Machine Learning for Modern Artificial Intelligence

Hsuan-Tien Lin

National Taiwan University

June 25, 2019 other versions presented in Academia Sinica & TWSIAM Annual Meeting

Outline

ML for (Modern) AI

ML Research for Modern Al

ML for Future AI

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers thinking and acting smartly

- humanly
- rationally

humanly ≈ smartly ≈ rationally —are humans rational? :-)

Traditional vs. Modern [My] Definition of AI

Traditional Definition

humanly \approx intelligently \approx rationally

My Definition

intelligently \approx easily is your smart phone 'smart'? :-)

modern artificial intelligence = application intelligence

H.-T. Lin (NTU)

Examples of Application Intelligence

Machine Learning and AI

machine learning: core behind modern (data-driven) AI

H.-T. Lin (NTU)

ML Connects Big Data and AI

"cooking" needs many possible tools & procedures

H.-T. Lin (NTU)

Bigger Data Towards Better AI

ML for (Modern) AI

ML for Modern AI

- human sometimes faster learner on initial (smaller) data
- industry: black plum is as sweet as white

often important to leverage human learning, especially in the beginning

H.-T. Lin (NTU)

Application: Tropical Cyclone Intensity Estimation

meteorologists can 'feel' & estimate TC intensity from image

Outline

ML for (Modern) Al

ML Research for Modern AI

ML for Future AI

Cost-Sensitive Multiclass Classification

H.-T. Lin (NTU)

What is the Status of the Patient?

H7N9-infected

cold-infected

healthy

- a classification problem
 - -grouping 'patients' into different 'status'

are all mis-prediction costs equal?

H.-T. Lin (NTU)

Patient Status Prediction

- H7N9 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?

Our Works

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny et al., 2003)	ongoing (our works, among others)

selected works of ours

- cost-sensitive SVM (Tu and Lin, ICML 2010)
- cost-sensitive one-versus-one (Lin, ACML 2014)
- cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people **not** using those **cool ML works for their AI? :-)**

Issue 1: Where Do Costs Come From?

A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

issue 2: is cost-sensitive classification really useful?

H.-T. Lin (NTU)

Cost-Sensitive vs. Traditional on Bacteria Data

(Jan et al., BIBM 2011)

cost-sensitive better than traditional; but why are people still not using those cool ML works for their AI? :-)

H.-T. Lin (NTU)

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem

- cost-sensitive classifier: low cost but high error rate
- · traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive:

more suitable for real-world medical needs

Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)

18/38

now, are people using those cool ML works for their AI? :-)

ML for Modern AI

H.-T. Lin (NTU)

Lessons Learned from Research on Cost-Sensitive Multiclass Classification

?

H7N9-infected

cold-infected

healthy

more realistic (generic) in academia
 ≠ more realistic (feasible) in application
 e.g. the 'cost' of inputting a cost matrix? :-)

- Cross-domain collaboration important
 - e.g. getting the 'cost matrix' from domain experts
- 8 not easy to win human trust
 - -humans are somewhat multi-objective

Active Learning by Learning

H.-T. Lin (NTU)

Active Learning: Learning by 'Asking'

active: improve hypothesis with fewer labels (hopefully) by asking questions **strategically**

Pool-Based Active Learning Problem

Given

• labeled pool $\mathcal{D}_l = \left\{ (\text{feature } \mathbf{x}_n) \\ \mathbf{x}_n \\ \mathbf{x}$

• unlabeled pool
$$\mathcal{D}_u = \left\{ \mathbf{ ilde{x}}_{s}
ight\}_{s=1}^{S}$$

Goal

design an algorithm that iteratively

- **1** strategically query some $\tilde{\mathbf{x}}_s$ **S** to get associated $\tilde{\mathbf{y}}_s$
- **2** move $(\tilde{\mathbf{x}}_s, \tilde{\mathbf{y}}_s)$ from \mathcal{D}_u to \mathcal{D}_l
- **3** learn classifier $g^{(t)}$ from \mathcal{D}_l

and improve test accuracy of $g^{(t)}$ w.r.t #queries

how to query strategically?

H.-T. Lin (NTU)

How to Query Strategically?

Strategy 1	Strategy 2	Strategy 3
ask most confused	ask most frequent	ask most debateful
question	question	question

choosing one single strategy is non-trivial:

application intelligence: how to choose strategy smartly?

Idea: Trial-and-Reward Like Human

when do humans trial-and-reward? gambling

Active Learning by Learning (Hsu and Lin, AAAI 2015)

Given: *K* existing active learning strategies

for t = 1, 2, ..., T

- **1** let some bandit model **decide strategy** A_k to try
- **2** query the $\tilde{\mathbf{x}}_s$ suggested by \mathcal{A}_k , and compute $g^{(t)}$
- **(3)** evaluate **goodness of** $g^{(t)}$ as **reward** of **trial** to update model

only remaining problem: what reward?

H.-T. Lin (NTU)

Design of Reward

ideal reward after updating classifier $g^{(t)}$ by the query $(\mathbf{x}_{n_t}, y_{n_t})$:

accuracy of $g^{(t)}$ on test set $\{(\mathbf{x}'_m, \mathbf{y}'_m)\}_{m=1}^M$

-test accuracy infeasible in practice because labeling expensive

more feasible reward: training accuracy on the fly

accuracy of $g^{(t)}$ on labeled pool $\{(\mathbf{x}_{n_{\tau}}, y_{n_{\tau}})\}_{\tau=1}^{t}$

-but biased towards easier queries

weighted training accuracy as a better reward:

acc. of $g^{(t)}$ on inv.-prob. weighted labeled pool $\left\{ (\mathbf{x}_{n_{\tau}}, y_{n_{\tau}}, \frac{1}{p_{\tau}}) \right\}_{\tau=1}^{t}$

--- 'bias correction' from querying probability within bandit model

Active Learning by Learning (ALBL): bandit + weighted training acc. as reward

H.-T. Lin (NTU)

Comparison with Single Strategies

- proposed ALBL consistently matches the best —similar findings across other data sets

ALBL: effective in making intelligent choices

Discussion for Statisticians

weighted training accuracy $\frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{\rho_{\tau}} \left[y_{n_{\tau}} = g^{(t)}(\mathbf{x}_{n_{\tau}}) \right]$ as reward

- is reward unbiased estimator of test performance?
 no for learned g^(t) (yes for fixed g)
- is reward fixed before playing?
 no because g^(t) learned from (x_{nt}, y_{nt})
- is reward independent of each other?
 no because past history all in reward
- -ALBL: tools from statistics + wild/unintended usage

'application intelligence' outcome: open-source tool released

(https://github.com/ntucllab/libact)

Lessons Learned from Research on Active Learning by Learning

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

Is Statistics the same as ML or AI?

- does it really matter?
- Modern AI should embrace every useful tool from other fields.
- Scalability bottleneck of 'application intelligence': choice of methods/models/parameter/...
- think outside of the math box: 'unintended' usage may be good enough
- Important to be brave yet patient
 - idea: 2012
 - paper: (Hsu and Lin, AAAI 2015); software: (Yang et al., 2017)

Tropical Cyclone Intensity Estimation

H.-T. Lin (NTU)

ML Research for Modern Al Experienced Meteorologists Can 'Feel' and Estimate Tropical Cyclone Intensity from Image

Can ML do the same/better?

- lack of ML-ready datasets
- lack of model that properly utilizes domain knowledge

issues addressed in our latest works

(Chen et al., KDD 2018)

(Chen et al., Weather & Forecasting 2019)

H.-T. Lin (NTU)

Flow behind Our Proposed Model

32/38

ML for Modern AI

H.-T. Lin (NTU)

Results

RMS Error		
	ADT	11.75
	AMSU	14.40
	SATCON	9.66
	CNN-TC	9.03

CNN-TC much better than current weather system (SATCON)

why are people not using this cool ML model? :-)

H.-T. Lin (NTU)

Lessons Learned from Research on Tropical Cyclone Intensity Estimation

- again, cross-domain collaboration important e.g. even from 'organizing data' to be ML-ready
- not easy to claim production ready —can ML be used for 'unseenly-strong TC'?
- good AI system requires both human and machine learning —still an 'art' to blend the two

ML for Future AI

Outline

ML for (Modern) AI

ML Research for Modern Al

ML for Future AI

H.-T. Lin (NTU)

AI: Now and Next

2010–2015

Al becomes **promising**, e.g.

- initial success of deep learning on ImageNet
- mature tools for SVM (LIBSVM) and others

2016-2020

Al becomes competitive, e.g.

- super-human performance of alphaGo and others
- all big technology companies become Al-first

2021-

AI becomes necessary

> "You'll not be replaced by Al, but by humans who know how to use Al"

> > (Sun, Chief Al Scientist of Appier, 2018)

Needs of ML for Future AI

more creative	more explainable	more interactive
win human respect	win human <mark>trust</mark>	win human <mark>heart</mark>
e.g. Appier's 2018 work on design matching clothes (Shih et al., AAAI 2018)	e.g. my students' work on automatic bridge bidding (Yeh et al., IEE ToG 2018)	e.g. my student's work (w/ DeepQ) on efficient disease diagonsis (Peng et al., NeurIPS 2018)

Summary

- ML for (Modern) AI: tools + human knowledge ⇒ easy-to-use application
- ML Research for Modern AI: need to be more open-minded —in methodology, in collaboration, in KPI
- ML for Future AI: crucial to be 'human-centric'

Thank you! Questions?

