Machine Learning for Modern Artificial Intelligence

Hsuan-Tien Lin

National Taiwan University

December 19, 2019 invited talk for Wistron NeWeb Corporation

Outline

ML for (Modern) Al

ML Research for Modern Al

ML for Future Al

H.-T. Lin (NTU) ML for Modern Al 2/50

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers thinking and acting smartly

- humanly
- rationally

humanly \approx smartly \approx rationally —are humans rational? :-)

H.-T. Lin (NTU)

ML for Modern AI

3/5

Humanly versus Rationally

What if your self-driving car decides one death is better than two—and that one is you? (The Washington Post http://wpo.st/ZK-51)

You're humming along in your self-driving car, chatting on your iPhone 37 while the machine navigates on its own. Then a swarm of people appears in the street, right in the path of the oncoming vehicle.

Car Acting Humanly

to save my (and passengers') life, stay on track

Car Acting Rationally

avoid the crowd and crash the owner for minimum total loss

which is smarter?
—depending on where I am, maybe? :-)

(Traditional) Artificial Intelligence

Thinking Humanly

cognitive modeling
 —now closer to Psychology than AI

Thinking Rationally

 formal logic—now closer to Theoreticians than AI practitioners

Acting Humanly

- dialog systems
- humanoid robots
- computer vision

Acting Rationally

- recommendation systems
- cleaning robots
- · cross-device ad placement

acting humanly or rationally: more academia/industry attentions nowadays

Traditional vs. Modern [My] Definition of Al

Traditional Definition

humanly \approx intelligently \approx rationally

My Definition

intelligently \approx easily is your smart phone 'smart'? :-)

modern artificial intelligence = application intelligence

Examples of Application Intelligence

Siri

By Bernard Goldbach [CC BY 2.0]

iRobot

By Yuan-Chou Lo [CC BY-NC-ND 2.0]

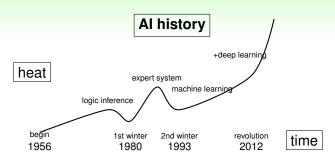
Amazon Recommendations

By Kelly Sims [CC BY 2.0]

Vivino

from nordic.businessinsider.com

Al Milestones



- first Al winter: Al cannot solve 'combinatorial explosion' problems
- second Al winter: expert system failed to scale

reason of winters: expectation mismatch

What's Different Now?

More Data

- cheaper storage
- Internet companies

Better Algorithms

- decades of research
- e.g. deep learning

Faster Computation

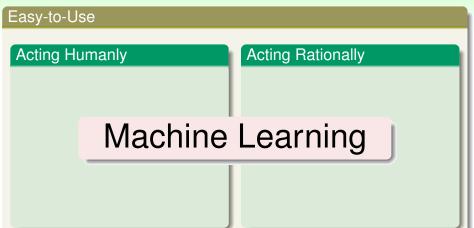
- cloud computing
- GPU computing

Healthier Mindset

- reasonable wishes
- key breakthroughs

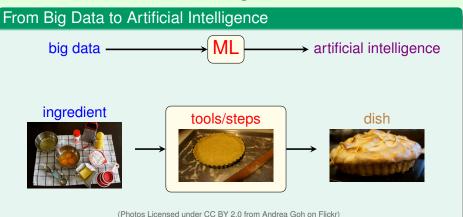
data-enabled AI: mainstream nowadays

Machine Learning and Al



machine learning: core behind modern (data-driven) Al

ML Connects Big Data and Al



"cooking" needs many possible tools & procedures

Bigger Data Towards Better Al

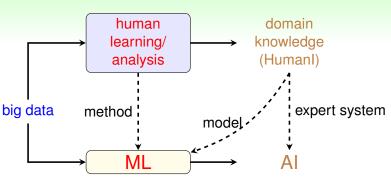
best route by shortest path

best route by current traffic

best route by predicted travel time

big data can make machine look smarter

ML for Modern Al



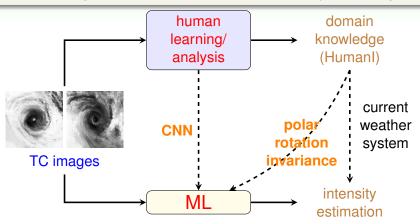
- human sometimes faster learner on initial (smaller) data
- industry: black plum is as sweet as white

often important to leverage human learning, especially in the beginning

ML for (Modern) Al

Application: Tropical Cyclone Intensity Estimation

meteorologists can 'feel' & estimate TC intensity from image



better than current system & 'trial-ready'

(Chen et al., KDD 2018)

(Chen et al., Weather & Forecasting 2019)

Outline

ML for (Modern) Al

ML Research for Modern Al

ML for Future Al

H.-T. Lin (NTU) ML for Modern Al 15/5

Cost-Sensitive Multiclass Classification

What is the Status of the Patient?

H7N9-infected

cold-infected

healthy

- a classification problem -grouping 'patients' into different 'status'
 - are all mis-prediction costs equal?

Patient Status Prediction

error measure = society cost

predicted	H7N9	cold	healthy			
H7N9	0	1000	100000			
cold	100	0	3000			
healthy	100	30	0			

- H7N9 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?

Our Works

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny et al., 2003)	ongoing (our works, among others)

selected works of ours

- cost-sensitive SVM (Tu and Lin, ICML 2010)
- cost-sensitive one-versus-one (Lin, ACML 2014)
- cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people not using those cool ML works for their AI? :-)

Issue 1: Where Do Costs Come From?

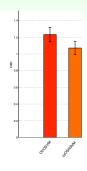
A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

issue 2: is cost-sensitive classification really useful?

Cost-Sensitive vs. Traditional on Bacteria Data

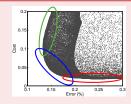


(Jan et al., BIBM 2011)

cost-sensitive better than traditional; but why are people still not using those cool ML works for their AI? :-)

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem



- cost-sensitive classifier: low cost but high error rate
- traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive: more suitable for real-world medical needs

H.-T. Lin (NTU) ML for Modern AI 22/5

Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)

Cost			
	iris	≈	
	wine	≈	
	glass	~	
	vehicle	~	
	vowel	0	
	segment	Ō	
	dna	0	
	satimage	≈	
	usps	0	
	Z00	% 000 % 00 %	
	splice	~	
	ecoli	≈	
	soybean	≈	

Error		
	iris wine glass vehicle vowel segment dna satimage usps zoo splice ecoli soybean	0000000000000

now, are people using those cool ML works for their Al? :-)

Lessons Learned from

Research on Cost-Sensitive Multiclass Classification

H7N9-infected

cold-infected

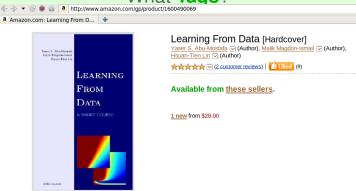
healthy

- more realistic (generic) in academia ≠ more realistic (feasible) in application e.g. the 'cost' of inputting a cost matrix? :-)
- 2 cross-domain collaboration important e.g. getting the 'cost matrix' from domain experts
- not easy to win human trust—humans are somewhat multi-objective

H.-T. Lin (NTU) ML for Modern AI 24/50

Label Space Coding for Multilabel Classification

What **Tags**?



?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

a **multilabel** classification problem: **tagging** input to multiple categories

Binary Relevance: Multilabel Classification via Yes/No

Binary Classification

{yes, no}

multilabel w/ L classes: L Y/N questions

machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

- Binary Relevance approach: transformation to multiple isolated binary classification
- disadvantages:
 - isolation—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - unbalanced—few yes, many no

Binary Relevance: simple (& good) benchmark with known disadvantages

From Label-set to Coding View

label set	apple	orange	strawberry	binary code
{o}	0 (N)	1 (Y)	0 (N)	[0, 1, 0]
$\{a,o\}$	1 (Y)	1 (Y)	0 (N)	[1, 1, 0]
$\{a,s\}$	1 (Y)	0 (N)	1 (Y)	[1,0,1]
{o}	0 (N)	1 (Y)	0 (N)	[0, 1, 0]
{}	0 (N)	0 (N)	0 (N)	[0, 0, 0]

subset of $2^{\{1,2,\cdots,L\}} \Leftrightarrow \text{length-}L \text{ binary code}$

A NeurIPS 2009 Approach: Compressive Sensing

General Compressive Sensing

sparse (many 0) binary vectors $\mathbf{y} \in \{0, 1\}^L$ can be **robustly** compressed by projecting to $M \ll L$ basis vectors $\{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M\}$

Comp. Sensing for Multilabel Classification (Hsu et al., NeurIPS 2009)

- compress: encode original data by compressive sensing
- 2 learn: get regression function from compressed data
- decode: decode regression predictions to sparse vector by compressive sensing

Compressive Sensing:

seemly strong competitor from related theoretical analysis

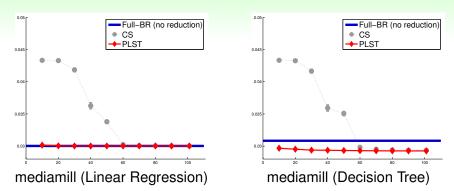
Our Proposed Approach: Compressive Sensing ⇒ PCA

Principal Label Space Transformation (PLST), i.e. PCA for Multilabel Classification (Tai and Lin, NC Journal 2012)

- compress: encode original data by PCA
- 2 learn: get regression function from compressed data
- decode: decode regression predictions to label vector by reverse PCA + quantization

does PLST perform better than CS?

Hamming Loss Comparison: PLST vs. CS



- PLST better than CS: faster, better performance
- similar findings across data sets and regression algorithms

Why? CS creates harder-to-learn regression tasks

Our Works Continued from PLST

- 1 Compression Coding (Tai & Lin, NC Journal 2012 with 249 citations)
 - -condense for efficiency: better (than CS) approach PLST
 - key tool: PCA from Statistics/Signal Processing
- 2 Learnable-Compression Coding (Chen & Lin, NeuIPS 2012 with 186 citations) —condense learnably for better efficiency: better (than PLST) approach CPLST
 - key tool: Ridge Regression from Statistics (+ PCA)
- Cost-Sensitive Coding (Huang & Lin, ECML Journal Track 2017)
 —condense cost-sensitively towards application needs: better (than
 - key tool: Multidimensional Scaling from Statistics

CPLST) approach CLEMS

cannot thank **statisticans** enough for those tools!

Lessons Learned from

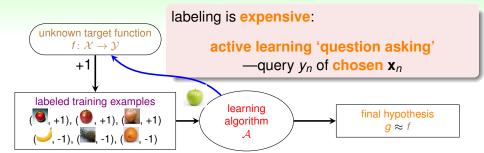
Label Space Coding for Multilabel Classification

?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

- Is Statistics the same as ML? Is Statistics the same as AI?
 - does it really matter?
 - Modern AI should embrace every useful tool from other fields.
- 2 good tools not necessarily most sophisticated tools e.g. PCA possibly more useful than CS
- more-cited paper ≠ more-useful AI solution
 —citation count not the only impact measure

Active Learning by Learning

Active Learning: Learning by 'Asking'



active: improve hypothesis with fewer labels (hopefully) by asking questions **strategically**

Pool-Based Active Learning Problem

Given

- labeled pool $\mathcal{D}_l = \left\{ (\text{feature } \mathbf{x}_n), \text{label } y_n \text{ (e.g. IsApple?)} \right\}_{n=1}^N$
- ullet unlabeled pool $\mathcal{D}_u = \left\{ oldsymbol{ ilde{x}_s}
 ight\}_{s=1}^{\mathcal{S}}$

Goal

design an algorithm that iteratively

- 1 strategically query some $\tilde{\mathbf{x}}_s$ it oget associated \tilde{y}_s
- 2 move $(\tilde{\mathbf{x}}_s, \tilde{\mathbf{y}}_s)$ from \mathcal{D}_u to \mathcal{D}_l
- 3 learn classifier $g^{(t)}$ from \mathcal{D}_l

and improve test accuracy of $g^{(t)}$ w.r.t #queries

how to query strategically?

How to Query Strategically?

Strategy 1

ask most confused question

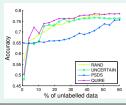
Strategy 2

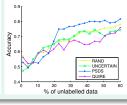
ask most frequent question

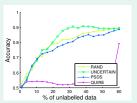
Strategy 3

ask most debateful question

choosing one single strategy is non-trivial:



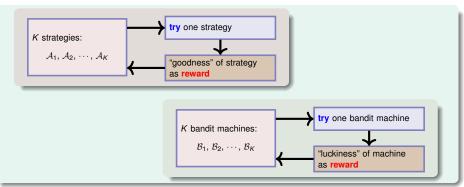




application intelligence: how to choose strategy smartly?

Idea: Trial-and-Reward Like Human

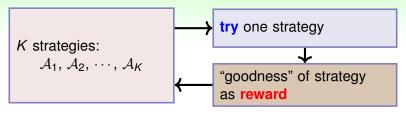
when do humans trial-and-reward? gambling



intelligent choice of strategy

⇒ intelligent choice of bandit machine

Active Learning by Learning (Hsu and Lin, AAAI 2015)



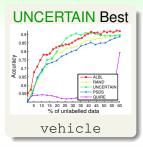
Given: *K* existing active learning strategies

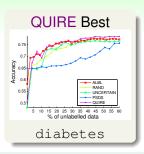
for t = 1, 2, ..., T

- 1 let some bandit model decide strategy A_k to try
- 2 query the $\tilde{\mathbf{x}}_s$ suggested by A_k , and compute $g^{(t)}$
- 3 evaluate **goodness of** $g^{(t)}$ as **reward** of **trial** to update model

proposed Active Learning by Learning (ALBL): motivated but unrigorous reward design

Comparison with Single Strategies





- no single best strategy for every data set —choosing needed
- proposed ALBL consistently matches the best
 —similar findings across other data sets

'application intelligence' outcome: open-source tool released

(https://github.com/ntucllab/libact)

Lessons Learned from Research on Active Learning by Learning

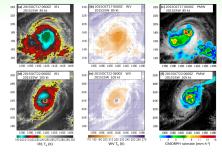
by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

- scalability bottleneck of 'application intelligence': choice of methods/models/parameter/...
- 2 think outside of the math box: 'unrigorous' usage may be good enough
- important to be brave yet patient
 - idea: 2012
 - paper: (Hsu and Lin, AAAI 2015); software: (Yang et al., 2017)

Tropical Cyclone Intensity Estimation

ML Research for Modern Al Experienced Meteorologists Can 'Feel' and Estimate

Tropical Cyclone Intensity from Image



Can ML do the same/better?

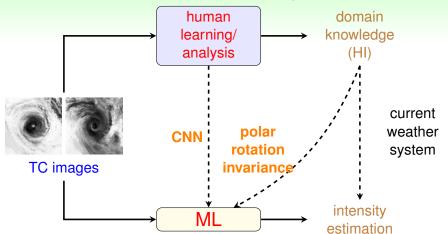
- lack of ML-ready datasets
- lack of model that properly utilizes domain knowledge

issues addressed in our latest works

(Chen et al., KDD 2018)

(Chen et al., Weather & Forecasting 2019)

Recall: Flow behind Our Proposed Model



is proposed CNN-TC better than current weather system?

Results

RMS Error

ADT	11.75
AMSU	14.40
SATCON	9.66
CNN-TC	9.03

CNN-TC much better than current weather system (SATCON)

why are people **not** using this **cool ML model?** :-)

Lessons Learned from Research on Tropical Cyclone Intensity Estimation

- again, cross-domain collaboration important e.g. even from 'organizing data' to be ML-ready
- 2 not easy to claim production ready —can ML be used for 'unseenly-strong TC'?
- good AI system requires both human and machine learning —still an 'art' to blend the two

H.-T. Lin (NTU) ML for Modern AI 46/5

Outline

ML for (Modern) Al

ML Research for Modern Al

ML for Future AI

H.-T. Lin (NTU) ML for Modern AI 47/50

AI: Now and Next

2010-2015

Al becomes promising, e.g.

- initial success of deep learning on ImageNet
- mature tools for SVM (LIBSVM) and others

2016-2020

Al becomes **competitive**, e.g.

- super-human performance of alphaGo and others
- all big technology companies become Al-first

2021-

Al becomes necessary

 "You'll not be replaced by AI, but by humans who know how to use AI"

(Sun, Chief Al Scientist of Appier, 2018)

Needs of ML for Future Al

more creative

win human respect

e.g. Appier's 2018 work on design matching clothes

(Shih et al., AAAI 2018)

more explainable

win human trust

e.g. my students' work on automatic bridge bidding

(Yeh et al., IEE ToG 2018)

more interactive

win human heart

e.g. my student's work (w/ DeepQ) on efficient disease diagonsis

(Peng et al., NeurIPS 2018)

Summary

- ML for (Modern) AI: tools + human knowledge ⇒ easy-to-use application
- ML Research for Modern AI:
 need to be more open-minded
 —in methodology, in collaboration, in KPI
- ML for Future AI: crucial to be 'human-centric'

Thank you! Questions?

