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ML for (Modern) AI

From Intelligence to Artificial Intelligence
intelligence: thinking and acting smartly
• humanly
• rationally

artificial intelligence: computers thinking and acting smartly
• humanly
• rationally

humanly ≈ smartly ≈ rationally
—are humans rational? :-)
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ML for (Modern) AI

Humanly versus Rationally
What if your self-driving car decides one death is better than two—and
that one is you? (The Washington Post http://wpo.st/ZK-51)

You’re humming along in your self-driving
car, chatting on your iPhone 37 while the
machine navigates on its own. Then a swarm
of people appears in the street, right in
the path of the oncoming vehicle.

Car Acting Humanly
to save my (and passengers’)
life, stay on track

Car Acting Rationally
avoid the crowd and crash the
owner for minimum total loss

which is smarter?
—depending on where I am, maybe? :-)
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ML for (Modern) AI

(Traditional) Artificial Intelligence

Thinking Humanly
• cognitive modeling

—now closer to Psychology
than AI

Acting Humanly
• dialog systems
• humanoid robots
• computer vision

Thinking Rationally
• formal logic—now closer to

Theoreticians than AI
practitioners

Acting Rationally
• recommendation systems
• cleaning robots
• cross-device ad placement

acting humanly or rationally:
more academia/industry attentions nowadays
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ML for (Modern) AI

Traditional vs. Modern [My] Definition of AI

Traditional Definition
humanly ≈ intelligently ≈ rationally

My Definition
intelligently ≈ easily

is your smart phone ‘smart’? :-)

modern artificial intelligence
= application intelligence
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ML for (Modern) AI

Examples of Application Intelligence

Siri

By Bernard Goldbach [CC BY 2.0]

Amazon Recommendations

By Kelly Sims [CC BY 2.0]

iRobot

By Yuan-Chou Lo [CC BY-NC-ND 2.0]

Vivino

from nordic.businessinsider.com
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AI Milestones

logic inference

expert system
machine learning

+deep learning

begin 1st winter 2nd winter revolution
1956 1980 1993 2012 time

heat

AI history

• first AI winter: AI cannot solve ‘combinatorial explosion’ problems
• second AI winter: expert system failed to scale

reason of winters: expectation mismatch
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ML for (Modern) AI

What’s Different Now?

More Data
• cheaper storage
• Internet companies

Faster Computation
• cloud computing
• GPU computing

Better Algorithms
• decades of research
• e.g. deep learning

Healthier Mindset
• reasonable wishes
• key breakthroughs

data-enabled AI: mainstream nowadays
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Machine Learning and AI
Easy-to-Use

Acting Humanly Acting Rationally

Machine Learning

machine learning: core behind
modern (data-driven) AI
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ML for (Modern) AI

ML Connects Big Data and AI
From Big Data to Artificial Intelligence

big data ML artificial intelligence

ingredient tools/steps dish

(Photos Licensed under CC BY 2.0 from Andrea Goh on Flickr)

“cooking” needs many possible
tools & procedures
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ML for (Modern) AI

Bigger Data Towards Better AI

best route by
shortest path

best route by
current traffic

best route by
predicted travel time

big data can make machine look smarter

H.-T. Lin (NTU) ML for Modern AI 12/50
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ML for Modern AI

big data

ML AI

human
learning/
analysis

domain
knowledge
(HumanI)

method
model

expert system

• human sometimes faster learner on initial (smaller) data
• industry: black plum is as sweet as white

often important to leverage human learning,
especially in the beginning
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ML for (Modern) AI

Application: Tropical Cyclone Intensity Estimation
meteorologists can ‘feel’ & estimate TC intensity from image

TC images

ML intensity
estimation

human
learning/
analysis

domain
knowledge
(HumanI)

CNN polar
rotation

invariance

current
weather
system

better than current system & ‘trial-ready’
(Chen et al., KDD 2018)

(Chen et al., Weather & Forecasting 2019)
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ML Research for Modern AI

Cost-Sensitive Multiclass Classification
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ML Research for Modern AI

What is the Status of the Patient?

?

H7N9-infected cold-infected healthy

• a classification problem
—grouping ‘patients’ into different ‘status’

are all mis-prediction costs equal?
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ML Research for Modern AI

Patient Status Prediction
error measure = society cost

XXXXXXXXXXactual
predicted H7N9 cold healthy

H7N9 0 1000 100000
cold 100 0 3000

healthy 100 30 0

• H7N9 mis-predicted as healthy: very high cost
• cold mis-predicted as healthy: high cost
• cold correctly predicted as cold: no cost

human doctors consider costs of decision;
how about computer-aided diagnosis?

H.-T. Lin (NTU) ML for Modern AI 18/50



ML Research for Modern AI

Our Works

binary multiclass
regular well-studied well-studied
cost-sensitive known (Zadrozny et al., 2003) ongoing (our works, among others)

selected works of ours
• cost-sensitive SVM (Tu and Lin, ICML 2010)

• cost-sensitive one-versus-one (Lin, ACML 2014)

• cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people not
using those cool ML works for their AI? :-)
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ML Research for Modern AI

Issue 1: Where Do Costs Come From?
A Real Medical Application: Classifying Bacteria
• by human doctors: different treatments⇐⇒ serious costs
• cost matrix averaged from two doctors:

Ab Ecoli HI KP LM Nm Psa Spn Sa GBS
Ab 0 1 10 7 9 9 5 8 9 1

Ecoli 3 0 10 8 10 10 5 10 10 2
HI 10 10 0 3 2 2 10 1 2 10
KP 7 7 3 0 4 4 6 3 3 8
LM 8 8 2 4 0 5 8 2 1 8
Nm 3 10 9 8 6 0 8 3 6 7
Psa 7 8 10 9 9 7 0 8 9 5
Spn 6 10 7 7 4 4 9 0 4 7
Sa 7 10 6 5 1 3 9 2 0 7

GBS 2 5 10 9 8 6 5 6 8 0

issue 2: is cost-sensitive classification
really useful?
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ML Research for Modern AI

Cost-Sensitive vs. Traditional on Bacteria Data

. . . . . .

Are cost-sensitive algorithms great?

RBF kernel
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......Cost-sensitive algorithms perform better than regular algorithm

Jan et al. (Academic Sinica) Cost-Sensitive Classification on SERS October 31, 2011 15 / 19

(Jan et al., BIBM 2011)

cost-sensitive better than traditional;
but why are people still not

using those cool ML works for their AI? :-)
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ML Research for Modern AI

Issue 3: Error Rate of Cost-Sensitive Classifiers
The Problem
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• cost-sensitive classifier: low cost but high error rate
• traditional classifier: low error rate but high cost
• how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive:
more suitable for real-world medical needs
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ML Research for Modern AI

Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)

Cost
iris ≈

wine ≈
glass ≈

vehicle ≈
vowel ©

segment ©
dna ©

satimage ≈
usps ©
zoo ©

splice ≈
ecoli ≈

soybean ≈

Error
iris ©

wine ©
glass ©

vehicle ©
vowel ©

segment ©
dna ©

satimage ©
usps ©
zoo ©

splice ©
ecoli ©

soybean ©

now, are people using those cool ML works
for their AI? :-)
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ML Research for Modern AI

Lessons Learned from
Research on Cost-Sensitive Multiclass Classification

? H7N9-infected cold-infected healthy

1 more realistic (generic) in academia
6= more realistic (feasible) in application
e.g. the ‘cost’ of inputting a cost matrix? :-)

2 cross-domain collaboration important
e.g. getting the ‘cost matrix’ from domain experts

3 not easy to win human trust
—humans are somewhat multi-objective
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Label Space Coding for
Multilabel Classification
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ML Research for Modern AI

What Tags?

?: {machine learning, data structure, data mining, object
oriented programming, artificial intelligence, compiler,

architecture, chemistry, textbook, children book, . . . etc. }

a multilabel classification problem:
tagging input to multiple categories
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ML Research for Modern AI

Binary Relevance: Multilabel Classification via Yes/No

Binary
Classification

{yes, no}

multilabel w/ L classes: L Y/N questions
machine learning (Y), data structure (N), data

mining (Y), OOP (N), AI (Y), compiler (N),
architecture (N), chemistry (N), textbook (Y),

children book (N), etc.

• Binary Relevance approach:
transformation to multiple isolated binary classification

• disadvantages:
• isolation—hidden relations not exploited (e.g. ML and DM highly

correlated, ML subset of AI, textbook & children book disjoint)
• unbalanced—few yes, many no

Binary Relevance: simple (& good)
benchmark with known disadvantages
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ML Research for Modern AI

From Label-set to Coding View
label set apple orange strawberry binary code
{o} 0 (N) 1 (Y) 0 (N) [0,1,0]

{a, o} 1 (Y) 1 (Y) 0 (N) [1,1,0]

{a, s} 1 (Y) 0 (N) 1 (Y) [1,0,1]

{o} 0 (N) 1 (Y) 0 (N) [0,1,0]

{} 0 (N) 0 (N) 0 (N) [0,0,0]

subset of 2{1,2,··· ,L} ⇔ length-L binary code
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ML Research for Modern AI

A NeurIPS 2009 Approach: Compressive Sensing
General Compressive Sensing

sparse (many 0) binary vectors y ∈ {0,1}L can be robustly
compressed by projecting to M � L basis vectors {p1,p2, · · · ,pM}

Comp. Sensing for Multilabel Classification (Hsu et al., NeurIPS 2009)

1 compress: encode original data by compressive sensing
2 learn: get regression function from compressed data
3 decode: decode regression predictions to sparse vector by

compressive sensing

Compressive Sensing:
seemly strong competitor

from related theoretical analysis
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ML Research for Modern AI

Our Proposed Approach:
Compressive Sensing⇒ PCA

Principal Label Space Transformation (PLST),
i.e. PCA for Multilabel Classification (Tai and Lin, NC Journal 2012)

1 compress: encode original data by PCA
2 learn: get regression function from compressed data
3 decode: decode regression predictions to label vector by reverse

PCA + quantization

does PLST perform better than CS?
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ML Research for Modern AI

Hamming Loss Comparison: PLST vs. CS
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• PLST better than CS: faster, better performance
• similar findings across data sets and regression algorithms

Why? CS creates
harder-to-learn regression tasks
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Our Works Continued from PLST

1 Compression Coding (Tai & Lin, NC Journal 2012 with 249 citations)
—condense for efficiency: better (than CS) approach PLST
— key tool: PCA from Statistics/Signal Processing

2 Learnable-Compression Coding (Chen & Lin, NeuIPS 2012 with 186 citations)
—condense learnably for better efficiency: better (than PLST)
approach CPLST
— key tool: Ridge Regression from Statistics (+ PCA)

3 Cost-Sensitive Coding (Huang & Lin, ECML Journal Track 2017)
—condense cost-sensitively towards application needs: better (than
CPLST) approach CLEMS
— key tool: Multidimensional Scaling from Statistics

cannot thank statisticans
enough for those tools!
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ML Research for Modern AI

Lessons Learned from
Label Space Coding for Multilabel Classification

?: {machine learning, data structure, data
mining, object oriented programming, artificial
intelligence, compiler, architecture, chemistry,

textbook, children book, . . . etc. }

1 Is Statistics the same as ML? Is Statistics the same as AI?
• does it really matter?
• Modern AI should embrace every useful tool from other fields.

2 good tools not necessarily most sophisticated tools
e.g. PCA possibly more useful than CS

3 more-cited paper 6= more-useful AI solution
—citation count not the only impact measure
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Active Learning by Learning
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ML Research for Modern AI

Active Learning: Learning by ‘Asking’

labeling is expensive:

active learning ‘question asking’
—query yn of chosen xn

unknown target function
f : X → Y

labeled training examples

( , +1), ( , +1), ( , +1)

( , -1), ( , -1), ( , -1)

learning
algorithm
A

final hypothesis
g ≈ f

+1

active: improve hypothesis with fewer labels
(hopefully) by asking questions strategically
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ML Research for Modern AI

Pool-Based Active Learning Problem
Given

• labeled pool Dl =
{
(feature xn , label yn (e.g. IsApple?))

}N

n=1

• unlabeled pool Du =
{

x̃s

}S

s=1

Goal
design an algorithm that iteratively

1 strategically query some x̃s to get associated ỹs

2 move (x̃s, ỹs) from Du to Dl

3 learn classifier g(t) from Dl

and improve test accuracy of g(t) w.r.t #queries

how to query strategically?
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How to Query Strategically?

Strategy 1
ask most confused
question

Strategy 2
ask most frequent
question

Strategy 3
ask most debateful
question

• choosing one single strategy is non-trivial:
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application intelligence: how to
choose strategy smartly?
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Idea: Trial-and-Reward Like Human

when do humans trial-and-reward?
gambling

K strategies:

A1, A2, · · · , AK

try one strategy

“goodness” of strategy
as reward

K bandit machines:

B1, B2, · · · , BK

try one bandit machine

“luckiness” of machine
as reward

intelligent choice of strategy
=⇒ intelligent choice of bandit machine
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Active Learning by Learning (Hsu and Lin, AAAI 2015)

K strategies:
A1, A2, · · · , AK

try one strategy

“goodness” of strategy
as reward

Given: K existing active learning strategies
for t = 1,2, . . . ,T

1 let some bandit model decide strategy Ak to try
2 query the x̃s suggested by Ak , and compute g(t)

3 evaluate goodness of g(t) as reward of trial to update model

proposed Active Learning by Learning (ALBL):
motivated but unrigorous reward design
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Comparison with Single Strategies
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• no single best strategy for every data set
—choosing needed
• proposed ALBL consistently matches the best

—similar findings across other data sets

‘application intelligence’ outcome:
open-source tool released

(https://github.com/ntucllab/libact)
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Lessons Learned from
Research on Active Learning by Learning

by DFID - UK Department for International Development;

licensed under CC BY-SA 2.0 via Wikimedia Commons

1 scalability bottleneck of ‘application intelligence’:
choice of methods/models/parameter/. . .

2 think outside of the math box:
‘unrigorous’ usage may be good enough

3 important to be brave yet patient
• idea: 2012
• paper: (Hsu and Lin, AAAI 2015); software: (Yang et al., 2017)
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Tropical Cyclone Intensity Estimation
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Experienced Meteorologists Can ‘Feel’ and Estimate
Tropical Cyclone Intensity from Image

Can ML do the same/better?
• lack of ML-ready datasets
• lack of model that properly utilizes domain knowledge

issues addressed in our latest works
(Chen et al., KDD 2018)

(Chen et al., Weather & Forecasting 2019)
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ML Research for Modern AI

Recall: Flow behind Our Proposed Model

TC images

ML intensity
estimation

human
learning/
analysis

domain
knowledge

(HI)

CNN polar
rotation

invariance

current
weather
system

is proposed CNN-TC better than current
weather system?
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ML Research for Modern AI

Results
RMS Error

ADT 11.75
AMSU 14.40
SATCON 9.66
CNN-TC 9.03

CNN-TC much better than current weather system (SATCON)

why are people not
using this cool ML model? :-)
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Lessons Learned from
Research on Tropical Cyclone Intensity Estimation

1 again, cross-domain collaboration important
e.g. even from ‘organizing data’ to be ML-ready

2 not easy to claim production ready
—can ML be used for ‘unseenly-strong TC’?

3 good AI system requires both human and machine learning
—still an ‘art’ to blend the two
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AI: Now and Next

2010–2015
AI becomes
promising, e.g.
• initial success of

deep learning on
ImageNet
• mature tools for

SVM (LIBSVM)
and others

2016–2020
AI becomes
competitive, e.g.
• super-human

performance of
alphaGo and
others
• all big technology

companies
become AI-first

2021–
AI becomes
necessary
• “You’ll not be

replaced by AI,
but by humans
who know how
to use AI”
(Sun, Chief AI Scientist

of Appier, 2018)
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Needs of ML for Future AI

more creative
win human respect

e.g. Appier’s 2018
work on
design matching
clothes
(Shih et al., AAAI 2018)

more explainable
win human trust

e.g. my students’
work on
automatic bridge
bidding
(Yeh et al., IEE ToG 2018)

more interactive
win human heart

e.g. my student’s
work (w/ DeepQ) on
efficient disease
diagonsis
(Peng et al., NeurIPS 2018)
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Summary
• ML for (Modern) AI:

tools + human knowledge⇒ easy-to-use application
• ML Research for Modern AI:

need to be more open-minded
—in methodology, in collaboration, in KPI
• ML for Future AI:

crucial to be ‘human-centric’

Thank you! Questions?
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