Machine Learning for Modern Artificial Intelligence

Hsuan-Tien Lin 林軒田

Professor, National Taiwan University

November 30, 2023

Dept. of Applied Math, National Chung Hsing University

About Me

Professor National Taiwan University

Chief Data Science Consultant (former Chief Data Scientist)

Appier Inc.

Appier

Co-author Learning from Data

Instructor NTU-Coursera MOOCs *ML Foundations/Techniques*

research goal: making machine more realistic

Outline

ML for (Modern) Al

ML Research for Modern Al: A Personal Story

ML for AI in Reality

ML for Future Al

H.-T. Lin (NTU) ML for Modern Al 2/38

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers (thinking and) acting smartly

- humanly
- rationally

humanly \approx smartly \approx rationally

ML for Modern Al 3/38 H.-T. Lin (NTU)

Humanly versus Rationally

What if your self-driving car decides one death is better than two—and that one is you? (The Washington Post http://wpo.st/ZK-51)

You're humming along in your self-driving car, chatting on your iPhone 37 while the machine navigates on its own. Then a swarm of people appears in the street, right in the path of the oncoming vehicle.

Car Acting Humanly

to save my (and passengers') life, stay on track

Car Acting Rationally

avoid the crowd and crash the owner for minimum total loss

which is smarter?
—depending on where I am, maybe? ⓒ

H.-T. Lin (NTU) ML for Modern AI 4/38

Traditional vs. Modern [My] Definition of Al

Traditional Definition

humanly \approx intelligently \approx rationally

My Definition

intelligently \approx easily is your smart phone 'smart'? ①

modern artificial intelligence = application intelligence

ML for Modern Al

Examples of Application Intelligence

Siri

By Bernard Goldbach [CC BY 2.0]

iRobot

By Yuan-Chou Lo [CC BY-NC-ND 2.0]

Amazon Recommendations

By Kelly Sims [CC BY 2.0]

Vivino

From nordic.businessinsider.com

Al Milestones

- first AI winter: AI cannot solve 'combinatorial explosion' problems
- second Al winter: expert system failed to scale

reason of winters: expectation mismatch

What's Different Now?

More Data

- cheaper storage
- Internet companies

Better Algorithms

- decades of research
- e.g. deep learning

Faster Computation

- cloud computing
- GPU computing

Healthier Mindset

- reasonable wishes
- key breakthroughs

data-enabled AI: mainstream nowadays

H.-T. Lin (NTU) ML for Modern AI 8/38

Bigger Data Enable Easier-to-use Al

By deepanker70 on https://pixabay.com/

past

best route by shortest path

present

best route by current traffic

future

best route by predicted travel time

big data can make machine look smarter

Machine Learning and Al

machine learning: core behind modern (data-driven) Al

Machine Learning Connects Big Data and Al

many possibilities when using the right tools

H.-T. Lin (NTU) ML for Modern AI 11/3

Example of ML-based Al Application: Education

- data: students' records on quizzes on a Math tutoring system
- Al: predict whether a student can give a correct answer to another quiz question

A Possible ML Solution

answer correctly $\approx [\text{recent strength of student} > \text{difficulty of question}]$

- give ML 9 million records from 3000 students
- ML determines (reverse-engineers) strength and difficulty automatically

key part of the **world-champion** system from National Taiwan Univ. in KDDCup 2010

H.-T. Lin (NTU) ML for Modern AI 12/

Good Al Needs Both ML and Non-ML Techniques

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques

Monte C. Tree Search \approx move simulation in brain

(CC-BY-SA 3.0 by Stannered on

Wikipedia)

ML Techniques

Deep Learning

 \approx board analysis in human brain

(CC-BY-SA 2.0 by Frej Bjon on Wikipedia)

Reinforcement Learn.

 \approx (self)-practice in human training

(Public Domain, from Wikipedia)

good AI: important to use the right techniques—ML & others, including human

Full Picture of ML for Modern Al

Human Learning

- subjective
- produce domain knowledge
- fast basic solution

Machine Learning

- objective
- leverage computing power
- continuous improvement

tip: use humans as much as possible first before going to machines

Example: Tropical Cyclone Intensity Estimation

meteorologists can 'feel' & estimate TC intensity from image

Outline

ML for (Modern) Al

ML Research for Modern AI: A Personal Story

ML for AI in Reality

ML for Future Al

What is the Status of the Patient?

By DataBase Center for Life Science; licensed under CC BY 4.0 via Wikimedia Commons

Pictures Licensed under CC BY-SA 3.0 from 1RadicalOne on Wikimedia Commons

- a classification problem
 grouping 'patients' into different 'status'
 - are all mis-prediction costs equal?

Patient Status Prediction

error measure = society cost

circi inicacai ci cocici, coci					
predicted actual	COVID19	cold	healthy		
COVID19	0	1000	100000		
cold	100	0	3000		
healthy	100	30	0		

- COVID19 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?

Our Works

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny et al., 2003)	ongoing (our works, among others)

selected works of ours

- cost-sensitive SVM (Tu and Lin, ICML 2010)
- cost-sensitive one-versus-one (Lin, ACML 2014)
- cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people not using those cool ML works for their AI? \odot

Issue 1: Where Do Costs Come From?

A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

			_								
		Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
	Ab	0	1	10	7	9	9	5	8	9	1
	Ecoli	3	0	10	8	10	10	5	10	10	2
,	HI	10	10	0	3	2	2	10	1	2	10
	KP	7	7	3	0	4	4	6	3	3	8
	LM	8	8	2	4	0	5	8	2	1	8
	Nm	3	10	9	8	6	0	8	3	6	7
	Psa	7	8	10	9	9	7	0	8	9	5
	Spn	6	10	7	7	4	4	9	0	4	7
	Sa	7	10	6	5	1	3	9	2	0	7
	GBS	2	5	10	9	8	6	5	6	8	0

issue 2: is cost-sensitive classification really useful?

H.-T. Lin (NTU) ML for Modern AI 20/38

Cost-Sensitive vs. Traditional on Bacteria Data

(Jan et al., BIBM 2011)

cost-sensitive better than traditional; but why are people still not using those cool ML works for their AI? ©

H.-T. Lin (NTU) ML for Modern AI 21/38

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem

- cost-sensitive classifier: low cost but high error rate
- traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive: more suitable for real-world medical needs

H.-T. Lin (NTU) ML for Modern AI 22/3

Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)

Cost			
	iris	≈	
	wine	~	
	glass	≈	
	vehicle	≈	
	vowel	0	
	segment	000 % 00 %	
	dna	0	
	satimage	~	
	usps	0	
	Z00	0	
	splice		
	ecoli	~	
	soybean	≈	

Error		
	iris wine glass vehicle vowel segment dna satimage usps zoo splice ecoli soybean	000000000000000000000000000000000000000

now, are people using those cool ML works for their AI? \odot

H.-T. Lin (NTU) ML for Modern AI 23/3

Lessons Learned from

Research on Cost-Sensitive Multiclass Classification

See Page 16 of the Slides for Sources of the Pictures

- more realistic (generic) in academia
 ≠ more realistic (feasible) in application
 e.g. the 'cost' of inputting a cost matrix? ⊙
- cross-domain collaboration important e.g. getting the 'cost matrix' from domain experts

Outline

ML for (Modern) Al

ML Research for Modern AI: A Personal Story

ML for AI in Reality

ML for Future Al

H.-T. Lin (NTU)

ML for Modern AI

25/

Frequently Asked Questions of ML for AI (1/3)

What is the best Al project for (my precious big) data?

My Polite Answer

good start already ;, any more thoughts that you have in mind?

My Honest Answer

I don't know.

or a slightly longer answer: if you don't know, I don't know.

H.-T. Lin (NTU) ML for Modern AI 26/38

A Similar Scenario

What is the best AI project for (my precious big) data?

how to find a research topic for my thesis?

My Polite Answer

good start already ①, any more thoughts that you have in mind?

My Honest Answer

I don't know.

or a slightly longer answer: I don't know, but perhaps you can **start** by thinking about **motivation** and **feasibility**.

™ Iwo Axes on Finding Al Projects ≈ Finding Research Topics

- · motivation: what are you interested in?
- feasibility: what can or cannot be done?

motivation

- something publishable?
 oh, possibly just for people in academia
- something that improves xyz performance
- something that inspires deeper study
- -helps generate questions

feasibility

- modeling
- computational
- budget
- timeline
- . . .

—helps filter questions

tip: important for first Al project to be of high success possibility

H.-T. Lin (NTU) ML for Modern AI 28/38

Frequently Asked Questions of ML for AI (2/3)

What is the best machine learning model for (my precious big) data and AI?

My Polite Answer

the best model is data-dependent, let's chat about your data first

My Honest Answer

I don't know.

or a slightly longer answer:

I don't know about best, but perhaps you can start by thinking about simple models.

H.-T. Lin (NTU) ML for Modern AI 29/3

Sophisticated Model for Al

What is the best machine learning model for (my precious big) data and AI?

What is the most sophisticated machine learning model for (my precious big) data and AI?

- myth: my AI works best with most sophisticated model
- sophisticated model:
 - time-consuming to train and predict
 - difficult to tune or modify
 - hard to "simplify" nor "analyze"

sophisticated model shouldn't be first choice

Simple First

What is the first machine learning model for (my precious big) data and AI?

Taught in ML Foundations on NTU@Coursera

simple model first:

- efficient to train and predict
- easy to tune or modify
- somewhat "analyzable"
- little risk

tip: KISS Principle -Keep It Simple, Stupid Safe

ML for Modern Al

Frequently Asked Questions of ML for AI (3/3)

How to Get my Al Project Started?

New Me

I know one key factor!

let's see what the key factor is

H.-T. Lin (NTU) ML for Modern AI 32/38

Todos in Al Project

key first step: set up evaluation criteria

Evaluation Criteria Guide Al Project Planning

(free image by Manfred Steger from Pixabay)

suggest improvement opportunities

data

hint preparation steps

techniques

assist model/tech. choices

usage

define acceptance goals

tip: always start with

reasonable & measurable criteria

to describe prioritized Al goal

Outline

ML for (Modern) Al

ML Research for Modern AI: A Personal Story

ML for AI in Reality

ML for Future AI

H.-T. Lin (NTU) ML for Modern AI 35/38

AI: Now and Next

2010-2015: AI

Al becomes **promising**, e.g.

- initial success of deep learning on ImageNet
- mature tools for SVM (LIBSVM) and others

2016-2020: AI +

Al becomes **competitive**, e.g.

- super-human performance of alphaGo and others
- all big technology companies become Al-first

2021-: AI ×

Al becomes necessary

 "You'll not be replaced by AI, but by humans who know how to use AI"

(Sun, Chief Al Scientist of Appier, 2018)

Needs of ML for Future Al

more generative

win human respect

e.g. Appier's 2018 work on design matching clothes

(Shih et al., AAAI 2018)

more explainable

win human trust

e.g. my students' work on automatic bridge bidding

(Yeh et al., IEE ToG 2018)

more interactive

win human heart

e.g. my student's work (w/ DeepQ) on efficient disease diagonsis

(Peng et al., NeurIPS 2018)

Summary

- ML for (Modern) AI: tools + human knowledge ⇒ easy-to-use application
- ML Research for Modern AI:
 need to be more open-minded
 —in methodology, in collaboration, in KPI
- ML for AI in Reality:
 - motivated/feasible project with measurable criteria
 - human and/or simple model first
- ML for future AI: knowing how to use is important

Thank you! Questions?