Machine Learning Overviews and Applications

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering National Taiwan University

NTU BIME Seminar Talk, 10/24/2019

materials mostly taken from my "Learning from Data" book, my "Machine Learning Foundations" free online course, and works from NTU CLLab and NTU KDDCup teams

About Me Hsuan-Tien Lin

- Professor, Dept. of CSIE, National Taiwan University
- Leader of the Computational Learning Laboratory
- Co-author of the textbook "Learning from Data: A Short Course" (often ML best seller on Amazon)
- Instructor of the NTU-Coursera Mandarin-teaching ML Massive Open Online Courses
 - "Machine Learning Foundations"
 - "Machine Learning Techniques"

What is Machine Learning

From Learning to Machine Learning

learning: acquiring skill
with experience accumulated from observations

machine learning: acquiring skill

with experience accumulated/computed from data

What is skill?

A More Concrete Definition

skill

⇔ improve some performance measure (e.g. prediction accuracy)

machine learning: improving some performance measure with experience computed from data

An Application in Computational Finance

stock data — ML — more investment gain

Why use machine learning?

Yet Another Application: Tree Recognition

- · 'define' trees and hand-program: difficult
- learn from data (observations) and recognize: a 3-year-old can do so
- 'ML-based tree recognition system' can be easier to build than hand-programmed system

ML: an alternative route to build complicated (AI) systems

Skill ⇔ Artificial Intelligence

"cooking" needs many possible tools & procedures

Key Essence of Machine Learning

machine learning: improving some performance measure with experience computed from data

- exists some 'underlying pattern' to be learned
 so 'performance measure' can be improved
- but no programmable (easy) definition—so 'ML' is needed
- somehow there is data about the patternso ML has some 'inputs' to learn from

key essence: help decide whether to use ML

Snapshot Applications of Machine Learning

Communication

for 4G LTE communication

- data:
 - channel information (the channel matrix representing mutual information)
 - configuration (precoding, modulation, etc.) that reaches the highest throughput
- skill: predict best configuration to the base station in a new environment

previous work of my student Yi-An Lin as intern @ MTK

Advertisement data ML skill

for cross-screen ad placement

- data:
 - customer information
 - device information
 - ad information
- skill: predict best ad to show to the user across devices so that she/he clicks

ongoing work of my collaboration with Appier

Daily Needs: Food, Clothing, Housing, Transportation

- 1 Food (Sadilek et al., 2013)
 - data: Twitter data (words + location)
 - skill: tell food poisoning likeliness of restaurant properly
- 2 Clothing (Abu-Mostafa, 2012)
 - data: sales figures + client surveys
 - skill: give good fashion recommendations to clients
- 3 Housing (Tsanas and Xifara, 2012)
 - data: characteristics of buildings and their energy load
 - skill: predict energy load of other buildings closely
- Transportation (Stallkamp et al., 2012)
 - data: some traffic sign images and meanings
 - skill: recognize traffic signs accurately

ML is everywhere!

$\begin{array}{c} \text{Education} \\ \text{data} & \longrightarrow \hline{\text{ML}} \\ \end{array} \rightarrow \text{skill}$

- data: students' records on quizzes on a Math tutoring system
- skill: predict whether a student can give a correct answer to another quiz question

A Possible ML Solution

answer correctly $\approx [\text{recent strength of student} > \text{difficulty of question}]$

- give ML 9 million records from 3000 students
- ML determines (reverse-engineers) strength and difficulty automatically

key part of the **world-champion** system from National Taiwan Univ. in KDDCup 2010

Entertainment: Recommender System (1/2)

- data: how many users have rated some movies
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- similar competition (movies \rightarrow songs) held by Yahoo! in KDDCup 2011
 - 252,800,275 ratings that 1,000,990 users gave to 624,961 songs

How can machines learn our preferences?

Entertainment: Recommender System (2/2)

A Possible ML Solution

- pattern: rating ← viewer/movie factors
- learning: known rating
 - → learned factors
 - → unknown rating prediction

key part of the world-champion (again!) system from National Taiwan Univ. in KDDCup 2011

Components of Machine Learning

Components of Learning: Metaphor Using Credit Approval

Applicant Information

age	23 years
gender	female
annual salary	NTD 1,000,000
year in residence	1 year
year in job	0.5 year
current debt	200,000

unknown pattern to be learned:

'approve credit card good for bank?'

Formalize the Learning Problem

Basic Notations

- input: $\mathbf{x} \in \mathcal{X}$ (customer application)
- output: $y \in \mathcal{Y}$ (good/bad after approving credit card)
- unknown pattern to be learned ⇔ target function:
 f: X → Y (ideal credit approval formula)
- data \Leftrightarrow training examples: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}$ (historical records in bank)
- hypothesis ⇔ skill with hopefully good performance:
 g: X → Y ('learned' formula to be used)

$$\{(\mathbf{x}_n, y_n)\} \text{ from } f \longrightarrow \boxed{\mathsf{ML}} \longrightarrow g$$

Learning Flow for Credit Approval

- target f unknown

 (i.e. no programmable definition)
- hypothesis g hopefully ≈ f but possibly different from f (perfection 'impossible' when f unknown)

What does *q* look like?

The Learning Model

- assume $g \in \mathcal{H} = \{h_k\}$, i.e. approving if
 - *h*₁: annual salary > NTD 800,000
 - h₂: debt > NTD 100,000 (really?)
 - h_3 : year in job \leq 2 (really?)
- hypothesis set H:
 - can contain good or bad hypotheses
 - up to A to pick the 'best' one as g

learning model = A and H

Practical Definition of Machine Learning

machine learning: use data to compute hypothesis *g*

that approximates target *f*

Machine Learning Research in CLLab

Making Machine Learning Realistic

CLLab Works: Loosen the Limits of ML

- 1 cost-sensitive classification: limited protocol (classification) + auxiliary info. (cost)
- multi-label classification: limited protocol (classification) + structure info. (label relation)
- active learning: limited protocol (unlabeled data) + requested info. (query)
- online learning: limited protocol (streaming data) + feedback info. (loss)

next: (1) cost-sensitive classification

a **classification** problem
—grouping "pictures" into different "categories"

Traditional Classification Problem

- 1 input: a batch of examples (digit \mathbf{x}_n , intended label y_n)
- 2 desired output: some $g(\mathbf{x})$ such that $g(\mathbf{x}) \neq y$ seldom for future examples (\mathbf{x}, y)
- **(3)** evaluation for some digit

$$(\mathbf{x}=2,y=2)$$

$$-g(\mathbf{x}) = \begin{cases} 1 : wrong; \\ 2 : right; \\ 3 : wrong \end{cases}$$

Are all the wrongs equally bad?

What is the Status of the Patient?

H1N1-infected

cold-infected

healthy

another classification problem—grouping "patients" into different "status"

Patient Status Prediction

error measure = society cost

actual predicted	H1N1	cold	healthy
H1N1	0	1000	100000
cold	100	0	3000
healthy	100	30	0

- H1N1 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; can computer-aided diagnosis do the same?

Our Contributions

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny, 2003)	ongoing (our works)

theoretic, algorithmic and empirical studies of cost-sensitive classification

- ICML 2010: a theoretically-supported algorithm with superior experimental results
- BIBM 2011: application to real-world bacteria classification with promising experimental results
- etc.

More on KDDCup

What is KDDCup?

Background

- an annual competition on KDD (knowledge discovery and data mining)
- organized by ACM SIGKDD, starting from 1997, now the most prestigious data mining competition
- usually lasts 3-4 months
- participants include famous research labs (IBM, AT&T) and top universities (Stanford, Berkeley)

Aim

- bridge the gap between theory and practice, such as
 - · scalability and efficiency
 - · missing data and noise
 - heterogeneous data
 - unbalanced data
- define the state-of-the-art

KDDCups: 2008 to 2015 (1/4)

2008

organizer: Siemens

topic: breast cancer prediction (medical)

data size: 0.2M

teams: > 200

NTU: co-champion with IBM

2009

organizer: Orange

topic: customer behavior prediction (business)

data size: 0.1M

teams: > 400

NTU: 3rd place of slow track

KDDCups: 2008 to 2015 (2/4)

2010

- organizer: PSLC Data Shop
- topic: student performance prediction (education)
- data size: 30M
 teams: > 100
- NTU: champion and student-team champion

2011

- organizer: Yahoo!
- topic: music preference prediction (recommendation)
- data size: 300M
- teams: > 1000
- NTU: double champions

KDDCups: 2008 to 2015 (3/4)

2012

organizer: Tencent

topic: webuser behavior prediction (Internet)

data size: 150M

teams: > 800

NTU: champion of track 2

2013

organizer: Microsoft Research

topic: paper-author relationship prediction (academia)

data size: 600M

teams: > 500

NTU: double champions

KDDCups: 2008 to 2015 (4/4)

2014

- organizer: DonorsChoose
- topic: charity proposal recommendation (social work)

data size: 850M

teams: > 450

NTU: top 20

2015

- organizer: XuetangX
- topic: dropout student prediction (online education)
- data size: 100M
- teams: > 800
- NTU: 4th place

Our Systematic Steps in KDDCups

- data analysis (on part of data)
 - calculate statistics to identify outliers
 - visualize data to see trend/pattern
- feature extraction
 - feature design by human: common encoding, domain knowledge, etc.
 - feature learning by machines: sparse coding, matrix factorization, deep learning, etc.
- 3 model learning
 - model exploration (trial-and-evaluate) to improve performance
 - model selection to avoid overfitting
- 4 hypotheses blending (towards big ensemble)
 - careful non-linear blending to be sophisticated
 - careful linear blending (voting/averaging) to be robust

can **follow those step for your applications**, except for maybe "big ensemble"!

That's about all. Thank you!