Google Image Search)

Parent

?

(picture, label) pairs

?

Kid’s good
hypothesisbrain

'
&

$
%-

6

alternatives

Target f (x) + noise

?

examples (picture xn, label yn)

?

learning good
hypothesis
g(x) ≈ f (x)

algorithm

'
&

$
%-

6

hypothesis set H

challenge:
see only {(xn, yn)} without knowing f nor noise

?
=⇒ generalize to unseen (x, y) w.r.t. f (x)
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Learning from Data Step-by-step Machine Learning

Generalization Is Non-trivial
Bob impresses Alice by memorizing every given (movie, rank);

but too nervous about a new movie and guesses randomly

(pictures from Google Image Search)

memorize 6= generalize
perfect from Bob’s view 6= good for Alice
perfect during training 6= good when testing

take-home message: if H is simple (like lines),
generalization is usually possible
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Learning from Data Step-by-step Machine Learning

Mini-Summary

Learning from Data
What is Machine Learning

use data to approximate target
Components of Machine Learning

algorithm A takes data D and hypotheses H to get hypothesis g
Types of Machine Learning

variety of problems almost everywhere
Step-by-step Machine Learning

error, hypotheses, optimize, generalize
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Fundamental Machine Learning Models

Roadmap

Fundamental Machine Learning Models
Linear Regression
Logistic Regression
Nonlinear Transform
Decision Tree
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Fundamental Machine Learning Models Linear Regression

Fundamental Machine Learning Models ::
Linear Regression
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Fundamental Machine Learning Models Linear Regression

Credit Limit Problem
age 23 years

gender female
annual salary NTD 1,000,000

year in residence 1 year
year in job 0.5 year

current debt 200,000

credit limit? 100,000

unknown target function
f : X → Y

(ideal credit limit formula)

training examples
D : (x1, y1), · · · , (xN , yN )

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

Y = R: regression
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Fundamental Machine Learning Models Linear Regression

Linear Regression Hypothesis

age 23 years
annual salary NTD 1,000,000

year in job 0.5 year
current debt 200,000

• For x = (x0, x1, x2, · · · , xd ) ‘features of customer’,
approximate the desired credit limit with a weighted sum:

y ≈
d∑

i=0

wixi

• linear regression hypothesis: h(x) = wT x

h(x): like perceptron, but without the sign
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Fundamental Machine Learning Models Linear Regression

Illustration of Linear Regression

x = (x) ∈ R

x

y

x = (x1, x2) ∈ R2

x1
x2

y

x1
x2

y

linear regression:
find lines/hyperplanes with small residuals
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Fundamental Machine Learning Models Linear Regression

The Error Measure

popular/historical error measure:
squared error err(ŷ , y) = (ŷ − y)2

in-sample

Ein(hw) =
1
N

N∑

n=1

(h(xn)︸ ︷︷ ︸
wT xn

− yn)2

out-of-sample

Eout(w) = E
(x,y)∼P

(wT x− y)2

next: how to minimize Ein(w)?
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Fundamental Machine Learning Models Linear Regression

Minimize Ein

min
w

Ein(w) =
1
N

N∑

n=1

(wT xn − yn)2

w

Ein

• Ein(w): continuous, differentiable, convex
• necessary condition of ‘best’ w

∇Ein(w) ≡




∂Ein
∂w0

(w)
∂Ein
∂w1

(w)

. . .
∂Ein
∂wd

(w)


 =




0
0
. . .

0




—not possible to ‘roll down’

task: find wLIN such that ∇Ein(wLIN) = 0

Hsuan-Tien Lin (NTU CSIE) Quick Tour of Machine Learning 40/128



Fundamental Machine Learning Models Linear Regression

Linear Regression Algorithm
1 from D, construct input matrix X and output vector y by

X =




−− xT
1 −−

−− xT
2 −−
· · ·

− − xT
N −−




︸ ︷︷ ︸
N×(d+1)

y =




y1
y2
· · ·
yN




︸ ︷︷ ︸
N×1

2 calculate pseudo-inverse X†︸︷︷︸
(d+1)×N

3 return wLIN︸︷︷︸
(d+1)×1

= X†y

simple and efficient
with good † routine
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Fundamental Machine Learning Models Linear Regression

Is Linear Regression a ‘Learning Algorithm’?

wLIN = X†y

No!
• analytic (closed-form)

solution, ‘instantaneous’
• not improving Ein nor

Eout iteratively

Yes!
• good Ein?

yes, optimal!
• good Eout?

yes, ‘simple’ like perceptrons
• improving iteratively?

somewhat, within an iterative
pseudo-inverse routine

if Eout(wLIN) is good, learning ‘happened’!
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Fundamental Machine Learning Models Logistic Regression

Fundamental Machine Learning Models ::
Logistic Regression
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Fundamental Machine Learning Models Logistic Regression

Heart Attack Prediction Problem (1/2)
age 40 years

gender male
blood pressure 130/85
cholesterol level 240

weight 70

heart disease? yes
unknown target

distribution P(y |x)
containing f (x) + noise

training examples
D : (x1, y1), · · · , (xN , yN )

learning
algorithm
A

final hypothesis
g ≈ f

hypothesis set
H

error measure
err

êrr

binary classification:

ideal f (x) = sign
(
P(+1|x)− 1

2

)
∈ {−1,+1}

because of classification err
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Fundamental Machine Learning Models Logistic Regression

Heart Attack Prediction Problem (2/2)
age 40 years

gender male
blood pressure 130/85
cholesterol level 240

weight 70

heart attack? 80% risk
unknown target

distribution P(y |x)
containing f (x) + noise

training examples
D : (x1, y1), · · · , (xN , yN )

learning
algorithm
A

final hypothesis
g ≈ f

hypothesis set
H

error measure
err

êrr

‘soft’ binary classification:

f (x) = P(+1|x) ∈ [0,1]

Hsuan-Tien Lin (NTU CSIE) Quick Tour of Machine Learning 45/128



Fundamental Machine Learning Models Logistic Regression

Soft Binary Classification
target function f (x) = P(+1|x) ∈ [0,1]

ideal (noiseless) data
(

x1, y ′1 = 0.9 = P(+1|x1)
)

(
x2, y ′2 = 0.2 = P(+1|x2)

)

...(
xN , y ′N = 0.6 = P(+1|xN)

)

actual (noisy) data
(

x1, y1 = ◦ ∼ P(y |x1)
)

(
x2, y2 = × ∼ P(y |x2)

)

...(
xN , yN = × ∼ P(y |xN)

)

same data as hard binary classification,
different target function
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Fundamental Machine Learning Models Logistic Regression

Soft Binary Classification
target function f (x) = P(+1|x) ∈ [0,1]

ideal (noiseless) data
(

x1, y ′1 = 0.9 = P(+1|x1)
)

(
x2, y ′2 = 0.2 = P(+1|x2)

)

...(
xN , y ′N = 0.6 = P(+1|xN)

)

actual (noisy) data
(

x1, y ′1 = 1 =
r
◦ ?∼ P(y |x1)

z)
(

x2, y ′2 = 0 =
r
◦ ?∼ P(y |x2)

z)

...(
xN , y ′N = 0 =

r
◦ ?∼ P(y |xN)

z)

same data as hard binary classification,
different target function
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Fundamental Machine Learning Models Logistic Regression

Logistic Hypothesis
age 40 years

gender male
blood pressure 130/85
cholesterol level 240

• For x = (x0, x1, x2, · · · , xd ) ‘features of
patient’, calculate a weighted ‘risk score’:

s =
d∑

i=0

wixi

• convert the score to estimated probability
by logistic function θ(s)

θ(s)

1

0 s

logistic hypothesis:
h(x) = θ(wT x) = 1

1+exp(−wT x)
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Fundamental Machine Learning Models Logistic Regression

Minimizing Ein(w)

a popular error: Ein(w) = 1
N
∑N

n=1 ln
(
1 + exp(−ynwT xn)

)
called cross-

entropy derived from maximum likelihood

w

Ein

• Ein(w): continuous, differentiable,
twice-differentiable, convex

• how to minimize? locate valley

want ∇Ein(w) = 0

most basic algorithm:
gradient descent (roll downhill)
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Fundamental Machine Learning Models Logistic Regression

Gradient Descent
For t = 0,1, . . .

wt+1 ← wt + ηv

when stop, return last w as g

• PLA: v comes from mistake correction
• smooth Ein(w) for logistic regression:

choose v to get the ball roll ‘downhill’?
• direction v:

(assumed) of unit length
• step size η:

(assumed) positive Weights, w

In
-s

am
pl

e
E

rr
or

,E
in

gradient descent: v ∝ −∇Ein(wt )
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Fundamental Machine Learning Models Logistic Regression

Putting Everything Together
Logistic Regression Algorithm
initialize w0
For t = 0,1, · · ·

1 compute

∇Ein(wt ) =
1
N

N∑

n=1

θ
(
−ynwT

t xn

)(
−ynxn

)

2 update by
wt+1 ← wt − η∇Ein(wt )

...until ∇Ein(wt+1) ≈ 0 or enough iterations
return last wt+1 as g

can use more sophisticated tools to speed up
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Fundamental Machine Learning Models Logistic Regression

Linear Models Summarized

linear scoring function: s = wT x

linear classification
h(x) = sign(s)

s
x

x

x

x0

1

2

d

h x(   )

plausible err = 0/1

discrete Ein(w):
solvable in special case

linear regression

h(x) = s

s
x

x

x

x0

1

2

d

h x(   )

friendly err = squared

quadratic convex Ein(w):
closed-form solution

logistic regression

h(x) = θ(s)

s
x

x

x

x0

1

2

d

h x(   )

plausible err = cross-entropy

smooth convex Ein(w):
gradient descent

my ‘secret’: linear first!!
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Fundamental Machine Learning Models Nonlinear Transform

Fundamental Machine Learning Models ::
Nonlinear Transform
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Fundamental Machine Learning Models Nonlinear Transform

Linear Hypotheses

up to now: linear hypotheses

• visually: ‘line’-like
boundary

• mathematically: linear
scores s = wT x

but limited . . .

−1 0 1
−1

0

1

• theoretically: complexity
under control :-)

• practically: on some D,
large Ein for every line :-(

how to break the limit of linear hypotheses
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Fundamental Machine Learning Models Nonlinear Transform

Circular Separable

−1 0 1
−1

0

1

−1 0 1
−1

0

1

• D not linear separable
• but circular separable by a circle of

radius
√

0.6 centered at origin:

hSEP(x) = sign
(
−x2

1 − x2
2 + 0.6

)

re-derive Circular-PLA, Circular-Regression,
blahblah . . . all over again? :-)
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Fundamental Machine Learning Models Nonlinear Transform

Circular Separable and Linear Separable

h(x) = sign


 0.6︸︷︷︸

w̃0

· 1︸︷︷︸
z0

+(−1)︸ ︷︷ ︸
w̃1

· x2
1︸︷︷︸

z1

+(−1)︸ ︷︷ ︸
w̃2

· x2
2︸︷︷︸

z2




= sign
(

w̃T z
)

x1

x2

−1 0 1
−1

0

1

• {(xn, yn)} circular separable
=⇒ {(zn, yn)} linear separable

• x ∈ X Φ7−→ z ∈ Z:
(nonlinear) feature
transform Φ z1

z2

0 0.5 1

0

0.5

1

circular separable in X =⇒ linear separable in Z
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Fundamental Machine Learning Models Nonlinear Transform

General Quadratic Hypothesis Set
a ‘bigger’ Z-space with Φ2(x) = (1, x1, x2, x2

1 , x1x2, x2
2 )

perceptrons in Z-space⇐⇒ quadratic hypotheses in X -space

HΦ2 =
{

h(x) : h(x) = h̃(Φ2(x)) for some linear h̃ on Z
}

• can implement all possible quadratic curve boundaries:
circle, ellipse, rotated ellipse, hyperbola, parabola, . . .

⇐=

ellipse 2(x1 + x2 − 3)2 + (x1 − x2 − 4)2 = 1

⇐= w̃T = [33,−20,−4,3,2,3]

include lines and constants as degenerate
cases

Hsuan-Tien Lin (NTU CSIE) Quick Tour of Machine Learning 56/128



Fundamental Machine Learning Models Nonlinear Transform

Good Quadratic Hypothesis
Z-space X -space

perceptrons ⇐⇒ quadratic hypotheses
good perceptron ⇐⇒ good quadratic hypothesis

separating perceptron ⇐⇒ separating quadratic hypothesis

z1

z2

0 0.5 1

0

0.5

1

⇐⇒
x1

x2

−1 0 1
−1

0

1

• want: get good perceptron in Z-space
• known: get good perceptron in X -space with data {(xn, yn)}

solution: get good perceptron in Z-space with data
{(zn = Φ2(xn), yn)}
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Fundamental Machine Learning Models Nonlinear Transform

The Nonlinear Transform Steps

−1 0 1
−1

0

1

Φ−→

0 0.5 1

0

0.5

1

↓ A

−1 0 1
−1

0

1

Φ−1

←−
Φ−→

0 0.5 1

0

0.5

1

1 transform original data {(xn, yn)} to {(zn = Φ(xn), yn)} by Φ

2 get a good perceptron w̃ using {(zn, yn)}
and your favorite linear algorithm A

3 return g(x) = sign
(
w̃TΦ(x)

)
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Fundamental Machine Learning Models Nonlinear Transform

Nonlinear Model via Nonlinear Φ + Linear Models

−1 0 1
−1

0

1

Φ−→

0 0.5 1

0

0.5

1

↓ A

−1 0 1
−1

0

1

Φ−1

←−
Φ−→

0 0.5 1

0

0.5

1

two choices:
• feature transform
Φ

• linear model A,
not just binary
classification

Pandora’s box :-):
can now freely do quadratic PLA, quadratic regression,

cubic regression, . . ., polynomial regression
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Fundamental Machine Learning Models Nonlinear Transform

Feature Transform Φ

Φ−→

Average Intensity

Sy
m

m
et

ry

not 1
1

↓ A

Φ−1

←−
Φ−→

Average Intensity

Sy
m

m
et

ry

more generally, not just polynomial:

raw (pixels)
domain knowledge−→ concrete (intensity, symmetry)

the force, too good to be true? :-)
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Fundamental Machine Learning Models Nonlinear Transform

Computation/Storage Price
Q-th order polynomial transform: ΦQ(x) =

(
1,
x1, x2, . . . , xd ,

x2
1 , x1x2, . . . , x2

d ,

. . . ,

xQ
1 , x

Q−1
1 x2, . . . , xQ

d

)

=

1︸︷︷︸
w̃0

+ d̃︸︷︷︸
others

dimensions

= # ways of ≤ Q-combination from d kinds with repetitions

=
(Q+d

Q

)
=
(Q+d

d

)
= O

(
Qd)

= efforts needed for computing/storing z = ΦQ(x) and w̃

Q large =⇒ difficult to compute/store
AND curve too complicated
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Fundamental Machine Learning Models Nonlinear Transform

Generalization Issue

Φ1 (original x)

which one do you prefer? :-)
• Φ1 ‘visually’ preferred
• Φ4: Ein(g) = 0 but overkill

Φ4

how to pick Q?
model selection (to be discussed) important
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Fundamental Machine Learning Models Decision Tree

Fundamental Machine Learning Models ::
Decision Tree
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Fundamental Machine Learning Models Decision Tree

Decision Tree for Watching MOOC Lectures

G(x) =
T∑

t=1

qt (x) · gt (x)

• base hypothesis gt (x):
leaf at end of path t ,
a constant here

• condition qt (x):
Jis x on path t?K

• usually with simple
internal nodes

quitting
time?

has a
date?

N

true

Y

false

< 18:30

Y

between

deadline?

N

> 2 days

Y

between

N

< −2 days

> 21:30

decision tree: arguably one of the most
human-mimicking models
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Fundamental Machine Learning Models Decision Tree

Recursive View of Decision Tree
Path View: G(x) =

∑T
t=1 Jx on path tK · leaft (x)

quitting
time?

has a
date?

N

true

Y

false

< 18:30

Y

between

deadline?

N

> 2 days

Y

between

N

< −2 days

> 21:30

Recursive View

G(x) =
C∑

c=1

Jb(x) = cK ·Gc(x)

• G(x): full-tree hypothesis
• b(x): branching criteria
• Gc(x): sub-tree hypothesis at

the c-th branch

tree = (root, sub-trees), just like what
your data structure instructor would say :-)
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Fundamental Machine Learning Models Decision Tree

A Basic Decision Tree Algorithm

G(x) =
C∑

c=1
Jb(x) = cK Gc(x)

function DecisionTree
(
data D = {(xn, yn)}Nn=1

)

if termination criteria met
return base hypothesis gt (x)

else
1 learn branching criteria b(x)

2 split D to C parts Dc = {(xn, yn) : b(xn) = c}
3 build sub-tree Gc ← DecisionTree(Dc)

4 return G(x) =
C∑

c=1
Jb(x) = cK Gc(x)

four choices: number of branches, branching
criteria, termination criteria, & base hypothesis
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Fundamental Machine Learning Models Decision Tree

Classification and Regression Tree (C&RT)
function DecisionTree(data D = {(xn, yn)}Nn=1)
if termination criteria met

return base hypothesis gt (x)
else ...

2 split D to C parts Dc = {(xn, yn) : b(xn) = c}

choices
• C = 2 (binary tree)
• gt (x) = Ein-optimal constant

• binary/multiclass classification (0/1 error): majority of {yn}
• regression (squared error): average of {yn}

• branching: threshold some selected dimension
• termination: fully-grown, or better pruned

disclaimer:
C&RT here is based on selected components
of CARTTM of California Statistical Software
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Fundamental Machine Learning Models Decision Tree

A Simple Data Set

C&RT

C&RT: ‘divide-and-conquer’
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A Simple Data Set
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Fundamental Machine Learning Models Decision Tree

Practical Specialties of C&RT

• human-explainable
• multiclass easily
• categorical features easily
• missing features easily
• efficient non-linear training (and testing)

—almost no other learning model share all such specialties,
except for other decision trees

another popular decision tree algorithm:
C4.5, with different choices of heuristics
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Fundamental Machine Learning Models Decision Tree

Mini-Summary

Fundamental Machine Learning Models
Linear Regression

analytic solution by pseudo inverse
Logistic Regression

minimize cross-entropy error with gradient descent
Nonlinear Transform

the secrete ‘force’ to enrich your model
Decision Tree

human-like explainable model learned recursively
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Hazard of Overfitting

Roadmap

Hazard of Overfitting
Overfitting
Data Manipulation and Regularization
Validation
Principles of Learning
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Hazard of Overfitting Overfitting

Hazard of Overfitting ::
Overfitting
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Hazard of Overfitting Overfitting

Theoretical Foundation of Statistical Learning
if training and testing from same distribution, with a high probability,

Eout(g)︸ ︷︷ ︸
test error

≤ Ein(g)︸ ︷︷ ︸
training error

+

√
8
N ln

(
4(2N)dVC(H)

δ

)

︸ ︷︷ ︸
Ω:price of using H

in-sample error

model complexity

out-of-sample error

VC dimension, dvc

E
rr

or

d∗vc

• dVC(H): complexity of H,
≈ # of parameters to
describe H

• dVC ↑: Ein ↓ but Ω ↑
• dVC ↓: Ω ↓ but Ein ↑
• best d∗VC in the middle

powerful H not always good!
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Hazard of Overfitting Overfitting

Bad Generalization

• regression for x ∈ R with N = 5
examples

• target f (x) = 2nd order polynomial
• label yn = f (xn) + very small noise
• linear regression in Z-space +
Φ = 4th order polynomial

• unique solution passing all examples
=⇒ Ein(g) = 0

• Eout(g) huge

x

y

Data
Target
Fit

bad generalization: low Ein, high Eout
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Hazard of Overfitting Overfitting

Bad Generalization and Overfitting

• take dVC = 1126 for learning:
bad generalization
—(Eout - Ein) large

• switch from dVC = d∗VC to dVC = 1126:
overfitting
—Ein ↓, Eout ↑

• switch from dVC = d∗VC to dVC = 1:
underfitting
—Ein ↑, Eout ↑

in-sample error

model complexity

out-of-sample error

VC dimension, dvc

E
rr

or

d∗vc

bad generalization: low Ein, high Eout;
overfitting: lower Ein, higher Eout
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Hazard of Overfitting Overfitting

Cause of Overfitting: A Driving Analogy

x

y

‘good fit’ =⇒
x

y

Data
Target
Fit

overfit

learning driving
overfit commit a car accident

use excessive dVC ‘drive too fast’
noise bumpy road

limited data size N limited observations about road condition

let’s ‘visualize’ overfitting
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Hazard of Overfitting Overfitting

Impact of Noise and Data Size

impact of σ2 versus N:
stochastic noise

Number of Data Points, N

N
oi

se
Le

ve
l,
σ
2

80 100 120
-0.2

-0.1

0

0.1

0.2

0

1

2

reasons of serious overfitting:
data size N ↓ overfit ↑

stochastic noise ↑ overfit ↑

overfitting ‘easily’ happens
(more on ML Foundations, Lecture 13)
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Hazard of Overfitting Overfitting

Linear Model First

in-sample error

model complexity

out-of-sample error

VC dimension, dvc
E

rr
or

d∗vc

• tempting sin: use H1126, low Ein(g1126) to fool your boss
—really? :-( a dangerous path of no return

• safe route: H1 first
• if Ein(g1) good enough, live happily thereafter :-)
• otherwise, move right of the curve

with nothing lost except ‘wasted’ computation

linear model first:
simple, efficient, safe, and workable!
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Hazard of Overfitting Overfitting

Driving Analogy Revisited

learning driving
overfit commit a car accident

use excessive dVC ‘drive too fast’
noise bumpy road

limited data size N limited observations about road condition
start from simple model drive slowly
data cleaning/pruning use more accurate road information

data hinting exploit more road information
regularization put the brakes

validation monitor the dashboard

all very practical techniques
to combat overfitting
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Hazard of Overfitting Data Manipulation and Regularization

Hazard of Overfitting ::
Data Manipulation and Regularization
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Hazard of Overfitting Data Manipulation and Regularization

Data Cleaning/Pruning

• if ‘detect’ the outlier 5 at the top by
• too close to other ◦, or too far from other ×
• wrong by current classifier
• . . .

• possible action 1: correct the label (data cleaning)
• possible action 2: remove the example (data pruning)

possibly helps, but effect varies
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Hazard of Overfitting Data Manipulation and Regularization

Data Hinting

• slightly shifted/rotated digits carry the same meaning
• possible action: add virtual examples by shifting/rotating the

given digits (data hinting)

possibly helps, but watch out
not to steal the thunder

Hsuan-Tien Lin (NTU CSIE) Quick Tour of Machine Learning 82/128



Hazard of Overfitting Data Manipulation and Regularization

Regularization: The Magic

x

y

‘regularized fit’ ⇐=

x

y

Data
Target
Fit

overfit

• idea: ‘step back’ from 10-th order polynomials to 2-nd order ones

H0 H1 H2 H3 · · ·

• name history: function approximation for ill-posed problems

how to step back?
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Hazard of Overfitting Data Manipulation and Regularization

Step Back by Minimizing the Augmented Error

Augmented Error

Eaug(w) = Ein(w) + λ
N wT w

VC Bound

Eout(w) ≤ Ein(w) + Ω(H)

• regularizer wT w

= Ω(w)

: complexity of a single hypothesis
• generalization price Ω(H): complexity of a hypothesis set
• if λ

N Ω(w) ‘represents’ Ω(H) well,
Eaug is a better proxy of Eout than Ein

minimizing Eaug:

(heuristically) operating with the better proxy;
(technically) enjoying flexibility of whole H
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Hazard of Overfitting Data Manipulation and Regularization

The Optimal λ

stochastic noise

Regularization Parameter, λ

E
xp

ec
te

d
E

ou
t

σ2 = 0

σ2 = 0.25

σ2 = 0.5

0.5 1 1.5 2

0.25

0.5

0.75

1

• more noise⇐⇒ more regularization needed
—more bumpy road⇐⇒ putting brakes more

• noise unknown—important to make proper choices

how to choose?
validation!
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Hazard of Overfitting Validation

Hazard of Overfitting ::
Validation
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Hazard of Overfitting Validation

Model Selection Problem

H1

which one do you prefer? :-)

H2

• given: M models H1,H2, . . . ,HM , each with corresponding
algorithm A1,A2, . . . ,AM

• goal: select Hm∗ such that gm∗ = Am∗(D) is of low Eout(gm∗)

• unknown Eout, as always :-)
• arguably the most important practical problem of ML

how to select? visually?
—no, can you really visualize R1126? :-)
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Hazard of Overfitting Validation

Validation Set Dval

Ein(h) Eval(h)
↑ ↑
D︸︷︷︸

size N

→ Dtrain︸ ︷︷ ︸
size N−K

∪ Dval︸︷︷︸
size K

↓ ↓
gm = Am(D) g−m = Am(Dtrain)

• Dval ⊂ D: called validation set—‘on-hand’ simulation of test set
• to connect Eval with Eout:

select K examples from D at random
• to make sure Dval ‘clean’:

feed only Dtrain to Am for model selection

Eout(g−m) ≤ Eval(g−m) + ‘small′
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Hazard of Overfitting Validation

Model Selection by Best Eval

m∗ = argmin
1≤m≤M

(Em = Eval(Am(Dtrain)))

• generalization guarantee for all m:
Eout(g−m) ≤ Eval(g−m) + ‘small′

• heuristic gain from N − K to N:

Eout


 gm∗︸︷︷︸
Am∗ (D)


 ≤ Eout


 g−m∗︸︷︷︸
Am∗ (Dtrain)




H1 H2 HM

g1 g2 gM· · ·

· · ·

E1 · · · EM

Dval

Dtrain

gm∗

E2

(Hm∗ , Em∗)

︸ ︷︷ ︸
pick the best

D

Eout(gm∗) ≤ Eout(g−m∗) ≤ Eval(g−m∗) + ‘small′
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Hazard of Overfitting Validation

V -fold Cross Validation
making validation more stable

• V -fold cross-validation: random-partition of D to V equal parts,

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

train trainvalidate

D︷ ︸︸ ︷

take V − 1 for training and 1 for validation orderly

Ecv(H,A) =
1
V

V∑

v=1

E (v)
val (g−v )

• selection by Ecv: m∗ = argmin
1≤m≤M

(Em = Ecv(Hm,Am))

practical rule of thumb: V = 10
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Hazard of Overfitting Validation

Final Words on Validation

‘Selecting’ Validation Tool
• V -Fold generally preferred over single validation if computation

allows
• 5-Fold or 10-Fold generally works well

Nature of Validation
• all training models: select among hypotheses
• all validation schemes: select among finalists
• all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-),
report test result, not best validation result
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Hazard of Overfitting Principles of Learning

Hazard of Overfitting ::
Principles of Learning
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Hazard of Overfitting Principles of Learning

Occam’s Razor for Learning

The simplest model that fits the data is also the most
plausible.

which one do you prefer? :-)

My KISS Principle:
Keep It Simple,����XXXXStupid Safe
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Hazard of Overfitting Principles of Learning

Sampling Bias
If the data is sampled in a biased way, learning will pro-
duce a similarly biased outcome.

philosophical explanation:
study Math hard but test English: no strong test guarantee

A True Personal Story
• Netflix competition for movie recommender system:

10% improvement = 1M US dollars
• on my own validation data, first shot, showed 13% improvement
• why am I still teaching in NTU? :-)

validation: random examples within data;
test: “last” user records “after” data

practical rule of thumb: match test scenario
as much as possible
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Hazard of Overfitting Principles of Learning

Visual Data Snooping

If a data set has affected any step in the learning pro-
cess, its ability to assess the outcome has been com-
promised.

Visualize X = R2

• full Φ2: z = (1, x1, x2, x2
1 , x1x2, x2

2 ), dVC = 6
• or z = (1, x2

1 , x
2
2 ), dVC = 3, after visualizing?

• or better z = (1, x2
1 + x2

2 ) , dVC = 2?
• or even better z =

(
sign(0.6− x2

1 − x2
2 )
)
?

—careful about your brain’s ‘model complexity’
−1 0 1

−1

0

1

if you torture the data long enough, it will
confess :-)
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Hazard of Overfitting Principles of Learning

Dealing with Data Snooping

• truth—very hard to avoid, unless being extremely honest
• extremely honest: lock your test data in safe
• less honest: reserve validation and use cautiously

• be blind: avoid making modeling decision by data
• be suspicious: interpret research results (including your own) by

proper feeling of contamination

one secret to winning KDDCups:

careful balance between
data-driven modeling (snooping) and

validation (no-snooping)
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Hazard of Overfitting Principles of Learning

Mini-Summary

Hazard of Overfitting
Overfitting

the ‘accident’ that is everywhere in learning
Data Manipulation and Regularization

clean data, synthetic data, or augmented error
Validation

honestly simulate testing procedure for proper model selection
Principles of Learning

simple model, matching test scenario, and no snooping
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Modern Machine Learning Models

Roadmap

Modern Machine Learning Models
Support Vector Machine
Random Forest
Adaptive (or Gradient) Boosting
Deep Learning
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Modern Machine Learning Models Support Vector Machine

Modern Machine Learning Models ::
Support Vector Machine
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Modern Machine Learning Models Support Vector Machine

Motivation: Large-Margin Separating Hyperplane

max
w

fatness(w)

subject to w classifies every (xn, yn) correctly
fatness(w) = min

n=1,...,N
distance(xn,w)

max
w

margin(w)

subject to every ynwT xn > 0
margin(w) = min

n=1,...,N
distance(xn,w)

• fatness: formally called margin
• correctness: yn = sign(wT xn)

initial goal: find largest-margin
separating hyperplane
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Modern Machine Learning Models Support Vector Machine

Motivation: Large-Margin Separating Hyperplane

max
w

margin(w)

subject to every ynwT xn > 0
margin(w) = min

n=1,...,N
distance(xn,w)

• fatness: formally called margin
• correctness: yn = sign(wT xn)

initial goal: find largest-margin
separating hyperplane
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Modern Machine Learning Models Support Vector Machine

Soft-Margin Support Vector Machine
initial goal: find largest-margin separating hyperplane

• soft-margin (practical) SVM: not insisting on separating:
• minimize large-margin regularizer + C· separation error,
• just like regularization with augmented error

min Eaug(w) = Ein(w) + λ
N wT w

• two forms:
• finding hyperplane in original space (linear first!!)

LIBLINEAR www.csie.ntu.edu.tw/~cjlin/liblinear
• or in mysterious transformed space hidden in ‘kernels’

LIBSVM www.csie.ntu.edu.tw/~cjlin/libsvm

linear: ‘best’ linear classification model;
non-linear: ‘leading’ non-linear classification model for mid-sized data
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Modern Machine Learning Models Support Vector Machine

Hypothesis of Gaussian SVM
Gaussian kernel K (x,x′) = exp

(
−γ‖x− x′‖2

)

gSVM(x) = sign

(∑

SV

αnynK (xn,x) + b

)

= sign

(∑

SV

αnynexp
(
−γ‖x− xn‖2

)
+ b

)

• linear combination of Gaussians centered at SVs xn

• also called Radial Basis Function (RBF) kernel

Gaussian SVM:
find αn to combine Gaussians centered at xn
& achieve large margin in infinite-dim. space
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Modern Machine Learning Models Support Vector Machine

Support Vector Mechanism
large-margin
hyperplanes

+ higher-order transforms with kernel trick
+ noise tolerance of soft-margin

# not many
boundary sophisticated

• transformed vector z = Φ(x) =⇒ efficient kernel K (x,x′)
• store optimal w =⇒ store a few SVs and αn

new possibility by Gaussian SVM:
infinite-dimensional linear classification, with
generalization ‘guarded by’ large-margin :-)
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Modern Machine Learning Models Support Vector Machine

Practical Need: Model Selection

replacemen • large γ =⇒ sharp
Gaussians =⇒ ‘overfit’?

• complicated even for (C, γ)
of Gaussian SVM

• more combinations if
including other kernels or
parameters

how to select? validation :-)
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Modern Machine Learning Models Support Vector Machine

Step-by-step Use of SVM
strongly recommended: ‘A Practical Guide to Support Vector

Classification’
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

1 scale each feature of your data to a suitable range (say, [−1,1])
2 use a Gaussian RBF kernel
3 use cross validation and grid search to choose good (γ,C)

4 use the best (γ,C) on your data
5 do testing with the learned SVM classifier

all included in easy.py of LIBSVM
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Modern Machine Learning Models Random Forest

Modern Machine Learning Models ::
Random Forest
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Modern Machine Learning Models Random Forest

Random Forest (RF)
random forest (RF) =

bagging (random sampling) + fully-grown C&RT decision tree

function RandomForest(D)
For t = 1,2, . . . ,T

1 request size-N ′ data D̃t by
bootstrapping with D

2 obtain tree gt by DTree(D̃t )

return G = Uniform({gt})

function DTree(D)
if termination return base gt
else

1 learn b(x) and split D to
Dc by b(x)

2 build Gc ← DTree(Dc)

3 return G(x) =
C∑

c=1
Jb(x) = cK Gc(x)

• highly parallel/efficient to learn
• inherit pros of C&RT
• eliminate cons of fully-grown tree
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Modern Machine Learning Models Random Forest

Feature Selection
for x = (x1, x2, . . . , xd ), want to remove
• redundant features: like keeping one of ‘age’ and ‘full birthday’
• irrelevant features: like insurance type for cancer prediction

and only ‘learn’ subset-transform Φ(x) = (xi1 , xi2 , xid′ )
with d ′ < d for g(Φ(x))

advantages:
• efficiency: simpler

hypothesis and shorter
prediction time

• generalization: ‘feature
noise’ removed

• interpretability

disadvantages:
• computation:

‘combinatorial’ optimization
in training

• overfit: ‘combinatorial’
selection

• mis-interpretability

decision tree: a rare model
with built-in feature selection
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Modern Machine Learning Models Random Forest

Feature Selection by Importance

idea: if possible to calculate

importance(i) for i = 1,2, . . . ,d

then can select i1, i2, . . . , id ′ of top-d ′ importance

importance by linear model

score = wT x =
d∑

i=1

wixi

• intuitive estimate: importance(i) = |wi | with some ‘good’ w
• getting ‘good’ w: learned from data
• non-linear models? often much harder

but ‘easy’ feature selection in RF
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Modern Machine Learning Models Random Forest

Feature Importance by Permutation Test

idea: random test
—if feature i needed, ‘random’ values of xn,i degrades performance

permutation test:

importance(i) = performance(D)− performance(D(p))

with D(p) is D with {xn,i} replaced by permuted {xn,i}Nn=1

permutation test: a general statistical tool that
can be easily coupled with RF
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Modern Machine Learning Models Random Forest

A Complicated Data Set

gt (N ′ = N/2) G with first t trees

‘easy yet robust’ nonlinear model
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Modern Machine Learning Models Random Forest

A Complicated Data Set
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Modern Machine Learning Models ::
Adaptive (or Gradient) Boosting
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Apple Recognition Problem
• is this a picture of an apple?
• say, want to teach a class of 6 year olds
• gather photos under CC-BY-2.0 license on Flicker

(thanks to the authors below!)

(APAL stands for Apple and Pear Australia Ltd)

Dan Foy APAL adrianbartel ANdrzej cH. Stuart Webster
https:
//flic.
kr/p/jNQ55

https:
//flic.
kr/p/jzP1VB

https:
//flic.
kr/p/bdy2hZ

https:
//flic.
kr/p/51DKA8

https:
//flic.
kr/p/9C3Ybd

nachans APAL Jo Jakeman APAL APAL
https:
//flic.
kr/p/9XD7Ag

https:
//flic.
kr/p/jzRe4u

https:
//flic.
kr/p/7jwtGp

https:
//flic.
kr/p/jzPYNr

https:
//flic.
kr/p/jzScif
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Apple Recognition Problem
• is this a picture of an apple?
• say, want to teach a class of 6 year olds
• gather photos under CC-BY-2.0 license on Flicker

(thanks to the authors below!)

Mr. Roboto. Richard North Richard North Emilian Robert
Vicol

Nathaniel Mc-
Queen

https:
//flic.
kr/p/i5BN85

https:
//flic.
kr/p/bHhPkB

https:
//flic.
kr/p/d8tGou

https:
//flic.
kr/p/bpmGXW

https:
//flic.
kr/p/pZv1Mf

Crystal jfh686 skyseeker Janet Hudson Rennett Stowe
https:
//flic.
kr/p/kaPYp

https:
//flic.
kr/p/6vjRFH

https:
//flic.
kr/p/2MynV

https:
//flic.
kr/p/7QDBbm

https:
//flic.
kr/p/agmnrk
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Our Fruit Class Begins

• Teacher: Please look at the pictures of apples and non-apples
below. Based on those pictures, how would you describe an
apple? Michael?

• Michael: I think apples are circular.

(Class): Apples are circular.
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Our Fruit Class Continues

• Teacher: Being circular is a good feature for the apples. However,
if you only say circular, you could make several mistakes. What
else can we say for an apple? Tina?

• Tina: It looks like apples are red.

(Class): Apples are somewhat circular and
somewhat red.
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Our Fruit Class Continues More

• Teacher: Yes. Many apples are red. However, you could still make
mistakes based on circular and red. Do you have any other
suggestions, Joey?

• Joey: Apples could also be green.

(Class): Apples are somewhat circular and
somewhat red and possibly green.
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Our Fruit Class Ends

• Teacher: Yes. It seems that apples might be circular, red, green.
But you may confuse them with tomatoes or peaches, right? Any
more suggestions, Jessica?

• Jessica: Apples have stems at the top.

(Class): Apples are somewhat circular, somewhat red, possibly green,
and may have stems at the top.
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Motivation

• students: simple hypotheses gt (like vertical/horizontal lines)
• (Class): sophisticated hypothesis G (like black curve)
• Teacher: a tactic learning algorithm that directs the students to

focus on key examples

next: demo of such an algorithm

Hsuan-Tien Lin (NTU CSIE) Quick Tour of Machine Learning 118/128



Modern Machine Learning Models Adaptive (or Gradient) Boosting

A Simple Data Set

‘Teacher’-like algorithm works!
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Modern Machine Learning Models Adaptive (or Gradient) Boosting

Putting Everything Together

Gradient Boosted Decision Tree (GBDT)
s1 = s2 = . . . = sN = 0
for t = 1,2, . . . ,T

1 obtain gt by A({(xn, yn − sn)}) where A is a (squared-error)
regression algorithm
—such as ‘weak’ C&RT?

2 compute αt = OneVarLinearRegression({(gt (xn), yn − sn)})
3 update sn ← sn + αtgt (xn)

return G(x) =
∑T

t=1 αtgt (x)

GBDT: ‘regression sibling’ of AdaBoost +
decision tree

—very popular in practice
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Modern Machine Learning Models Deep Learning

Modern Machine Learning Models ::
Deep Learning
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Modern Machine Learning Models Deep Learning

Physical Interpretation of Neural Network

x0 = 1

x1

x2

...
xd

+1

tanh

tanh

w (1)
ij w (2)

jk w (3)
kq

+1

tanh

tanh

tanhs(2)
3 x (2)

3

• each layer: pattern feature extracted from data, remember? :-)
• how many neurons? how many layers?

—more generally, what structure?
• subjectively, your design!
• objectively, validation, maybe?

structural decisions:
key issue for applying NNet
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Modern Machine Learning Models Deep Learning

Shallow versus Deep Neural Networks
shallow: few (hidden) layers; deep: many layers

Shallow NNet
• more efficient to train (©)
• simpler structural

decisions (©)
• theoretically powerful

enough (©)

Deep NNet
• challenging to train (×)
• sophisticated structural

decisions (×)
• ‘arbitrarily’ powerful (©)
• more ‘meaningful’? (see

next slide)

deep NNet (deep learning)
gaining attention in recent years
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Modern Machine Learning Models Deep Learning

Meaningfulness of Deep Learning

,

is it a ‘1’? ✲ ✛ is it a ‘5’?

✻

z1 z5

φ1
φ2 φ3 φ4 φ5 φ6

positive weight

negative weight

• ‘less burden’ for each layer: simple to complex features
• natural for difficult learning task with raw features, like vision

deep NNet: currently popular in
vision/speech/. . .
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Modern Machine Learning Models Deep Learning

Challenges and Key Techniques for Deep Learning
• difficult structural decisions:

• subjective with domain knowledge: like convolutional NNet for
images

• high model complexity:
• no big worries if big enough data
• regularization towards noise-tolerant: like

• dropout (tolerant when network corrupted)
• denoising (tolerant when input corrupted)

• hard optimization problem:
• careful initialization to avoid bad local minimum:

called pre-training
• huge computational complexity (worsen with big data):

• novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and
initialization are key techniques
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Modern Machine Learning Models Deep Learning

A Two-Step Deep Learning Framework
Simple Deep Learning

1 for ` = 1, . . . ,L, pre-train
{

w (`)
ij

}
assuming w (1)

∗ , . . . w (`−1)
∗ fixed

(a) (b) (c) (d)

2 train with backprop on pre-trained NNet to fine-tune all
{

w (`)
ij

}

different deep learning models deal with the
steps somewhat differently

Hsuan-Tien Lin (NTU CSIE) Quick Tour of Machine Learning 126/128



Modern Machine Learning Models Deep Learning

Mini-Summary

Modern Machine Learning Models
Support Vector Machine

large-margin boundary ranging from linear to non-linear
Random Forest

uniform blending of many many decision trees
Adaptive (or Gradient) Boosting

keep adding simple hypotheses to gang
Deep Learning

neural network with deep architecture and careful design
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Finale

Thank you!!
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