some parts based on Lin, Madgon-Ismail, and Abu-Mostafa. Teaching machine learning to a diverse audience: the foundation-based approach. Teaching Machine Learning Workshop @ ICML ’12.
About Me

Hsuan-Tien Lin

- Chief Data Scientist, Appier
- Professor, Dept. of CSIE, National Taiwan University
- Co-author of textbook “Learning from Data: A Short Course”
- Instructor of the NTU-Coursera Mandarin-teaching ML Massive Open Online Courses
 - “Machine Learning Foundations”: www.coursera.org/course/ntumltone
 - “Machine Learning Techniques”: www.coursera.org/course/ntumltwo
Diversity in ML classes

NTU ML 2011 Fall (77 students)

- **background diversity**
- **“maturity” diversity**
 - junior: 8
 - senior: 20
 - master: 44
 - phd: 5
- similarly diverse in RPI and in Caltech (online course)

challenge:
serving CS students while accommodating the needs of diverse non-CS audience

mindset of the audience?

1http://work.caltech.edu/telecourse
Observed Mindsets of the Diverse Audience

- highly **motivated** to learn—not satisfied with only shallow comic-book stories
- often with **minimum but non-empty** math/programming background—capable of downloading and trying the latest packages

words of a student from industry (Caltech online course 2012)

While it’s easy to pick up a couple of algorithms from the many text-books and online materials out there, it is the solid foundation, both mathematical and practical, as well as this better intuition that I would have missed studying alone without this class. Also, the cadence of the lectures and the demand: **solid foundation** (+ better intuition)!
Our Proposed Teaching Approach

- foundation-based, and foundation-first
- then, compensate foundation with a couple of useful algorithms/techniques

Comparison to techniques-based

- techniques-based: hops through the forest of many latest and greatest techniques
- foundation-based: illustrate the map (core) first to prevent getting lost in the forest

foundation-based: prepare students for easy learning of untaught/future techniques
Our Proposed Teaching Approach [Cont.]

- foundation-based, and foundation-first
- then, compensate foundation with a couple of useful algorithms/techniques

comparison to foundation-later

- foundation-later:
 - first, techniques to raise interests
 - then, foundations to consolidate understanding
- foundation-first: build the basis (core) first to perceive the techniques from the right angle

foundation-first: let students know when and how to use the powerful tools before getting addicted on the power
Our Proposed Foundation: Three Concepts

understand learnability, approximation and generalization
- when can we learn and what are the tradeoffs?
- conducting machine learning properly

use simple models first
- the linear model coupled with some nonlinear transforms is typically enough for most applications
- conducting machine learning safely

deal with noise and overfitting carefully
- how to tackle the “dark side” of learning?
- conducting machine learning professionally

our experience: worth starting with those foundations, even for a diverse audience
learnability, approximation & generalization — conducting machine learning *properly*

- good learning (test performance) = good approximation (training performance) + good generalization (complexity penalty)

- a must-teach key message
- can be illustrated in different forms (e.g. VC bound, bias-variance, even human-learning philosophy)
- make learning non-trivial and fascinating to students
learnability, approximation & generalization — conducting machine learning *properly* [Cont.]

Wrong use of learning (beginner’s mistakes)*
- Ensure **good approximation**, pray for **good generalization**
 — praying for something out-of-control

Right use of learning*
- Ensure **good generalization**, try best for **good approximation**
 — trying something possibly in-control

We cannot guarantee learning. We can “guarantee” no disasters. That is, after we learn we will either declare success or failure, and in both cases we will be right.
linear models
—conducting machine learning safely

linear models
= good generalization
with established optimization tools for good approximation

- after knowing approximation/generalization: a good stage for learning safe techniques
- sufficiently useful for many practical problems (Yuan et al., 2012)
- building block in sophisticated techniques through feature transforms
- make learning concrete to students
linear models — conducting machine learning safely [Cont.]

Wrong use of learning (beginner’s mistakes)

Start with the “greatest” techniques first — a point of no return

Right use of learning

Start with the simplest techniques first — and yes, it can work well

A rich and representative family of linear techniques

- Classification: approx. combinatorial optimization (perceptron-like)
- Regression: analytic optimization (pseudo-inverse)
- Logistic regression: iterative optimization (SGD)

Students coming from diverse backgrounds not only get the big picture, but also the finer details in a concrete setting.
deal with noise and overfitting
—conducting machine learning **professionally**

- overfit = difficult to ensure good generalization/learning with **stochastic** or **deterministic noise** on finite data
- regularization = tools for further guaranteeing **good generalization**
- validation = tools for certifying **good learning**

- turn amateur students to **professionals**
- make learning **artistic** to students
deal with noise and overfitting —conducting machine learning professionally [Cont.]

wrong use of learning (beginner’s mistakes)
apply all possible techniques and choose by best approximation result —high risk of overfitting

right use of learning
apply a reasonable number of well-regularized techniques and choose by best validation result —relatively immune to noise and overfitting

Complex situations call for simpler models.
Support Vector Machine

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>generalization</td>
<td>large-margin bound</td>
</tr>
<tr>
<td>approximation</td>
<td>quadratic programming</td>
</tr>
<tr>
<td>linear model</td>
<td>basic formulation</td>
</tr>
<tr>
<td>feature transform</td>
<td>through kernel</td>
</tr>
<tr>
<td>regularization</td>
<td>large-margin</td>
</tr>
<tr>
<td>validation</td>
<td>#-SV bound</td>
</tr>
</tbody>
</table>

Neural Network

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#-neuron bound</td>
<td></td>
</tr>
<tr>
<td>gradient decent et al.</td>
<td></td>
</tr>
<tr>
<td>neurons</td>
<td></td>
</tr>
<tr>
<td>through cascading</td>
<td>weight-decay or early-stopping</td>
</tr>
<tr>
<td>for choices in regularization</td>
<td></td>
</tr>
</tbody>
</table>

[libsvm-2.9]$./svm-train -t 2 -g 0.05 -c 100 heart_scale
optimization finished, #iter = 1966

Total nSV = 113

- good approximation (by choosing kernel and optimization)
- good generalization (by regularization)
- good learning (by using #SV as validation indicator)
Caltech 2012: (mixed) 7 weeks of foundations, 0.5 week of NNet, 0.5 week of RBF Net, 1 week of SVM

NTU ML (with MOOCs): (sequential) 8 weeks of foundations, 3 weeks of SVM, 3 weeks of aggregation, 2 weeks of deep learning —with an in-class data mining competition where students exploited taught/not-taught techniques with ease

often incremental efforts to teach/learn a new technique after solid foundations
Mini Summary

foundation-based, foundation-first
—works well in our experience

- Learnability: *philosophical* understanding, make learning *non-trivial*, conduct learning *properly*
- Linear models: *algorithmic* modeling, make learning *concrete*, conduct learning *safely*
- Overfitting: *practical* tuning, make learning *artistic*, conduct learning *professionally*
Excitement of Competition

史丹佛這樣教創新

「第六、鼓勵學生競賽。從來沒有一件事像「競爭」這樣，能讓人廢寢忘食、24小時工作絲毫不倦。我們鼓勵學生參加各式各樣的國際競賽，我們的學生蓋了一間太陽能屋，做電動車、機器人，參加DARPA(國防高等研究計劃署)挑戰賽，也參加企業營運書的競賽。」
Machine Learning Competition: Mini-KDD Cup

Background

- an annual competition on KDD (knowledge discovery and data mining)
- organized by ACM SIGKDD, starting from 1997, now **the most prestigious data mining competition**
- usually lasts 3-4 months
- participants include famous research labs (IBM, AT&T) and top universities (Stanford, Berkeley)
My Design: Time Line

key dates:

- report due (i.e. overall competition end): as late as possible —often **4 days before I need to submit the scores to NTU**
- award ceremony (i.e. early competition end): usually **last class**
- announcement: best timing to be **right after midterm** —but may highly depend on TAs’ schedule
- start designing: **two or more weeks before** announcement
an interesting story makes the competition exciting!

- ML2014:

In this final project, you are going to be part of an exciting machine learning competition. Consider a startup company that features a coming product on the mobile phone. The core of the product is a robust character recognition system...... To win the prize, you need to fight for the leading positions on the score board. Then, you need to submit a comprehensive report that describes not only the recommended approaches, but also the reasoning behind your recommendations. Well, let’s get started!

- more interesting ones:
 - ML2014, ML2013: **optical character recognition**
 - ML2012: **ad click prediction** (derived from KDDCup 2012)

—often okay to **reuse with modifications**
My Design: Team Size

- most ideal team size IMHO is 3:
 - collaborative, dispute resolution, fewer free riders, etc.
 - but can also allow 4 if class size too big for the TAs to grade
- usually allow ≤ 3:
 - so students do not have the burden to find exactly 3
 - students can flexibly break teams if needed
 - but evaluate with workloads of 3 for fairness
- still sometimes hard for some students to find team members:
 - motto: provide matching mechanism, but not force anyone to any team
- prevent free riders: need workload distribution in report
My Design: Scoreboard

- core place that makes the game **exciting**
- thanks to my TAs in all those years for creating and maintaining the service
- basically, a simple **submit-judge-scoreboard** system
- usually provide the students an additional **description** field to interact—though few use it for serious purposes
My Design: Award Ceremony

- purpose: to **add more fun**
- **light presents** (postcards, paper notebooks, etc.)
- some students list their **good-performing awards in resume**
- may serve some **educational purposes**
- in addition to good-performing awards, can also give **interesting awards**
ML2012: How Much Overfitting Can We Get?

9472 submissions from 52 teams within 1.5 months......
<table>
<thead>
<tr>
<th>team</th>
<th>scoreboard</th>
<th>hidden</th>
<th>algorithm</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimaximizer</td>
<td>0.7632</td>
<td>0.7407</td>
<td>rwa</td>
<td>2013/01/01 00:00:08</td>
</tr>
<tr>
<td>team</td>
<td>submission count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anything</td>
<td>1149</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
My Design: Grade

- generally based on report, not competition, but correlated
 - too much emphasis on competition ⇒ utilitarianism
 - too little emphasis on competition ⇒ less interesting game

- ask TAs to act as “bosses”: The grading TAs would grade qualitatively with letters: A++[210], A+[196], A[186], B+[176], B[166], C+[156], C[146], D+[136], D[126], F+[116], F[76], F-[36], Z[0]

- list basic requirements corresponding to B
 - to get B, students only need to work ≈ usual homeworks
 - to get more, need more to convince the TAs

- generally “loose” about basic requirements
 —most students perform way beyond the basic requirements anyway

- generally team grade, but adjust individual grade if workload unbalanced
My Design: Loading

- ideal: a bit **harder than homework**
- estimate: 60 to 90 man-hours to finish basic requirements (**30 man-hour per member**)
- sometimes need to **adjust loading of other homeworks** —not an easy task, though
My Design: TAs

- good TAs’ help **essential**—I cannot thank them enough!
- **design, system setup, discuss with students**
My Design: TAs

always note: TAs are **busy**!!
My Design: Instructor

my main job: **heat up the competition**
my two other jobs:

- participate **seriously in the design**
- maintain **fairness** of competition
Some Summary Thoughts

Positive Side
- **fun** for most students, TAs and instructor
- students, TAs and instructor **learn a lot**

Negative Side
- **exhausting** for most students, TAs and instructor
- **can be disappointing** for some students

Questions and Discussions?