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About Me
Hsuan-Tien Lin

• Associate Professor, Dept. of CSIE, National Taiwan
University

• Leader of the Computational Learning Laboratory

• Co-author of the textbook “Learning from Data: A Short
Course” (often ML best seller on Amazon)

• Instructor of the NTU-Coursera Mandarin-teaching ML
Massive Open Online Courses

• “Machine Learning Foundations”:
www.coursera.org/course/ntumlone

• “Machine Learning Techniques”:
www.coursera.org/course/ntumltwo
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What is Machine Learning

From Learning to Machine Learning

learning: acquiring skill

learning:

with experience accumulated from observations

observations learning skill

machine learning: acquiring skill

machine learning:

with experience accumulated/computed from data

data ML skill

What is skill?
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What is Machine Learning

A More Concrete Definition

⇔

skill
⇔ improve some performance measure (e.g. prediction accuracy)

machine learning: improving some performance measure

machine learning:

with experience computed from data

data ML
improved
performance
measure

An Application in Computational Finance

stock data ML more investment gain

Why use machine learning?
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What is Machine Learning

Yet Another Application: Tree Recognition

• ‘define’ trees and hand-program: difficult
• learn from data (observations) and

recognize: a 3-year-old can do so
• ‘ML-based tree recognition system’ can be

easier to build than hand-programmed
system

ML: an alternative route to
build complicated systems
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What is Machine Learning

The Machine Learning Route
ML: an alternative route to build complicated systems

Some Use Scenarios
• when human cannot program the system manually

—navigating on Mars
• when human cannot ‘define the solution’ easily

—speech/visual recognition
• when needing rapid decisions that humans cannot do

—high-frequency trading
• when needing to be user-oriented in a massive scale

—consumer-targeted marketing

Give a computer a fish, you feed it for a day;
teach it how to fish, you feed it for a lifetime. :-)
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What is Machine Learning

Key Essence of Machine Learning
machine learning: improving some performance measure

machine learning:

with experience computed from data

data ML
improved
performance
measure

1 exists some ‘underlying pattern’ to be learned
—so ‘performance measure’ can be improved

2 but no programmable (easy) definition
—so ‘ML’ is needed

3 somehow there is data about the pattern
—so ML has some ‘inputs’ to learn from

key essence: help decide whether to use ML
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Snapshot Applications of Machine Learning
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Snapshot Applications of Machine Learning

Communication

data ML skill

for 4G LTE communication
• data:

• channel information (the channel matrix representing mutual
information)

• configuration (precoding, modulation, etc.) that reaches the
highest throughput

• skill: predict best configuration to the base station in a new
environment

ongoing work of my student Yi-An Lin
as intern @ MTK
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Snapshot Applications of Machine Learning

Daily Needs: Food, Clothing, Housing, Transportation
data ML skill

1 Food (Sadilek et al., 2013)

• data: Twitter data (words + location)
• skill: tell food poisoning likeliness of restaurant properly

2 Clothing (Abu-Mostafa, 2012)

• data: sales figures + client surveys
• skill: give good fashion recommendations to clients

3 Housing (Tsanas and Xifara, 2012)

• data: characteristics of buildings and their energy load
• skill: predict energy load of other buildings closely

4 Transportation (Stallkamp et al., 2012)

• data: some traffic sign images and meanings
• skill: recognize traffic signs accurately

ML is everywhere!
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Snapshot Applications of Machine Learning

Education

data ML skill

• data: students’ records on quizzes on a Math tutoring system
• skill: predict whether a student can give a correct answer to

another quiz question

A Possible ML Solution
answer correctly ≈ Jrecent strength of student > difficulty of questionK
• give ML 9 million records from 3000 students
• ML determines (reverse-engineers) strength and difficulty

automatically

key part of the world-champion system from
National Taiwan Univ. in KDDCup 2010
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Snapshot Applications of Machine Learning

Entertainment: Recommender System (1/2)

data ML skill

• data: how many users have rated some movies
• skill: predict how a user would rate an unrated movie

A Hot Problem
• competition held by Netflix in 2006

• 100,480,507 ratings that 480,189 users gave to 17,770 movies
• 10% improvement = 1 million dollar prize

• similar competition (movies→ songs) held by Yahoo! in KDDCup
2011

• 252,800,275 ratings that 1,000,990 users gave to 624,961 songs

How can machines learn our preferences?
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Snapshot Applications of Machine Learning

Entertainment: Recommender System (2/2)

Match movie and
viewer factors

predicted
rating

comedy content

action content

blockbuster?

Tom
Cruise in it?

like
s To

m
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se?

pre
fer
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like
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ion
?

like
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edy
?

movie

viewer

add contributions
from each factor

A Possible ML Solution
• pattern:

rating← viewer/movie factors
• learning:

→

known rating
→ learned factors
→ unknown rating prediction

key part of the world-champion (again!)
system from National Taiwan Univ.

in KDDCup 2011
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Components of Machine Learning
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Components of Machine Learning

Components of Learning:
Metaphor Using Credit Approval

Applicant Information

age 23 years
gender female

annual salary NTD 1,000,000
year in residence 1 year

year in job 0.5 year
current debt 200,000

unknown pattern to be learned:
‘approve credit card good for bank?’
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Components of Machine Learning

Formalize the Learning Problem

Basic Notations
• input: x ∈ X (customer application)
• output: y ∈ Y (good/bad after approving credit card)
• unknown pattern to be learned⇔ target function:

f : X → Y (ideal credit approval formula)
• data⇔ training examples: D = {(x1, y1), (x2, y2), · · · , (xN , yN)}

(historical records in bank)
• hypothesis⇔ skill with hopefully good performance:

g : X → Y (‘learned’ formula to be used)

{(xn, yn)} from f ML g
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Components of Machine Learning

Learning Flow for Credit Approval
unknown target function

f : X → Y
(ideal credit approval formula)

training examples
D : (x1, y1), · · · , (xN , yN)

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

• target f unknown
(i.e. no programmable definition)

• hypothesis g hopefully ≈ f
but possibly different from f
(perfection ‘impossible’ when f unknown)

What does g look like?
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Components of Machine Learning

The Learning Model

training examples
D : (x1, y1), · · · , (xN , yN)

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

• assume g ∈ H = {hk}, i.e. approving if
• h1: annual salary > NTD 800,000
• h2: debt > NTD 100,000 (really?)
• h3: year in job ≤ 2 (really?)

• hypothesis set H:
• can contain good or bad hypotheses
• up to A to pick the ‘best’ one as g

learning model = A and H
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Components of Machine Learning

Practical Definition of Machine Learning

unknown target function
f : X → Y

(ideal credit approval formula)

training examples
D : (x1, y1), · · · , (xN , yN)

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

machine learning:
use data to compute hypothesis g

that approximates target f
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Machine Learning Research in CLLab
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Machine Learning Research in CLLab

Making Machine Learning Realistic: Now
Oracle: truth f (x) + noise e(x)

??(4)

data (instance xn, label yn)

?
(1) -

learning

6

(3)

good
learning
system g(x)algorithm

'
&

$
%
-

6(2) -

learning model {h(x)}

CLLab Works: Loosen the
Limits of ML

1 cost-sensitive classification: limited
protocol (classification) + auxiliary
info. (cost)

2 multi-label classification: limited
protocol (classification) + structure
info. (label relation)

3 active learning: limited protocol
(unlabeled data) + requested info.
(query)

4 online learning: limited protocol
(streaming data) + feedback info.
(loss)

next: (1) cost-sensitive classification
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Machine Learning Research in CLLab

Which Digit Did You Write?

?

one (1) two (2) three (3)

a classification problem
—grouping “pictures” into different “cate-
gories”
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Machine Learning Research in CLLab

Traditional Classification Problem

Oracle: truth f (x) + noise e(x)

?

data (instance xn, label yn)

?

learning good
learning
system g(x) ≈ f (x)algorithm

'
&

$
%
-

6

learning model {gα(x)}

1 input: a batch of examples
(digit xn, intended label yn)

2 desired output: some g(x) such
that g(x) 6= y seldom for future
examples (x, y)

3 evaluation for some digit

(x = , y = 2)

—g(x) =

 1 : wrong;
2 : right ;
3 : wrong

Are all the wrongs equally bad?
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Machine Learning Research in CLLab

What is the Status of the Patient?

?

H1N1-infected cold-infected healthy

another classification problem
—grouping “patients” into different “status”
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Machine Learning Research in CLLab

Patient Status Prediction

error measure = society cost
actual predicted H1N1 cold healthy

H1N1 0 1000 100000
cold 100 0 3000

healthy 100 30 0

• H1N1 mis-predicted as healthy: very high cost
• cold mis-predicted as healthy: high cost
• cold correctly predicted as cold: no cost

human doctors consider costs of decision;
can computer-aided diagnosis do the

same?
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Machine Learning Research in CLLab

Our Contributions

binary multiclass
regular well-studied well-studied
cost-sensitive known (Zadrozny, 2003) ongoing (our works)

theoretic, algorithmic and empirical studies of
cost-sensitive classification
• ICML 2010: a theoretically-supported algorithm with

superior experimental results
• BIBM 2011: application to real-world bacteria

classification with promising experimental results
• KDD 2012: a cost-sensitive and error-sensitive

methodology (achieving both low cost and few
wrongs)
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Machine Learning Research in CLLab

Making Machine Learning Realistic: Next
Teacher

?

cost c(t) query x(t) & guess ŷ(t)

?

learning
algorithm

'
&

$
%�
�
�
��

� knowledge X

PP
PP

PPi

6

learning model

Interactive Machine Learning

1 environment

2 exploration

3 dynamic

4 partial feedback

let us teach machines as “easily” as teaching
students
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Machine Learning Research in CLLab

Case: Interactive Learning for Online Advertisement

Traditional Machine Learning for Online Advertisement
• data gathering: system randomly shows ads to some previous

users
• expert building: system analyzes data gathered to determine

best (fixed) strategy

Interactive Machine Learning for Online Advertisement

• environment : system serves online users with profile

• exploration : system decides to show an ad to the user

• dynamic : system receives data from real-time user click

• partial feedback : system receives reward only if clicking
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Machine Learning Research in CLLab

ICML 2012 Exploration & Exploitation Challenge
Interactive Machine Learning for Online Advertisement

• environment : system serves online users with profile

• exploration : system decides to show an ad to the user

• dynamic : system receives data from real-time user click

• partial feedback : system receives reward only if clicking

NTU beats two MIT
teams to be the
phase 1 winner!

ongoing collaboration with Appier for online
advertisement
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More on KDDCup
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More on KDDCup

What is KDDCup?

Background
• an annual competition on KDD (knowledge discovery and data

mining)
• organized by ACM SIGKDD, starting from 1997, now the most

prestigious data mining competition
• usually lasts 3-4 months
• participants include famous research labs (IBM, AT&T) and top

universities (Stanford, Berkeley)
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More on KDDCup

Aim of KDDCup

Aim
• bridge the gap between theory and practice, such as

• scalability and efficiency
• missing data and noise
• heterogeneous data
• unbalanced data
• combination of different models

• define the state-of-the-art
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More on KDDCup

KDDCups: 2008 to 2013 I

2008
• organizer: Siemens
• topic: breast cancer prediction (medical)
• data size: 0.2M
• teams: > 200
• NTU: co-champion with IBM (led by Prof. Shou-de Lin)

2009
• organizer: Orange
• topic: customer behavior prediction (business)
• data size: 0.1M
• teams: > 400
• NTU: 3rd place of slow track
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More on KDDCup

KDDCups: 2008 to 2013 II
2010
• organizer: PSLC Data Shop
• topic: student performance prediction (education)
• data size: 30M
• teams: > 100
• NTU: champion and student-team champion

2011
• organizer: Yahoo!
• topic: music preference prediction (recommendation)
• data size: 300M
• teams: > 1000
• NTU: double champions
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More on KDDCup

KDDCups: 2008 to 2013 III
2012
• organizer: Tencent
• topic: webuser behavior prediction (Internet)
• data size: 150M
• teams: > 800
• NTU: champion of track 2

2013
• organizer: Microsoft Research
• topic: paper-author relationship prediction (academia)
• data size: 600M
• teams: > 500
• NTU: double champions
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More on KDDCup

KDDCup 2011

Music Recommendation Systems
• host: Yahoo!
• 11 years of Yahoo! music data
• 2 tracks of competition
• official dates: March 15 to June 30
• 1878 teams submitted to track 1;

1854 teams submitted to track 2
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More on KDDCup

NTU Team for KDDCup 2011

• 3 faculties:
Profs. Chih-Jen Lin, Hsuan-Tien Lin and Shou-De Lin

• 1 course (starting in 2010)
Data Mining and Machine Learning: Theory and Practice

• 3 TAs and 19 students:
most were inexperienced in music recommendation in the
beginning

• official classes: April to June;
actual classes: December to June

our motto: study state-of-the-art approaches
and then creatively improve them
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More on KDDCup

Previously: How Much Did You Like These Movies?
http://www.netflix.com

(1M dollar competition between 2007-2009)

goal: use “movies you’ve rated” to
automatically

predict your preferences on future movies
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More on KDDCup

The Track 1 Problem (1/2)
Given Data
263M examples (user u, item i , rating rui ,date tui , time τui)

user item rating date time
1 21 10 102 23:52
1 213 90 1032 21:01
4 45 95 768 09:15
· · ·

• u, i : abstract IDs
• rui : integer between 0 and 100, mostly multiples of 10

Additional Information: Item Hierarchy
• track (46.85%)
• album (19.01%)
• artist (28.84%)
• genre (5.30%)
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More on KDDCup

The Track 1 Problem (2/2)

Data Partitioned by Organizers
• training: 253M; validation: 4M;

test (w/o rating): 6M
• per user, training < validation < test in time

• ≥ 20 examples total
• 4 examples in validation; 6 in test

• fixed random half of test: leaderboard;
another half: award decision

Goal
predictions r̂ui ≈ rui on the test set, measured by

RMSE =
√

average(r̂ui − rui)2

— one submission allowed every eight hours
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More on KDDCup

Three Properties of Track 1 Data

R =

track1 track2 album3 author4 · · · genreI
user1 100 80 70 ? · · · −
user2 − 0 ? 80 · · · −
· · · · · · · · · · · · · · · · · · · · ·

userU ? − 20 − · · · 0

similar to Netflix data, but with the following differences......

• scale: larger data
—study mature models that are computationally feasible

• taxonomy: relation graph of tracks, albums, authors and genres
—include as features for combining models nonlinearly

• time: detailed; training earlier than test
—include as features for combining models nonlinearly;
respect time-closeness during training
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More on KDDCup

Framework of Our Solution

System Architecture

• improve standard models: design variants within 6 families of
state-of-the-art models (reaches RMSE 22.7915)

• blend the models: improve prediction power by blending the variants
carefully (reaches RMSE 21.3598)

• aggregate the blended predictors: construct a linear ensemble with
test performance estimators (reaches RMSE 21.0253)

• post-process the ensemble: add a final touch based on observations
from data analysis (reaches RMSE 21.0147)

not only hard work (200+ models included),
but also key techniques
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That’s about all. Thank you!
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