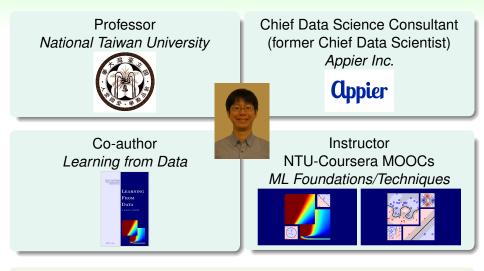
Machine Learning for Modern Artificial Intelligence


Hsuan-Tien Lin 林軒田

Professor, National Taiwan University

November 1, 2023 Al Program, National Chang Gung University

About Me

research goal: making machine more realistic

H.-T. Lin (NTU)

ML for Modern AI

Outline

ML for (Modern) AI

ML Research for Modern AI: Some Personal Stories

ML for AI in Reality

ML for Future AI

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers thinking and acting smartly

- humanly
- rationally

humanly \approx smartly \approx rationally —are humans rational? \odot

Humanly versus Rationally

What if your self-driving car decides one death is better than two—and that one is you? (The Washington Post http://wpo.st/ZK-51)

You're humming along in your self-driving car, chatting on your iPhone 37 while the machine navigates on its own. Then a swarm of people appears in the street, right in the path of the oncoming vehicle.

Car Acting Humanly

to save my (and passengers') life, stay on track

Car Acting Rationally

avoid the crowd and crash the owner for minimum total loss

which is smarter? —depending on where I am, maybe? \odot

(Traditional) Artificial Intelligence

Thinking Humanly

 cognitive modeling —now closer to Psychology than AI

Thinking Rationally

 formal logic—now closer to Theoreticians than AI practitioners

Acting Humanly

- dialog systems
- humanoid robots
- computer vision

Acting Rationally

- recommendation systems
- cleaning robots
- character recognition

acting humanly or rationally: more academia/industry attention nowadays

Traditional vs. Modern [My] Definition of AI

Traditional Definition

humanly \approx intelligently \approx rationally

My Definition

intelligently pprox easily


is your smart phone 'smart'? 🙂

modern artificial intelligence = application intelligence

Examples of Application Intelligence

AI Milestones

- first AI winter: AI cannot solve 'combinatorial explosion' problems
- second AI winter: expert system failed to scale

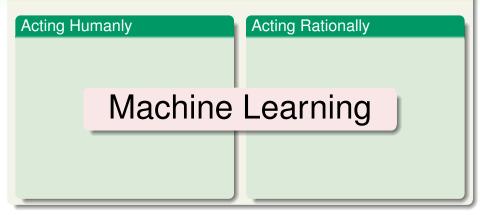
reason of winters: expectation mismatch

What's Different Now?

Better Algorithms
 decades of research
• e.g. deep learning
Healthier Mindset
 reasonable wishes
 key breakthroughs

data-enabled AI: mainstream nowadays

Bigger Data Enable Easier-to-use AI


By deepanker70 on https://pixabay.com/

big data can make machine look smarter

Machine Learning and AI

machine learning: core behind modern (data-driven) AI

H.-T. Lin (NTU)

ML for Modern AI

Machine Learning Connects Big Data and AI

Photos Licensed under CC BY 2.0 from Andrea Goh on Flickr

many possibilities when using the right tools

ML-based AI Applications (1/4): Medicine

By DataBase Center for Life Science;

licensed under CC BY 4.0 via Wikimedia Commons

for computer-assisted diagnosis

- data:
 - patient status
 - past diagnosis from doctors
- Al: dialogue system that efficiently identifies disease of patient

my student's earlier work as intern @ HTC DeepQ

ML-based AI Applications (2/4): Communication

By JulianVilla26;

licensed under CC BY-SA 4.0 via Wikimedia Commons

for 4G LTE communication

- data:
 - **channel information** (the channel matrix representing mutual information)
 - configuration (precoding, modulation, etc.) that reaches the highest throughput
- Al: predict **best configuration to the base station** in a new environment

my student's earlier work as intern @ MTK

H.-T. Lin (NTU)

ML for Modern AI

ML-based AI Applications (3/4): Education

- data: students' records on quizzes on a Math tutoring system
- Al: predict whether a student can give a correct answer to another quiz question

A Possible ML Solution

answer correctly \approx [recent strength of student > difficulty of question]]

- give ML 9 million records from 3000 students
- ML determines (reverse-engineers) strength and difficulty automatically

key part of the **world-champion** system from National Taiwan Univ. in KDDCup 2010

ML-based AI Applications (4/4): Security data \longrightarrow ML \longrightarrow AI

original picture by F.U.S.I.A. assistant and derivative work by Sylenius via Wikimedia Commons

face recognition

- data: faces and non-faces
- Al: predict which boxes contain faces

mature ML technique, but often need tuning for different application intelligence needs

H.-T. Lin (NTU)

ML for Modern AI

Good AI Needs Both ML and Non-ML Techniques

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques

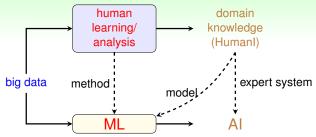
Monte C. Tree Search \approx move simulation in brain

(CC-BY-SA 3.0 by Stannered on Wikipedia)

ML Techniques

Deep Learning \approx board analysis in human brain

$\begin{array}{l} \mbox{Reinforcement Learn.} \\ \approx \mbox{(self)-practice in} \\ \mbox{human training} \end{array}$


(CC-BY-SA 2.0 by Frej Bjon on Wikipedia)

(Public Domain, from Wikipedia)

good AI: important to use the right techniques—ML & others, including human

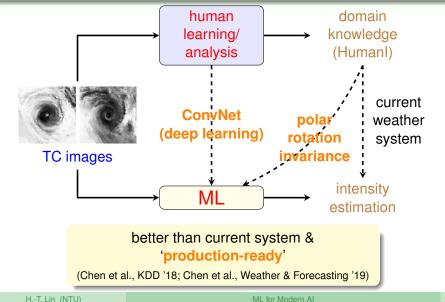
Full Picture of ML for Modern AI

Human Learning

- subjective
- produce domain knowledge
- fast basic solution

Machine Learning

- objective
- leverage computing power
- continuous improvement


tip: use humans as much as possible first before going to machines

H.-T. Lin (NTU)

ML for Modern AI

Example: Tropical Cyclone Intensity Estimation

meteorologists can 'feel' & estimate TC intensity from image

19/48

ML for (Modern) Al

ML Research for Modern AI: Some Personal Stories

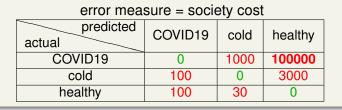
ML for AI in Reality

ML for Future Al

Cost-Sensitive Multiclass Classification

What is the Status of the Patient?

Pictures Licensed under CC BY-SA 3.0 from 1 RadicalOne on Wikimedia Commons


a classification problem
 grouping 'patients' into different 'status'

are all mis-prediction costs equal?

H.-T. Lin (NTU)

ML for Modern AI

Patient Status Prediction

- COVID19 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?

Our Works

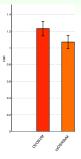
	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny et al., 2003)	ongoing (our works, among others)

selected works of ours

- cost-sensitive SVM (Tu and Lin, ICML 2010)
- cost-sensitive one-versus-one (Lin, ACML 2014)
- cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people not using those cool ML works for their AI? 🙂

Issue 1: Where Do Costs Come From?

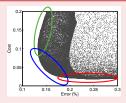

A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments ⇐⇒ serious costs
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

issue 2: is cost-sensitive classification really useful?

Cost-Sensitive vs. Traditional on Bacteria Data

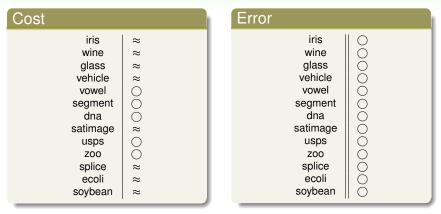


(Jan et al., BIBM 2011)

cost-sensitive better than traditional; but why are people still not using those cool ML works for their AI? \bigcirc

Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem



- cost-sensitive classifier: low cost but high error rate
- traditional classifier: low error rate but high cost
- how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive: more suitable for real-world medical needs

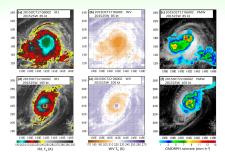
Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)

now, are people using those cool ML works for their AI? 😳

See Page 16 of the Slides for Sources of the Pictures

- more realistic (generic) in academia


 more realistic (feasible) in application
 e.g. the 'cost' of inputting a cost matrix? :

 cross-domain collaboration important
 - e.g. getting the 'cost matrix' from domain experts
- 8 not easy to win human trust

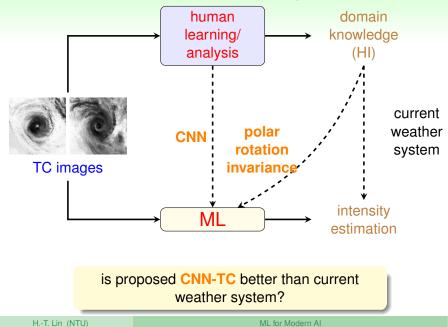
-humans are somewhat multi-objective

Tropical Cyclone Intensity Estimation

ML Research for Modern Al: Some Personal Stories Experienced Meteorologists Can 'Feel' and Estimate Tropical Cyclone Intensity from Image

Can ML do the same/better?

- lack of ML-ready datasets
- lack of model that properly utilizes domain knowledge


issues addressed in our latest works

(Chen et al., KDD '18; Chen et al., Weather & Forecasting '19)

H.-T. Lin (NTU)

ML for Modern AI

Recall: Flow behind Our Proposed Model

32/48

Results

RMS Error		
ADT	•	11.75
AMS	SU	14.40
SAT	CON	9.66
CNN	I-TC	9.03

CNN-TC much better than current weather system (SATCON)

why are people not using this cool ML model? \odot ML Research for Modern AI: Some Personal Stories Lessons Learned from Research on Tropical Cyclone Intensity Estimation

- again, cross-domain collaboration important e.g. even from 'organizing data' to be ML-ready
- not easy to claim production ready —can ML be used for 'unseenly-strong TC'?
- good AI system requires both human and machine learning —still an 'art' to blend the two

Outline

ML for (Modern) Al

ML Research for Modern AI: Some Personal Stories

ML for AI in Reality

ML for Future AI

ML for AI in Reality

Frequently Asked Questions of ML for AI (1/3) What is the best AI project for (my precious big) data?

My Polite Answer

good start already \bigcirc , any more thoughts that you have in mind?

My Honest Answer

I don't know.

or a slightly longer answer: if you don't know, I don't know.

A Similar Scenario

What is the best AI project for (my precious big) data? how to find a research topic for my thesis?

My Polite Answer

good start already \bigcirc , any more thoughts that you have in mind?

My Honest Answer

I don't know.

or a slightly longer answer: I don't know, but perhaps you can start by thinking about motivation and feasibility.

Topics \approx Finding Research

- motivation: what are you interested in?
- feasibility: what can or cannot be done?

motivation

- something publishable?
 oh, possibly just for
 people in academia (:)
- something that improves xyz performance
- something that inspires deeper study

-helps generate questions

feasibility

- modeling
- computational
- budget
- timeline

. . .

-helps filter questions

tip: important for first Al project to be of high success possibility

H.-T. Lin (NTU)

ML for Modern AI

Frequently Asked Questions of ML for AI (2/3) What is the best machine learning model for (my precious big) data and AI?

My Polite Answer

the best model is data-dependent, let's chat about your data first

My Honest Answer

I don't know.

or a slightly longer answer: I don't know about **best**, but perhaps you can **start** by thinking about **simple models**.

Sophisticated Model for AI

What is the best machine learning model for (my precious big) data and AI?

What is the most sophisticated machine learning model for (my precious big) data and AI?

- myth: my AI works best with most sophisticated model
- sophisticated model:
 - time-consuming to train and predict
 - difficult to tune or modify
 - hard to "simplify" nor "analyze"

sophisticated model shouldn't be first choice

H.-T. Lin (NTU)

Simple First

What is the first machine learning model for (my precious big) data and AI?

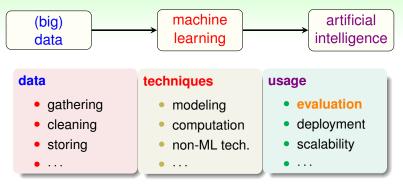
Taught in ML Foundations on NTU@Coursera

simple model first:

- efficient to train and predict
- easy to tune or modify
- somewhat "analyzable"
- little risk

tip: KISS Principle —Keep It Simple, Stupic Safe

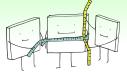
Frequently Asked Questions of ML for AI (3/3) How to Get my AI Project Started?

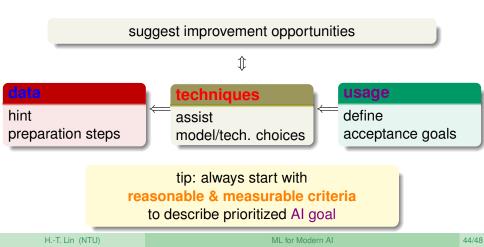

Old Me I don't know. 🙂

New Me

I know one key factor!

let's see what the key factor is


Todos in AI Project


key first step: set up evaluation criteria

Evaluation Criteria Guide AI Project Planning

(free image by Manfred Steger from Pixabay)

Outline

ML for (Modern) Al

ML Research for Modern AI: Some Personal Stories

ML for AI in Reality

ML for Future AI

AI: Now and Next

2010–2015: AI |

Al becomes **promising**, e.g.

- initial success of deep learning on ImageNet
- mature tools for SVM (LIBSVM) and others

2016–2020: Al +

Al becomes competitive, e.g.

- super-human performance of alphaGo and others
- all big technology companies become Al-first

2021–: Al imes

Al becomes necessary

 "You'll not be replaced by AI, but by humans who know how to use AI"

(Sun, Chief Al Scientist

of Appier, 2018)

Needs of ML for Future AI

more generative	more explainable	more interactive
win human respect	win human <mark>trust</mark>	win human <mark>heart</mark>
e.g. Appier's 2018 work on design matching clothes (Shih et al., AAAI 2018)	e.g. my students' work on automatic bridge bidding (Yeh et al., IEE ToG 2018)	e.g. my student's work (w/ DeepQ) on efficient disease diagonsis (Peng et al., NeurIPS 2018)

Summary

- ML for (Modern) AI: tools + human knowledge ⇒ easy-to-use application
- ML Research for Modern AI: need to be more open-minded —in methodology, in collaboration, in KPI
- ML for AI in Reality:
 - motivated/feasible project with measurable criteria
 - human and/or simple model first
- ML for future AI: knowing how to use is important

Thank you! Questions?