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About Me
Hsuan-Tien Lin

e Chief Data Scientist, Appier
e Professor, Dept. of CSIE, National Taiwan University

e Co-author of textbook “Learning from Data: A Short
Course”

e Instructor of the NTU-Coursera Mandarin-teaching ML
Massive Open Online Courses
e “Machine Learning Foundations”:
WWW.coursera.org/course/ntumlone
e “Machine Learning Techniques”:
WWW.coursera.org/course/ntumltwo
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Diversity in ML classes
NTU ML 2011 Fall (77 students)

background diversity “maturity” diversity
hani junior: 8

Finance ®information Management Senior: 20
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similarly diverse in RPl and in
Caltech (online course)’

challenge:

serving CS students while
accommodating the needs of
diverse non-CS audience

mindset of the audience? )

"http://work.caltech.edu/telecourse
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Observed Mindsets of the Diverse Audience

highly motivated to learn—not satisfied with only shallow
comic-book stories

often with minimum but non-empty math/programming
background—capable of downloading and trying the latest
packages

words of a student from industry (Caltech online course 2012)

While it's easy to pick up a couple of algorithms from the many text-books
and online materials out there, it is the solid foundation, both mathematical
and practical, as well as this better intuition that | would have missed
studying alone without this class. Also, the cadence of the lectures and the

v

demand: solid foundation (+ better intuition)! ]
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Our Proposed Teaching Approach

foundation-based, and foundation-first

then, compensate foundation with a couple of useful
algorithms/techniques

v

comparison to techniques-based

 techniques-based:
hops through the forest of many latest and greatest techniques

« foundation-based: illustrate the map (core) first to prevent
getting lost in the forest

foundation-based: prepare students for easy
learning of untaught/future techniques J
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Our Proposed Teaching Approach [Cont.]

foundation-based, and foundation-first

then, compensate foundation with a couple of useful
algorithms/techniques

v

comparison to foundation-later

o foundation-later:

e first, techniques to raise interests
e then, foundations to consolidate understanding

o foundation-first: build the basis (core) first to perceive the
techniques from the right angle

foundation-first: let students know when and
how to use the powerful tools before getting
addicted on the power
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Our Proposed Foundation: Three Concepts

understand learnability, approximation and generalization
« when can we learn and what are the tradeoffs?
» conducting machine learning properly

use simple models first

« the linear model coupled with some nonlinear transforms is
typically enough for most applications

« conducting machine learning safely

deal with noise and overfitting carefully

« how to tackle the “dark side” of learning?
« conducting machine learning professionally

our experience: worth starting with those
foundations, even for a diverse audience
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learnability, approximation & generalization
—conducting machine learning properly

good learning (test performance)
= good approximation (training performance)
_|_

a must-teach key message

can be illustrated in different forms (e.g. VC bound,
bias-variance, even human-learning philosophy)

make learning non-trivial and fascinating to students
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learnability, approximation & generalization
—conducting machine learning properly [Cont.]

wrong use of learning (beginner’s mistakes)

ensure good approximation, pray for
—praying for something out-of-control

| A\

right use of learning
ensure , try best for good approximation
—trying something possibly in-control

We cannot guarantee learning. We can “guar-
antee” no disasters. That is, after we learn
we will either declare success or failure, and in
both cases we will be right.
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linear models
—conducting machine learning safely

linear models

with established optimization tools for good approximation

i

after knowing approximation/
a good stage for learning safe technlques

sufficiently useful for many practical problems (Yuan et al., 2012)

building block in sophisticated techniques through feature
transforms

make learning concrete to students
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linear models
—conducting machine learning safely [Cont.]

wrong use of learning (beginner’s mistakes)
start with the “greatest” techniques first — a point of no return

right use of learning
start with the simplest techniques first — and yes, it can work well

a rich and representative family of linear techniques
classification: approx. combinatorial optimization (perceptron-like)
regression: analytic optimization (pseudo-inverse)
logistic regression: iterative optimization (SGD)

Students coming from diverse backgrounds not
only get the big picture, but also the finer
details in a concrete setting.
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deal with noise and overfitting
—conducting machine learning professionally

o overfit = difficult to ensure good
generalization/learning with stochastic
or deterministic noise on finite data

e regularization = tools for further
guaranteeing good generalization

e validation = tools for certifying good
learning

overfit(data size, noise level)

turn amateur students to professionals
make learning artistic to students J
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deal with noise and overfitting
—conducting machine learning professionally
[Cont.]

wrong use of learning (beginner’s mistakes)

apply all possible techniques and choose by
—high risk of overfitting

right use of learning

apply a reasonable number of well-regularized techniques and choose
by best validation result —relatively immune to noise and overfitting

Complex situations call for simpler models. ]
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Teaching/Learning Life After the Foundations:
Techniques

Support Vector Machine Neural Network

generalization large-margin bound #-neuron bound
approximation quadratic programming| _gradient decent et al.

linear model basic formulation neurons

feature transform | through kernel through cascading
regularization large-margin weight-decay or early-stopping
validation #-SV bound for choices in regularization
[libsvm-2.9]$ ./svm-train -t 2 -g 0.05 heart_ scale

optimization finished, #iter = 1966
Total nSV = 113

e good approximation (by choosing kernel and optimization)

e good learning (by using #SV as validation indicator)
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Teaching/Learning Life After the Foundations [Cont.]

Caltech 2012: (mixed) 7 weeks of foundations, 0.5 week of NNet,
0.5 week of RBF Net, 1 week of SVM

NTU ML (with MOOCs): (sequential) 8 weeks of foundations, 3
weeks of SVM, 3 weeks of aggregation, 2 weeks of deep learning
—with an in-class data mining competition where students
exploited taught/not-taught techniques with ease

often incremental efforts to teach/learn a new
technique after solid foundations J
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Mini Summary

foundation-based, foundation-first
—works well in our experience

learnability: philosophical understanding, make learning
non-trivial, conduct learning properly

linear models: algorithmic modeling, make learning concrete,
conduct learning safely

overfitting: practical tuning, make learning artistic, conduct
learning professionally
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Excitement of Competition
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Machine Learning Competition: Mini-KDD Cup

an annual competition on KDD (knowledge discovery and data
mining)

organized by ACM SIGKDD, starting from 1997, now the most
prestigious data mining competition

usually lasts 3-4 months

participants include famous research labs (IBM, AT&T) and top
universities (Stanford, Berkeley)
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My Design: Time Line
key dates:

o report due (i.e. overall competition end): as late as possible
—often 4 days before | need to submit the scores to NTU

e award ceremony (i.e. early competition end): usually last class

e announcement: best timing to be right after midterm
—but may highly depend on TAs’ schedule

o start designing: two or more weeks before announcement
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My Design: Story/Topic

an interesting story makes the competition exciting!
e ML2014:

In this final project, you are going to be part of an exciting machine
learning competition. Consider a startup company that features a
coming product on the mobile phone. The core of the product is a
robust character recognition system...... To win the prize, you need to
fight for the leading positions on the score board. Then, you need to
submit a comprehensive report that describes not only the
recommended approaches, but also the reasoning behind your
recommendations. Well, let’s get started!

e more interesting ones:

e ML2014, ML2013: optical character recognition
e ML2012: ad click prediction (derived from KDDCup 2012)

—often okay to reuse with modifications
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My Design: Team Size

most ideal team size IMHO is 3:

e collaborative, dispute resolution, fewer free riders, etc.

e but can also allow 4 if class size too big for the TAs to grade
usually allow < 3:

 so students do not have the burden to find exactly 3
o students can flexibly break teams if needed
e but evaluate with workloads of 3 for fairness

still sometimes hard for some students to find team members:
e motto: provide matching mechanism, but not force anyone to any
team

prevent free riders: need workload distribution in report

Hsuan-Tien Lin (Appier) Teaching Machine Learning 20/32



My Design: Scoreboard
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e core place that makes the game

» thanks to my TAs in all those years for creating and maintaining

the service

¢ basically, a simple submit-judge-scoreboard system

o usually provide the students an additional description field to
interact—though few use it for serious purposes

exciting

Hsuan-Tien Lin (Appier)
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My Design: Award Ceremony

e purpose: to add more fun

o light presents (postcards, paper notebooks, etc.)

o some students list their good-performing awards in resume
¢ may serve some educational purposes

¢ in addition to good-performing awards, can also give interesting
awards
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ML2012: How Much Overfitting Can We Get?
9472 submissions from 52 teams within 1.5 months......
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Award 4: Happy 2013 Award

team scoreboard  hidden  algorithm time
Minimaximizer 0.7632 0.7407 rwa 2013/01/01 00:00:08
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Award 7-8: Hard Working Awards

team submission count
A 1097
anything 1149
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My Design: Grade

e generally based on report, not competition, but correlated
e too much emphasis on competition = utilitarianism
e too little emphasis on competition = less interesting game
e ask TAs to act as “bosses”: The grading TAs would grade
qualitatively with letters: A++[210], A+[196], A[186], B+[176],
B[166], C+[156], C[146], D+[136], D[126], F+[116], F[76], F-[36],
Z[0]
o list basic requirements corresponding to B
e to get B, students only need to work ~ usual homeworks
e to get more, need more to convince the TAs
¢ generally “loose” about basic requirements
—most students perform way beyond the basic requirements
anyway
e generally team grade, but adjust individual grade if workload
unbalanced
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My Design: Loading

e ideal: a bit harder than homework

« estimate: 60 to 90 man-hours to finish basic requirements (30
man-hour per member)

¢ sometimes need to adjust loading of other homeworks
—not an easy task, though
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My Design: TAs

o good TAs’ help essential—I cannot thank them enough!
o design, system setup, discuss with students J
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My Design: TAs
always note: TAs are busy!!
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My Design: Instructor

my main job: heat up the competition
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My Design: Instructor

my two other jobs:
¢ participate seriously in the design
¢ maintain fairness of competition
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Some Summary Thoughts

Positive Side

e fun for most students, TAs and instructor
o students, TAs and instructor learn a lot

Negative Side

o exhausting for most students, TAs and instructor
¢ can be disappointing for some students

Questions and Discussions? )
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