Machine Learning for Modern Artificial Intelligence

Hsuan-Tien Lin
林軒田

Dept. of Computer Science and Information Engineering, National Taiwan University
國立臺灣大學資訊工程學系

January 25, 2022
AI & Data Science Workshop
About Me

Professor
National Taiwan University

Chief Data Science Consultant
(former Chief Data Scientist)
Appier Inc.

Co-author
Learning from Data

Instructor
NTU-Coursera MOOCs
ML Foundations/Techniques
ML for (Modern) AI

ML Research for Modern AI

ML for AI in Reality
From Intelligence to Artificial Intelligence

intelligence: thinking and acting *smartly*
- humanly
- rationally

artificial intelligence: *computers* thinking and acting *smartly*
- humanly
- rationally

humanly \approx **smartly** \approx rationally
—are humans rational? 😊
Humanly versus Rationally

What if your self-driving car decides one death is better than two—and that one is you? (The Washington Post http://wpo.st/ZK-51)

You’re humming along in your self-driving car, chatting on your iPhone 37 while the machine navigates on its own. Then a swarm of people appears in the street, right in the path of the oncoming vehicle.

Car Acting **Humanly**

to save my (and passengers’) life, stay on track

Car Acting **Rationally**

avoid the crowd and crash the owner for minimum total loss

which is smarter?
—depending on where I am, maybe? 😊
(Traditional) Artificial Intelligence

Thinking Humanly
- cognitive modeling — now closer to Psychology than AI

Thinking Rationally
- formal logic — now closer to Theoreticians than AI practitioners

Acting Humanly
- dialog systems
- humanoid robots
- computer vision

Acting Rationally
- recommendation systems
- cleaning robots
- character recognition

acting humanly or rationally: more academia/industry attention nowadays
Traditional vs. Modern [My] Definition of AI

Traditional Definition

humanly \approx intelligently \approx rationally

My Definition

intelligently \approx easily

is your smart phone ‘smart’? 😊

modern artificial intelligence

$=\text{application}$ intelligence
Examples of Application Intelligence

- **Siri**
 - By Bernard Goldbach [CC BY 2.0]

- **iRobot**
 - By Yuan-Chou Lo [CC BY-NC-ND 2.0]

- **Amazon Recommendations**
 - By Kelly Sims [CC BY 2.0]

- **Vivino**
 - From nordic.businessinsider.com

application intelligence is everywhere!
AI Milestones

- **first AI winter**: AI cannot solve ‘combinatorial explosion’ problems
- **second AI winter**: expert system failed to scale

reason of winters: expectation mismatch
AI: Now and Next

2010–2015: AI |
AI becomes **promising**, e.g.
- initial success of **deep learning** on ImageNet
- mature tools for SVM (**LIBSVM**) and others

2016–2020: AI +
AI becomes **competitive**, e.g.
- super-human performance of **alphaGo** and others
- all big technology companies become **AI-first**

2021–: AI ×
AI becomes **necessary**
- “You’ll not be replaced by AI, but **by humans who know how to use AI**”
 (Sun, Chief AI Scientist of Appier, 2018)

what is different now?
What is Different Now?

More Data
- cheaper storage
- Internet companies

Faster Computation
- cloud computing
- GPU computing

Better Algorithms
- decades of research
- e.g. deep learning

Healthier Mindset
- reasonable wishes
- key breakthroughs

data-enabled AI: mainstream nowadays
Bigger Data Enable Easier-to-use AI

By deepanker70 on https://pixabay.com/

Past
- best route by shortest path

Present
- best route by current traffic

Future
- best route by predicted travel time

Big data can make machine look smarter
Machine Learning Connects Big Data and AI

From Big Data to Artificial Intelligence

big data \[\rightarrow\] ML \[\rightarrow\] artificial intelligence

ingredient \[\rightarrow\] tools/steps \[\rightarrow\] dish

many possibilities when using the right tools

Photos Licensed under CC BY 2.0 from Andrea Goh on Flickr
ML-based AI Applications (1/4): Medicine

By DataBase Center for Life Science; licensed under CC BY 4.0 via Wikimedia Commons

for computer-assisted diagnosis

- **data:**
 - patient status
 - past diagnosis from doctors
- **AI:** dialogue system that efficiently identifies disease of patient

my student’s earlier work as intern @ HTC DeepQ
ML-based AI Applications (2/4): Communication

For 4G LTE communication

- **data:**
 - **channel information** (the channel matrix representing mutual information)
 - **configuration** (precoding, modulation, etc.) that reaches the highest throughput

- **AI:** predict **best configuration to the base station** in a new environment

By JulianVilla26;
licensed under CC BY-SA 4.0 via Wikimedia Commons

my student’s earlier work as intern @ MTK
ML-based AI Applications (3/4): Entertainment

- **data**: how many users have rated some movies
- **AI**: predict how a user would rate an unrated movie

world-champion from National Taiwan Univ. in KDDCup 2011
ML-based AI Applications (4/4): Security

face recognition

- **data**: faces and non-faces
- **AI**: predict which boxes contain faces

mature ML technique, but often need tuning for different application intelligence needs
Good AI Needs Both ML and Non-ML Techniques

<table>
<thead>
<tr>
<th>Non-ML Techniques</th>
<th>ML Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte C. Tree Search</td>
<td>Deep Learning</td>
</tr>
<tr>
<td>≈ move simulation in brain</td>
<td>≈ board analysis in human brain</td>
</tr>
<tr>
<td>(CC-BY-SA 3.0 by Stannered on Wikipedia)</td>
<td>(CC-BY-SA 2.0 by Frej Bjon on Wikipedia)</td>
</tr>
</tbody>
</table>

Reinforcement Learn. | (self)-practice in human training |
| (Public Domain, from Wikipedia) |

good AI: important to use the right techniques—ML & others, including human
Full Picture of ML for Modern AI

- Big data
- Method
- Model
- Domain knowledge (HumanI)
- Expert system

ML

Industry: black plum is as sweet as white
Example: Tropical Cyclone Intensity Estimation

Meteorologists can ‘feel’ & estimate TC intensity from image

ML for (Modern) AI

Better than current system
(Chen et al., KDD '18; Chen et al., Weather & Forecasting '19)
Outline

ML for (Modern) AI

ML Research for Modern AI

ML for AI in Reality
Cost-Sensitive Multiclass Classification
What is the Status of the Patient?

By DataBase Center for Life Science; licensed under CC BY 4.0 via Wikimedia Commons

? COVID19 cold healthy

Pictures Licensed under CC BY-SA 3.0 from 1RadicalOne on Wikimedia Commons

• a classification problem
 —grouping ‘patients’ into different ‘status’

are all mis-prediction costs equal?
Patient Status Prediction

error measure = society cost

<table>
<thead>
<tr>
<th>actual</th>
<th>predicted</th>
<th>COVID19</th>
<th>cold</th>
<th>healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVID19</td>
<td>0</td>
<td>1000</td>
<td>100000</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>100</td>
<td>0</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>healthy</td>
<td>100</td>
<td>30</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- COVID19 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; how about computer-aided diagnosis?
Our Works

<table>
<thead>
<tr>
<th></th>
<th>binary</th>
<th>multiclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>well-studied</td>
<td>well-studied</td>
</tr>
<tr>
<td>cost-sensitive</td>
<td>known (Zadrozny et al., 2003)</td>
<td>ongoing (our works, among others)</td>
</tr>
</tbody>
</table>

Selected works of ours

- cost-sensitive SVM (Tu and Lin, ICML 2010)
- cost-sensitive one-versus-one (Lin, ACML 2014)
- cost-sensitive deep learning (Chung et al., IJCAI 2016)

why are people not using those cool ML works for their AI? 😊
Issue 1: Where Do Costs Come From?

A Real Medical Application: Classifying Bacteria

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

<table>
<thead>
<tr>
<th></th>
<th>Ab</th>
<th>Ecoli</th>
<th>HI</th>
<th>KP</th>
<th>LM</th>
<th>Nm</th>
<th>Psa</th>
<th>Spn</th>
<th>Sa</th>
<th>GBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Ecoli</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>HI</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>KP</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>LM</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Nm</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Psa</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Spn</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Sa</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>GBS</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

issue 2: is cost-sensitive classification really useful?
Cost-Sensitive vs. Traditional on Bacteria Data

Are cost-sensitive algorithms great?

Cost-sensitive algorithms perform better than regular algorithm

(Jan et al., BIBM 2011)

\textbf{cost-sensitive} better than \textbf{traditional}; but why are people \textbf{still not} using those cool ML works for their AI? 😊
Issue 3: Error Rate of Cost-Sensitive Classifiers

The Problem

• cost-sensitive classifier: low cost but high error rate
• traditional classifier: low error rate but high cost
• how can we get the blue classifiers?: low error rate and low cost

cost-and-error-sensitive: more suitable for real-world medical needs
Improved Classifier for Both Cost and Error

(Jan et al., KDD 2012)

<table>
<thead>
<tr>
<th>Cost</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>iris</td>
<td>iris</td>
</tr>
<tr>
<td>wine</td>
<td>wine</td>
</tr>
<tr>
<td>glass</td>
<td>glass</td>
</tr>
<tr>
<td>vehicle</td>
<td>vehicle</td>
</tr>
<tr>
<td>vowel</td>
<td>vowel</td>
</tr>
<tr>
<td>segment</td>
<td>segment</td>
</tr>
<tr>
<td>dna</td>
<td>dna</td>
</tr>
<tr>
<td>satimage</td>
<td>satimage</td>
</tr>
<tr>
<td>usps</td>
<td>usps</td>
</tr>
<tr>
<td>zoo</td>
<td>zoo</td>
</tr>
<tr>
<td>splice</td>
<td>splice</td>
</tr>
<tr>
<td>ecoli</td>
<td>ecoli</td>
</tr>
<tr>
<td>soybean</td>
<td>soybean</td>
</tr>
</tbody>
</table>

Now, are people using those cool ML works for their AI? 😊
Lessons Learned from Research on Cost-Sensitive Multiclass Classification

1. more realistic (generic) in academia
 ≠ more realistic (feasible) in application
 e.g. the ‘cost’ of **inputting a cost matrix? 😊**

2. **cross-domain collaboration** important
 e.g. getting the ‘cost matrix’ from **domain experts**

3. not easy to win **human trust**
 —humans are somewhat **multi-objective**

See Page 16 of the Slides for Sources of the Pictures
Label Space Coding for Multilabel Classification
What Tags?

?: \{machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. \}

a multilabel classification problem: tagging input to multiple categories

Learning From Data [Hardcover]
Yaser S. Abu-Mostafa (Author), Malik Magdon-Ismail (Author), Hsuan-Tien Lin (Author)

Available from these sellers.

1 new from $28.00
Binary Relevance: Multilabel Classification via Yes/No

Binary Classification

\{yes, no\}

Multilabel w/ \(L\) classes: \(L\) Y/N questions

- machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

- **Binary Relevance** approach:
 transformation to multiple isolated binary classification

- disadvantages:
 - **isolation**—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - **unbalanced**—few yes, many no

Binary Relevance: simple (& good) benchmark with known disadvantages
From Label-set to Coding View

<table>
<thead>
<tr>
<th>label set</th>
<th>apple</th>
<th>orange</th>
<th>strawberry</th>
<th>binary code</th>
</tr>
</thead>
<tbody>
<tr>
<td>{o}</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>[0, 1, 0]</td>
</tr>
<tr>
<td>{a, o}</td>
<td>1 (Y)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>[1, 1, 0]</td>
</tr>
<tr>
<td>{a, s}</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>[1, 0, 1]</td>
</tr>
<tr>
<td>{o}</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>[0, 1, 0]</td>
</tr>
<tr>
<td>{}</td>
<td>0 (N)</td>
<td>0 (N)</td>
<td>0 (N)</td>
<td>[0, 0, 0]</td>
</tr>
</tbody>
</table>

subset of $2\{1, 2, \ldots, L\} \leftrightarrow$ length-L binary code
General Compressive Sensing

sparse (many 0) binary vectors $y \in \{0, 1\}^L$ can be **robustly compressed** by projecting to $M \ll L$ basis vectors $\{p_1, p_2, \ldots, p_M\}$

Comp. Sensing for Multilabel Classification (Hsu et al., NeurIPS 2009)

1. **compress**: encode original data by compressive sensing
2. **learn**: get regression function from compressed data
3. **decode**: decode regression predictions to sparse vector by compressive sensing

Compressive Sensing:
seemly strong competitor
from related theoretical analysis
Our Proposed Approach: Compressive Sensing \Rightarrow PCA

Principal Label Space Transformation (PLST), i.e. PCA for Multilabel Classification (Tai and Lin, NC Journal 2012)

1. **compress**: encode original data by PCA
2. **learn**: get regression function from compressed data
3. **decode**: decode regression predictions to label vector by reverse PCA + quantization

does PLST perform better than CS?

H.-T. Lin (NTU)
Hamming Loss Comparison: PLST vs. CS

- **PLST** better than **CS**: faster, **better** performance
- similar findings across **data sets** and **regression algorithms**

Why? **CS** creates **harder-to-learn** regression tasks
Our Works Continued from PLST

1. **Compression** Coding (Tai & Lin, NC Journal 2012 with 342 citations)
 — *condense* for efficiency: better (than CS) approach PLST
 — key tool: PCA from Statistics/Signal Processing

2. **Learnable-Compression** Coding (Chen & Lin, NeuIPS 2012 with 262 citations)
 — *condense learnably* for *better* efficiency: better (than PLST) approach CPLST
 — key tool: Ridge Regression from Statistics (+ PCA)

3. **Cost-Sensitive** Coding (Huang & Lin, ECML Journal Track 2017 with 48 citations)
 — *condense cost-sensitively* towards application needs: better (than CPLST) approach CLEMS
 — key tool: Multidimensional Scaling from Statistics

cannot thank **statisticians** enough for those tools!
Lessons Learned from Label Space Coding for Multilabel Classification

?: \{ \text{machine learning, data structure, data mining, object-oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, \ldots\ etc.} \}

1. Is Statistics the same as ML? Is Statistics the same as AI?
 - does it really matter?
 - modern AI should embrace \textbf{every useful tool from other fields}
 - all fields could find their \textbf{concrete roles} in AI

2. \textbf{good tools} \textbf{not necessarily most sophisticated tools}
 e.g. PCA possibly more useful than CS

3. \textbf{more-cited paper} \neq \textbf{more-useful AI solution}
 —citation count \textbf{not the only impact measure}
Active Learning by Learning
Active Learning: Learning by ‘Asking’

- **unknown target function** \(f: \mathcal{X} \rightarrow \mathcal{Y} \)
- **labeled training examples**
 - \((\text{apple}, +1)\), \((\text{banana}, +1)\), \((\text{orange}, +1)\)
 - \((\text{banana}, -1)\), \((\text{pomegranate}, -1)\), \((\text{orange}, -1)\)

- **active learning ‘question asking’** — query \(y_n \) of chosen \(x_n \)

- **labeling is expensive:**

- **active: improve hypothesis with fewer labels** (hopefully) by asking questions **strategically**

- **learning algorithm** \(\mathcal{A} \)

- **final hypothesis** \(g \approx f \)
Pool-Based Active Learning Problem

Given

- labeled pool $\mathcal{D}_l = \{(\text{feature } x_n, \text{ label } y_n \text{ (e.g. IsApple?)})\}_{n=1}^{N}$
- unlabeled pool $\mathcal{D}_u = \{\tilde{x}_s\}_{s=1}^{S}$

Goal

design an algorithm that iteratively

1. **strategically query** some \tilde{x}_s to get associated \tilde{y}_s
2. move $(\tilde{x}_s, \tilde{y}_s)$ from \mathcal{D}_u to \mathcal{D}_l
3. learn classifier $g^{(t)}$ from \mathcal{D}_l

and improve **test accuracy of** $g^{(t)}$ w.r.t #queries

how to query strategically?
How to Query Strategically?

Strategy 1
ask *most confused* question

Strategy 2
ask *most frequent* question

Strategy 3
ask *most debateful* question

• *choosing* one single strategy is non-trivial:

application intelligence: how to choose strategy smartly?
Idea: Trial-and-Reward Like Human

when do humans trial-and-reward?

Gambling

- **Strategies:** A_1, A_2, \ldots, A_K
- **Try one strategy**
- **Goodness** of strategy as reward

- **Bandit Machines:** B_1, B_2, \ldots, B_K
- **Try one bandit machine**
- **Luckiness** of machine as reward

Intelligent choice of strategy \implies intelligent choice of **bandit machine**
Active Learning by Learning (Hsu and Lin, AAAI 2015)

Given: K existing active learning strategies

for $t = 1, 2, \ldots, T$

1. let some bandit model **decide strategy** A_k to try
2. query the \tilde{x}_s suggested by A_k, and compute $g^{(t)}$
3. evaluate **goodness of** $g^{(t)}$ as **reward** of trial to update model

proposed Active Learning by Learning (ALBL): motivated but unrigorous reward design
Comparison with Single Strategies

- **no single best strategy** for every data set
- choosing needed
- proposed **ALBL** consistently **matches the best**
- similar findings across other data sets

‘application intelligence’ outcome:
open-source tool released
(https://github.com/ntucllab/libact)
Have We Made Active Learning More Realistic? (1/2)

Yes!

open-source tool libact developed (Yang, 2017)

https://github.com/ntucllab/libact

- including uncertainty, QUIRE, PSDS, . . ., and ALBL
- received > 700 **stars**, > 40 **citations**, and continuous **issues**

“libact is a Python package designed to make active learning easier for real-world users”
Have We Made Active Learning More Realistic? (2/2)

No!

• single-most raised issue: hard to install on Windows/Mac—because several strategies require some C packages
• performance in an industry project:

 ![Graph](image)

 • uncertainty sampling often suffices
 • ALBL dragged down by bad strategy

“libact is a Python package designed to make active learning easier for real-world users”
1. **scalability bottleneck** of ‘application intelligence’: choice of methods/models/parameter/.

2. think outside of the **math** box:
 ‘unrigorous’ usage may be **good enough**

3. important to be **brave** yet **patient**
 - idea: 2012
 - paper: (Hsu and Lin, AAAI 2015); software: (Yang et al., 2017)

4. easy-to-use in design ≠ **easy-to-use in reality**
Tropical Cyclone Intensity Estimation
Can ML do the same/better?

- lack of **ML-ready datasets**
- lack of **model that properly utilizes domain knowledge**

issues addressed in our latest works

(Chen et al., KDD ’18; Chen et al., Weather & Forecasting ’19)
Recall: Flow behind Our Proposed Model

- TC images
- CNN
- polar rotation invariance
- ML
- human learning/analysis
- domain knowledge (HI)
- current weather system
- intensity estimation

is proposed CNN-TC better than current weather system?
Results

RMS Error

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT</td>
<td>11.75</td>
</tr>
<tr>
<td>AMSU</td>
<td>14.40</td>
</tr>
<tr>
<td>SATCON</td>
<td>9.66</td>
</tr>
<tr>
<td>CNN-TC</td>
<td>9.03</td>
</tr>
</tbody>
</table>

CNN-TC much better than current weather system (SATCON)

why are people **not** using this **cool ML model? 😊**
Lessons Learned from Research on Tropical Cyclone Intensity Estimation

1. again, **cross-domain collaboration** important
 e.g. even from ‘organizing data’ to be ML-ready

2. not easy to claim **production ready**
 —can ML be used for ‘unseenly-strong TC’?

3. good AI system requires **both human and machine learning**
 —still an ‘art’ to blend the two
Outline

ML for (Modern) AI

ML Research for Modern AI

ML for AI in Reality
What is the best AI project for (my precious big) data?

My Polite Answer

good start already 😊, any more thoughts that you have in mind?

My Honest Answer

I don’t know.

or a slightly longer answer:

if you don’t know, I don’t know.
A Similar Scenario

What is the best AI project for (my precious big) data?

how to find a research topic for my thesis?

My Polite Answer

good start already 😊, any more thoughts that you have in mind?

My Honest Answer

I don’t know.

or a slightly longer answer:

I don’t know, but perhaps you can start by thinking about motivation and feasibility.
Finding AI Projects ≈ Finding Research Topics

- **motivation**: what are you interested in?
- **feasibility**: what can or cannot be done?

motivation
- something publishable? oh, possibly just for people in academia 😊
- something that improves xyz performance
- something that inspires deeper study
—helps generate questions

feasibility
- modeling
- computational
- budget
- timeline
—helps filter questions

tip: important for first AI project to be of high success possibility
Should I use ML (or my precious Deep Learning) for my AI project?

My Polite Answer
let’s understand more about the constraints of your project, shall we 😊?

My Honest Answer
I don’t know.

or a slightly longer answer:
if you don’t know, I don’t know.
Necessary Conditions for Using ML

1. exists some “underlying pattern” to be learned
 —so “AI goal” possible

2. but no programmable (easy) definition
 —so “ML” is needed

3. somehow there is enough data about the pattern
 —so ML has some “inputs” to learn from

necessary, but not sufficient, for using ML
Human Learning versus Machine Learning

Human Learning
- subjective
- produce domain knowledge
- fast basic solution

tip: use humans as much as possible first before going to machines

Machine Learning
- objective
- leverage computing power
- continuous improvement

ML for Modern AI
What is the best machine learning model for (my precious big) data and AI?

My Polite Answer
the best model is data-dependent, let’s chat about your data first

My Honest Answer
I don’t know.

or a slightly longer answer:
I don’t know about best, but perhaps you can start by thinking about simple models.
What is the best machine learning model for (my precious big) data and AI?

What is the most sophisticated machine learning model for (my precious big) data and AI?

- myth: my AI works best with most sophisticated model
- sophisticated model:
 - time-consuming to train and predict
 - difficult to tune or modify
 - hard to “simplify” nor “analyze”

sophisticated model shouldn’t be first choice
What is the first machine learning model for (my precious big) data and AI?

simple model first:
• efficient to train and predict
• easy to tune or modify
• somewhat “analyzable”
• little risk

tip: KISS Principle
—Keep It Simple, Stupid Safe
How to Get my AI Project Started?

Old Me
I don’t know. 😊

New Me
I know one key factor!

let’s see what the key factor is
Todos in AI Project

- (big) data
- machine learning
- artificial intelligence

data
- gathering
- cleaning
- storing
- ...

techniques
- modeling
- computation
- non-ML tech.
- ...

usage
- evaluation
- deployment
- scalability
- ...

key first step: set up **evaluation criteria**
Evaluation Criteria Guide AI Project Planning

suggest improvement opportunities

data
- hint
- preparation steps

techniques
- assist
- model/tech. choices

usage
- define
- acceptance goals

tip: always start with reasonable & measurable criteria to describe prioritized AI goal
Summary

• ML for (Modern) AI: tools + human knowledge ⇒ easy-to-use application

• ML Research for Modern AI: need to be more open-minded—in methodology, in collaboration, in KPI

• ML for AI in Reality:
 • motivated/feasible project with measurable criteria
 • human and/or simple model first

Thank you! Questions?